
6.837 Fall ’00 Midterm Quiz

6.837 — FALL ‘00

Midterm Quiz

Time allotted: 1 hour 15 minutes
Open book, open notes

(100 points + 5 extra points)

Instructions: Answer all questions using the space provided. If you need more paper,
raise your hand, and it will be provided for you. If you have a question during the test,
do not leave your seat. Instead, raise your hand until someone comes to assist you. If any
question seems unclear or appears to lack sufficient information, state a reasonable
assumption (in writing on your quiz) and proceed. The point value of each problem is
indicated in parentheses. Make sure that you answer each part of each question, even if
you believe you have already answered the question in an earlier part.

Name__
(Print)

I understand that this quiz is subject to the
conditions and procedures stated in

MIT Policies and Procedures handbook in Section 10.2.
Furthermore, I neither gave, nor received, any

unsanctioned assistance during this examination.

Signed ____________________________________ Date _________

Solutions

6.837 Fall ’00 Midterm Quiz

Problem 1. RASTER ADDRESSING: You are given the following familiar object:

public class Raster {
////////////////////////// Constructors /////////////////////
public Raster(); // allows class to be extended
public Raster(int w, int h); // specify size
public Raster(Image img); // set to size and contents of image

////////////////////////// Accessors //////////////////////////
public int getSize(); // pixels in raster
public int getWidth(); // width of raster
public int getHeight(); // height of raster
public int[] getPixelBuffer(); // get array of pixels

////////////////////////// Methods ////////////////////////////
public void fill(int argb); // fill with packed argb
public void fill(Color c); // fill with Java color
public Image toImage();
public int getPixel(int x, int y);
public Color getColor(int x, int y);
public boolean setPixel(int pix, int x, int y);
public boolean setColor(Color c, int x, int y);

}

Suppose you are asked to extend the given Raster class to create the new class called MagnifyRaster,
which has two additional methods, setMagnification() and getMagnification(), as shown below:

public class MagnifyRaster extends Raster {
protected int magFactor = 4;

public MagnifyRaster() {
}

public MagnifyRaster(int w, int h) {
super(w, h);

}

public MagnifyRaster(Image img) {
super(img);

}

public void setMagnification(int f) {
magFactor = f;

}

public int getMagnification() {
return magFactor;

}

public Image toImage() {
// YOUR CODE HERE

}
}

The MagnifyRaster toImage() method returns an image where each pixel of the raster is displayed as a
magFactor by magFactor sized block, with a one pixel wide, black border to the right and below each box.
In all other respects, a MagnifyRaster’s behavior is indistinguishable from that of a Raster. An example of
an image returned by a MagnifyRaster is shown above.

Result of toImage() method
applied to a Raster Object

Result of toImage() method applied
to same image as a MagnifyRaster

6.837 Fall ’00 Midterm Quiz

Part A: (15 points) Write a code fragment to implement the toImage() method of MagnifyRaster.

My original version:My original version:My original version:My original version:
public Image public Image public Image public Image toImage() {toImage() {toImage() {toImage() {
 int zoom = int zoom = int zoom = int zoom = magFactor + 1;magFactor + 1;magFactor + 1;magFactor + 1;
 int w = int w = int w = int w = this.width*zoom, h = this.width*zoom, h = this.width*zoom, h = this.width*zoom, h = this.height*zoom;this.height*zoom;this.height*zoom;this.height*zoom;
 Raster Raster Raster Raster bigRaster = new bigRaster = new bigRaster = new bigRaster = new Raster(w, h);Raster(w, h);Raster(w, h);Raster(w, h);
 int int int int bigPixel[] = bigPixel[] = bigPixel[] = bigPixel[] = bigRaster.getPixels();bigRaster.getPixels();bigRaster.getPixels();bigRaster.getPixels();
 int int int int i = 0, k = 0;i = 0, k = 0;i = 0, k = 0;i = 0, k = 0;

 int int int int borderColor = borderColor = borderColor = borderColor = 0xff000000;0xff000000;0xff000000;0xff000000;

