
6.837 Fall ’98 Final Quiz

- 1 -

6.837 --- FALL ’98

Final Quiz

Time allotted: 3 hours
Open book, open notes

(100 points)

Instructions: Answer all questions using the space provided. If you need more paper,
raise your hand, and it will be provided for you. If you have a question during the test,
do not leave your seat. Instead, raise your hand until someone comes to assist you. If any
question seems unclear or appears to lack sufficient information, state a reasonable
assumption (in writing on your quiz) and proceed. The point value of each problem is
indicated in parentheses. Make sure that you answer each part of each question.

Solutions
Name__

(Print)

I understand that this quiz is subject to the
conditions and procedures stated in the

MIT Polices and Procedures handbook in Section 10.2.
Furthermore, I neither gave, nor received, any

unsanctioned assistance during this examination.

Signed ____________________________________ Date _________
(5 points)

6.837 Fall ’98 Final Quiz

- 2 -

MODELING AND VIEWING: You are given the following subset of the Matrix3D object. As a
reminder; all methods compose their transformation with the current value of the matrix object to which
they are applied. For example, A.method(args) → Anew = Aold Mmethod.

public class Matrix3D {
 //
 // Constructors
 //
 public Matrix3D(); // initializes with identity transform

 //
 // General interface methods
 //
 public void translate(float tx, float ty, float tz);
 public void scale(float sx, float sy, float sz);
 public void rotate(float ax, float ay, float ay, float angle);
 public void lookAt(float eyex, float eyey, float eyez,
 float atx, float aty, float atz,
 float upx, float upy, float upz);
 public void perspective(float left, float right,

 float bottom, float top,
 float near, float far);

}

You are also given the method, drawCube(Matrix3D M), that draws a cube with model-space
coordinates { (-1,-1,-1), (1,-1,-1), (1,1,-1), (-1,1,-1), (-1,-1,1), (1,-1,1), (1,1,1), (-1,1,1) }.

Part A: (15 points) Write a code fragment using the methods given that draws the scene shown above.
The only two objects in the scene are the gray cubes shown; all other objects are for illustration purposes
only. The z-axis should project to a vertical column in the image that you render. The corner of the dark
block that is indicated by the arrow should be in the center of your image. The eye position is the center
of the sphere shown.

6.837 Fall ’98 Final Quiz

- 3 -

Each edge of the darker cube is 2 units. The sides of the lighter cube are 2 units. It is rotated 45 degrees,
and is sitting on top of the darker cube. Choose a viewing frustum of 90 degrees both vertically and
horizontally, and a range of z values that includes both cubes. Don’t worry about illumination. The order
of operations is most important. (space for Part A)

drawIt() {
 Matrix3D m = new Matrix3D();
 m.perspective(-2.0f, 2.0f, -2.0f, 2.0f, 1.0f, 20.0f);
 m.lookat(6.0f, 8.0f,6.0f, // eye
 5.0f,5.0f,2.0f, // lookat
 0.0f,0.0f,1.0f); // up
 m.translate(4.0f, 4.0f, 1.0);
 drawCube(); // dark cube
 float s = Math.sqrt(2.0);
 m.translate(0.0f, 0.0f, 1.0f + s);
 m.rotate(0.0f, 0.0f, 1.0f, (float) (Math.PI/4.0));
 m.scale(s, s, s);
 drawCube(); // lighter cube
}

6.837 Fall ’98 Final Quiz

- 4 -

Part B: (10 points) Give a 4 by 4 matrix that rotates points about the vector []3 12 4
T

by 30 degrees

counterclockwise. You can leave your result as a sum or product of matrices if you wish and there is no

need to simplify expressions (Note: cos 30º = 3
2 , sin 30º = 1

2).

Normalized rotation axis: []13
4

13
12

13
3

Here’ s the easy way:





















+





















−

−

−

+



























−=

100

010

001

2
3

0

0

0

2
1

2
31R

13
3

13
12

13
3

13
4

13
12

13
4

169
16

169
48

169
12

169
48

169
144

169
36

169
12

169
36

169
9





















+−−−

−+−

−−+

=

315332348135312132

34857325288336124

31218033620316018

338
1R

Inserting into a 4 by 4



























+−−−

−+−

−−+

=

338000

0315332348135312132

034857325288336124

031218033620316018

R

6.837 Fall ’98 Final Quiz

- 5 -

ILLUMINATION MODELS: In class we have discussed two methods for computing specular highlights.
The first method, which is attributed to Phong, uses the angle between the viewing vector and the mirror

reflection direction, ()I v rPhong
n= ⋅ . The second method, proposed by Blinn, uses the angle between the

surface normal and the so-called half-way vector that bisects the incoming light direction and the viewing

direction ()I n hBlinn

n
= ⋅ .