 for (for (for (for (int y = 0; y < height; y++) {int y = 0; y < height; y++) {int y = 0; y < height; y++) {int y = 0; y < height; y++) {
 for (for (for (for (int v = 0; v < zoom; v++) {int v = 0; v < zoom; v++) {int v = 0; v < zoom; v++) {int v = 0; v < zoom; v++) {
 for (for (for (for (int x = 0; x < width; x++) {int x = 0; x < width; x++) {int x = 0; x < width; x++) {int x = 0; x < width; x++) {
 int pix = pixel[i++];int pix = pixel[i++];int pix = pixel[i++];int pix = pixel[i++];
 for (for (for (for (int u = 0; u < zoom; u++) {int u = 0; u < zoom; u++) {int u = 0; u < zoom; u++) {int u = 0; u < zoom; u++) {
 bigPixel[k++] = ((u == bigPixel[k++] = ((u == bigPixel[k++] = ((u == bigPixel[k++] = ((u == magFactor) || (v == magFactor) || (v == magFactor) || (v == magFactor) || (v == magFactor)) ? magFactor)) ? magFactor)) ? magFactor)) ? borderColor : pix;borderColor : pix;borderColor : pix;borderColor : pix;
 } } } }
 } } } }
 i -= width;i -= width;i -= width;i -= width;
 } } } }
 i += width;i += width;i += width;i += width;
 } } } }
 return return return return bigRaster.toImage();bigRaster.toImage();bigRaster.toImage();bigRaster.toImage();
 } } } }

Using Using Using Using tricks I learned while gradingtricks I learned while gradingtricks I learned while gradingtricks I learned while grading::::
public Image public Image public Image public Image toImage() {toImage() {toImage() {toImage() {
 int zoom = int zoom = int zoom = int zoom = magFactor + 1;magFactor + 1;magFactor + 1;magFactor + 1;
 int w = int w = int w = int w = this.width*zoom, this.width*zoom, this.width*zoom, this.width*zoom, h = h = h = h = this.height*zoom;this.height*zoom;this.height*zoom;this.height*zoom;
 Raste Raste Raste Raster r r r bigRaster = new bigRaster = new bigRaster = new bigRaster = new Raster(w, h);Raster(w, h);Raster(w, h);Raster(w, h);
 int pix;int pix;int pix;int pix;

 for (for (for (for (int y = 0; y < int y = 0; y < int y = 0; y < int y = 0; y < h; y++) {h; y++) {h; y++) {h; y++) {
 for (for (for (for (int x = 0; x < int x = 0; x < int x = 0; x < int x = 0; x < w; x++) {w; x++) {w; x++) {w; x++) {
 if (((x+1) % zoom == 0) || ((y+1) % zoom == 0)) {if (((x+1) % zoom == 0) || ((y+1) % zoom == 0)) {if (((x+1) % zoom == 0) || ((y+1) % zoom == 0)) {if (((x+1) % zoom == 0) || ((y+1) % zoom == 0)) {
 pix = pix = pix = pix = 0xff000000;0xff000000;0xff000000;0xff000000; // black border// black border// black border// black border
 } } } } else {else {else {else {

 pix = pix = pix = pix = getPixel(x/zoom, y/zoom);getPixel(x/zoom, y/zoom);getPixel(x/zoom, y/zoom);getPixel(x/zoom, y/zoom);
 } } } }
 bigRaster.setPixel(pix, x, y);bigRaster.setPixel(pix, x, y);bigRaster.setPixel(pix, x, y);bigRaster.setPixel(pix, x, y);

 }}}}
 }}}}
 return return return return bigRaster.toImage();bigRaster.toImage();bigRaster.toImage();bigRaster.toImage();
 } } } }

6.837 Fall ’00 Midterm Quiz

Part B: (10 points) After writing your MagnifyRaster class, you decide to incorporate it into an applet with
the following approximate structure in an effort to test the new class:

public class TestMagnify extends Applet {
MagnifyRaster mRaster;

public void init() {
mRaster = new MagnifyRaster(getImage(getDocumentBase(), “myimage.jpg”));

}

public void paint(Graphics g) {
g.drawImage(mRaster.toImage(), 0, 0, this);

}

public void update(Graphics g) {
paint(g);

}

public boolean mouseDown(Event e, int x, int y) {
/*
If the pixel at (x, y) falls on a non-gridline then the
color of the “clicked” pixel box is permuted as follows:

the new red channel is set equal to the old green channel,
the new green channel is set equal to the old blue channel, and
the new blue channel is set equal to the old red channel.

This color change will be reflected on the screen as well as
by contents of mRaster.
*/

// MISSING CODE FRAGMENT

repaint();
return true;

}
}

Write the missing code fragment of the mouseDown method as described by the block comment. You are
welcome to declare any necessary variables.

public public public public boolean boolean boolean boolean mouseDown(Event e, mouseDown(Event e, mouseDown(Event e, mouseDown(Event e, int x, int x, int x, int x, int y) {int y) {int y) {int y) {
 int int int int mag = mag = mag = mag = mRaster.getMagnification();mRaster.getMagnification();mRaster.getMagnification();mRaster.getMagnification();
 int int int int tilesize = tilesize = tilesize = tilesize = mag + 1;mag + 1;mag + 1;mag + 1;
 if (((x % if (((x % if (((x % if (((x % tilesize) == tilesize) == tilesize) == tilesize) == mag) || ((y % mag) || ((y % mag) || ((y % mag) || ((y % tilesize) == tilesize) == tilesize) == tilesize) == mag)) {mag)) {mag)) {mag)) {
 return true;return true;return true;return true;
 } } } }
 x = x / x = x / x = x / x = x / tilesize;tilesize;tilesize;tilesize;
 y = y / y = y / y = y / y = y / tilesize;tilesize;tilesize;tilesize;
 int pix = int pix = int pix = int pix = mRaster.getPixel(x, y);mRaster.getPixel(x, y);mRaster.getPixel(x, y);mRaster.getPixel(x, y);
 pix = pix = pix = pix = 0xff000000 + ((pix & 0xff000000 + ((pix & 0xff000000 + ((pix & 0xff000000 + ((pix & 0x0000ffff) << 8) + ((pix >> 16) & 255);0x0000ffff) << 8) + ((pix >> 16) & 255);0x0000ffff) << 8) + ((pix >> 16) & 255);0x0000ffff) << 8) + ((pix >> 16) & 255);
 mRaster.setPixel(pix, x, y);mRaster.setPixel(pix, x, y);mRaster.setPixel(pix, x, y);mRaster.setPixel(pix, x, y);
 repaint();repaint();repaint();repaint();
 return true;return true;return true;return true;
 } } } }

6.837 Fall ’00 Midterm Quiz

Problem 2. TWO DIMENSIONAL TRANSFORMATIONS: The three-parameter family of image
transformations called Euclidean have the form:

(((()))) (((())))
(((()))) (((())))

����

����
����
����

����

���� −−−−
====

100
cossin
sincos

),,(y

x

yx t
t

ttE θθ
θθ

θ

This family of transforms forms an algebraic group whose function can be described as a rotation by θ
about the origin followed by a translation by [tx, ty].

Part A: (15 points) Derive the matrix formulation for a three-parameter family of image transforms,
R(px, py, θ), whose function is to rotate coordinates about the point [px, py] by the angle θ.

�

�
�
�

�

�

θθθθ
θθθ−θ

=θ

�
�
�
�

�
�
�

�

�

−
−

�
�
�
�

�
�
�

�

�

θθ
θ−θ

�
�
�
�

�
�
�

�

�

=θ

100
p +)sin(·p -)cos(·p-)cos()sin(
p +)sin(·p +)cos(·p-)sin()cos(

),,(

100
10
01

100
0)cos()sin(
0)sin()cos(

100
10
01

),,(

yxy

xyx

yx

y

x

y

x

yx

ppR

p
p

p
p

ppR

Part B: (5 points) Does this family of transforms, R(px, py, θ), form an algebraic group? Explain why or
why not.

This was the devilish question. There is no reason to expect you to have figured this one out.This was the devilish question. There is no reason to expect you to have figured this one out.This was the devilish question. There is no reason to expect you to have figured this one out.This was the devilish question. There is no reason to expect you to have figured this one out.
The answer is no. While is obeys the three axioms of a group (the associative law, the setThe answer is no. While is obeys the three axioms of a group (the associative law, the setThe answer is no. While is obeys the three axioms of a group (the associative law, the setThe answer is no. While is obeys the three axioms of a group (the associative law, the set
includes the inverse of every member, and the set includes identity), it is not closed underincludes the inverse of every member, and the set includes identity), it is not closed underincludes the inverse of every member, and the set includes identity), it is not closed underincludes the inverse of every member, and the set includes identity), it is not closed under
composition. The fact is these rules are composition. The fact is these rules are composition. The fact is these rules are composition. The fact is these rules are necessarynecessarynecessarynecessary, but not , but not , but not , but not sufficientsufficientsufficientsufficient for defining a group. for defining a group. for defining a group. for defining a group. MyMyMyMy
treatment in class might have misled you on this detail. To prove that a set is closed undertreatment in class might have misled you on this detail. To prove that a set is closed undertreatment in class might have misled you on this detail. To prove that a set is closed undertreatment in class might have misled you on this detail. To prove that a set is closed under
composition can be tricky. In order to prove that a set is not closed you need merely state acomposition can be tricky. In order to prove that a set is not closed you need merely state acomposition can be tricky. In order to prove that a set is not closed you need merely state acomposition can be tricky. In order to prove that a set is not closed you need merely state a
contradiction.contradiction.contradiction.contradiction.