Part A: (5 points) On the two figures shown below sketch both the mirror reflection direction, r , and the

halfway vector, h . Which subsets of three or more vectors from the set { }l n v r h, , , , are coplanar?

The vectors nl , and r are coplanar, The vectors hl , and v are also coplanar.

Part B: (10 points) Assume that the vector to the light source remains fixed while the viewing vector is
varied. Sketch and discuss the range of angles above the surface where IPhong has a non-zero value and

identify the direction of maximum reflection. Compare this range and the direction of maximum
reflection to IBlinn .

Blinn’ s specular model has a non-zero value for all viewing directions within the
hemisphere above the surface as long as the light source is on the same side. In
contrast, Phong’ s model only has a non-zero value for the hemisphere surrounding the
reflection direction,, part of which is always below the surface. Both Blinn’ s and
Phongs specular models reach a maximum value along the reflected direction r .

n
r

r

h

rh

6.837 Fall ’98 Final Quiz

- 6 -

Part C: (10 points) Since the shininess exponent, n , used by both the Phong and Blinn specular
illumination models is empirical rather than physically based, throughout the years several alternatives
have been suggested. The basic form of both the Phong and Blinn models is

()I f n l vspecular

n
= , , where ()0 1≤ ≤f n l v, ,

Consider the following alternative model

()
() ()I

f n l v

n nf n l v f n l vspecular =
− +

, ,

, , , ,

Make rough sketches of both the standard and alternative models over the valid range of ()f n l v, , , for

values of n equal to 1, 2, 4, 8, and any others you’d like (Hint: simply treat ()f n l v, , as a variable
between 0 and 1). How does this new model compare to the standard specular reflection model? What
possible advantages might this new model have?

The standard shininess function, shown on the left, attenuates the specular spot size faster than alternative
model and its fall off is more gradual. Thus, a larger value of n is needed to create a similar effect. Otherwise, the
behavior of the two functions is quite similar.

Since, neither model has any physical basis the alternative model could be used in place of the standard one with
appropriate adjustments in n values. It has the advantage that it can be computed using a multiply, a subtraction,
an addition, and a divide compared to a pow() function for the standard model, which involves a log, a multiply, and
an antilog.

6.837 Fall ’98 Final Quiz

- 7 -

RAY TRACING: Consider a circular disc which is defined by the coordinate of it’s center, a direction
normal to the disk, and a radius.

All points, []x y z
T

, on the disk satisfy the following plane equation:

n x n y n z n c n c n cx y z x x y y z y+ + = + +

as well as the following distance constraint:

 2222)()()(rzcycxc zyx ≤−+−+−

You are given the following classes

class Vector3D {
 public float x, y, z;

 // constructors
 public Vector3D();
 public Vector3D(float x, float y, float z);

 // methods
 public static float dot(Vector3D A, Vector3D B);
 public static Vector3D cross(Vector3D A, Vector3D B);
 public static Vector3D normalize(Vector3D A);
 public static Vector3D scale(Vector3D A, float s);
 public static Vector3D plus(Vector3D A, Vector3D B);
 public static Vector3D minus(Vector3D A, Vector3D B);
}

class Ray {
 public static final float MAX_T = Float.MAX_VALUE;
 public Vector3D origin;
 public Vector3D direction;
 public float t;
 public Renderable object;

:
}

class Disc implements Renderable {
 Surface surface;
 Vector3D center;
 Vector3D normal;
 float radius;

 public Disc(Surface s, Vector3D c, Vector3D n, float r) {
 surface = s; center = c; normal = Vector3D.normalize(n); radius = r;
 }

 public boolean intersect(Ray ray) { // returns false if ray does not intersect
 // write your code here
 }
 :
}

������������

�	���	���	��

6.837 Fall ’98 Final Quiz

- 8 -

Part A: (10 points) Write a code fragment for the intersect() method of the Disc object. The method
should return true in the case of an intersection and update the relevant fields of the Ray object that it is
passed. Otherwise, it should return false. Also, assume that a ray can intersect the disc from either side.

public boolean intersect(Ray ray) {
 // check distance constraint first
 Vector3D x = center.minus(ray.origin);
 float t = Vector3D.dot(x, ray.direction);
 if (Vector3D.dot(x, x) - t*t >= radius*radius)
 return false;

 // find intersection with plane
 t = Vector3D.dot(normal, ray.direction);
 if (t == 0)
 return false; // ray is parallel to disc

 t = Vector3D.dot(normal, x) / t;
 if ((t < 0) || (t > ray.t))
 return false;

 x = x.minus(ray.direction.scale(t));
 if (Vector3D.dot(x, x) >= radius*radius)
 return false;

 ray.t = t;
 ray.object = this;
 return true;
}

public boolean intersect(Ray ray){
 // compute intersection with plane
 float t = Vector3D.dot(normal, ray.direction);
 if (t == 0)
 return false; // ray is parallel to disc

 Vector3D x = center.minus(ray.origin);
 t = Vector3D.dot(normal, x) / t;
 if ((t < 0) || (t > ray.t))
 return false;

 // then compute distance constraint
 x = x.minus(ray.direction.scale(t));
 if (Vector3D.dot(x, x) >= radius*radius)
 return false;

 ray.t = t;
 ray.object = this;
 return true;
 }

6.837 Fall ’98 Final Quiz

- 9 -

Part B: (5 points) What pre-computation could have been done, and/or instance variables could have
been added to the Disc() constructor that would have reduced the amount of work done in the intersect()
method?

The following values could be computed once by the constructor and reused on each call to the intersect method:

float radSqr = radius * radius;
float nDotC = Vector3D.dot(normal, center);

Part C: (10 points) When you were implementing the disc intersection test you had the choice of testing
for intersection with the infinite plane, n x n y n z n c n c n cx y z x x y y z y+ + = + + , or testing the distance

constraint, 2222)()()(rzcycxc zyx ≤−+−+− , first. Discuss the relative merits of each approach.

Computing the intersection with the infinite plane first leads to simpler and shorter code. However, by testing the
distance constraint first it is possible to more reject rays sooner, and thus the code is faster. The reason that
testing the distance constraint first rejects more rays is that, in general, fewer rays pass within of a given
distance of a point than intersect an infinite ray. The exception occurs when the ray’ s origin is within a disc radius
from the disc center. Code for both versions was given for part a. In my implementation the testing the distance
constraint first is about 20% faster than finding the plane intersection first.

6.837 Fall ’98 Final Quiz

- 10 -

VISIBLE-SURFACE DETERMINATION: Back-face culling is one of the simplest and efficient methods
for determining the visibility of a polygonal facet. It is frequently used as a visibility-preprocessing step
in conjunction with other visibility techniques such as depth buffering. Below three different techniques
for back-face culling are described.

Method 1: Compute the dot product of each facet’s outward facing normal
with a vector from the surface towards the eye. If this value is negative the
surface is back facing and can be culled.

Method 2: If the screen-space area of the polygon as given
by the formula

∑
=

−− +−=
n

i
nininini yyxxA

1
mod1modmod1mod2

1))((

is negative the surface is back facing and can be culled.

Method 3: As described in Hearns and Baker (pp. 471-472), compute the dot
product between the surface normal and a vector along the viewing
direction. If it is positive the facet is back facing and can be culled.

Part A: (10 points) Do all three approaches give identical results? For each method explain which space or
which part of the rendering pipeline it is best suited for. What are the relative advantages and
disadvantages of each method?

All three methods yield the same results for
facets in front of the camera. However, the first
method differs from the other two for facets
behind the viewpoint. Facets behind the viewpoint
are generally irrelevant for Method 2 since it is
applied after clipping, However, these facets
behind the viewpoint will be considered by
methods 1 and 3.

Method 1 could be used in any of modeling, world, or eye spaces. Method 2 is best suited for screen space. Method
3, like 1, could be used in any of modeling, world, or eye spaces, but it is probably best suited for eye space since the
viewing direction there is along the z-axis, thus simplifying the dot product computation.

The advantage of Methods 1 and 3 are that it can be applied prior to any illumination calculations, whereas Method
2 occurs after projection, which is much later in the pipeline.

n l

(x0,y0)

(x1, y1)
(x2, y2)

n

v

Method 1 Methods 2 & 3

6.837 Fall ’98 Final Quiz

- 11 -

Part B: (5 points) What restrictions must be satisfied for a model to be properly rendered using back-face
culling followed by depth buffering? What additional restrictions must be satisfied if only back-face
culling is used to determine visibility?

When both back-face culling and depth buffering are used the object must be a closed “ watertight” model (i.e. there
can be no holes that let you see inside of the object) and its facet vertices must be described consistently in either
clockwise or counter-clockwise orders. If only back-face culling is used to resolve visibility then the object must also
be convex.

Part C: (5 points) Does a combination of any 2 or all 3 of the back-face culling methods given provide an
additional advantage? Estimate an upper bound on the number of facets that can be removed using these
methods alone and in combination.

The combination of methods 1 and 3 can provide a significant advantage of removing all facets that are behind the
viewpoint and thus unseen. Used alone all methods can reduce the number of facets considered by 50%. The
combination of 1 and 3 might eliminate as much as 75% of the facets.