Consider the composition Consider the composition Consider the composition Consider the composition of R(xof R(xof R(xof R(x0000, , , , yyyy0000,,,,`̀̀̀====ππππ)R(x)R(x)R(x)R(x0000/2, y/2, y/2, y/2, y0000/2,/2,/2,/2,`̀̀̀ ππππ). The net result is a translation,). The net result is a translation,). The net result is a translation,). The net result is a translation,
T(xT(xT(xT(x0000, y, y, y, y0000). However, one cannot select x, y, and). However, one cannot select x, y, and). However, one cannot select x, y, and). However, one cannot select x, y, and `̀̀̀θθθθ such that such that such that such that R(x, R(x, R(x, R(x, y,y,y,y,`̀̀̀=

==

=θθθθ) = T() = T() = T() = T(xxxx0000,y,y,y,y0000). Thus, 2D rotations about an). Thus, 2D rotations about an). Thus, 2D rotations about an). Thus, 2D rotations about an
arbitrary point are not closed. Everyone got arbitrary point are not closed. Everyone got arbitrary point are not closed. Everyone got arbitrary point are not closed. Everyone got 5 points for this question.5 points for this question.5 points for this question.5 points for this question.

Part C: (5 points) How does the R(px, py, θ) family of transforms relate to the Euclidean family (i.e. are
they a subset, a superset, or equivalent)? Explain.

The set of 2D rotations about an arbitrary point is a subset of the Euclidean family. We know this since, allThe set of 2D rotations about an arbitrary point is a subset of the Euclidean family. We know this since, allThe set of 2D rotations about an arbitrary point is a subset of the Euclidean family. We know this since, allThe set of 2D rotations about an arbitrary point is a subset of the Euclidean family. We know this since, all
members of members of members of members of R(R(R(R(px, px, px, px, py, py, py, py, θθθθ) can be decomposed into a series of Euclidean transforms, as shown in part A, and the set) can be decomposed into a series of Euclidean transforms, as shown in part A, and the set) can be decomposed into a series of Euclidean transforms, as shown in part A, and the set) can be decomposed into a series of Euclidean transforms, as shown in part A, and the set
of Euclidean transforms is closed, thus R(of Euclidean transforms is closed, thus R(of Euclidean transforms is closed, thus R(of Euclidean transforms is closed, thus R(px, px, px, px, py, py, py, py, θθθθ) is at least a subset. However, the class of transforms) is at least a subset. However, the class of transforms) is at least a subset. However, the class of transforms) is at least a subset. However, the class of transforms
R(R(R(R(px, px, px, px, py, py, py, py, θθθθ) does not include pure translations without rotations. Notice) does not include pure translations without rotations. Notice) does not include pure translations without rotations. Notice) does not include pure translations without rotations. Notice R(R(R(R(px,py,0) = I, regardless of px,py,0) = I, regardless of px,py,0) = I, regardless of px,py,0) = I, regardless of px, px, px, px, py, thuspy, thuspy, thuspy, thus
you cannot make the diagonal of R(you cannot make the diagonal of R(you cannot make the diagonal of R(you cannot make the diagonal of R(px, px, px, px, py, py, py, py, θθθθ) all 1’ s (as is the case with a pure translation) without also making) all 1’ s (as is the case with a pure translation) without also making) all 1’ s (as is the case with a pure translation) without also making) all 1’ s (as is the case with a pure translation) without also making
the two upper elements of the left-most column 0’ s. This makes the origin a very special place.the two upper elements of the left-most column 0’ s. This makes the origin a very special place.the two upper elements of the left-most column 0’ s. This makes the origin a very special place.the two upper elements of the left-most column 0’ s. This makes the origin a very special place.

6.837 Fall ’00 Midterm Quiz

Problem 3. LINE DRAWING ALGORITHMS AND SCAN CONVERSION: All of the line drawing
algorithms described in class have assumed that the endpoints are specified as integers and that the line
width is fixed to one pixel. In this problem, we will investigate a more general class of line drawing
algorithms that allow arbitrary endpoints (specified as float values) and variable widths.

An example of the type of line that we seek to render is
illustrated in the figure to the right. The following fragment
of Java code implements this scan converter:

public void Draw(Raster r) {
int width = r.getWidth();
int height = r.getHeight();
int pixel[] = r.getPixelBuffer();
int xMin, xMax, yMin, yMax;
int x, y;

// compute the bounding box
// CODE OMITTED

// compute the discriminator along the length of the line
float Al = y0 - y1;
float Bl = x1 - x0;

// scale the discriminator to measure distance from the line
float d = (float) Math.sqrt(Al*Al + Bl*Bl);
Al = Al/d;
Bl = Bl/d;
d = 0.5f*(d + w);

// compute the discriminator along the width of the line
float Aw = -Bl;
float Bw = Al;

// initialize the discriminator
float tl = Al*xMin + Bl*yMin - 0.5f*(Al*(x0 + x1) + Bl*(y0 + y1));
float tw = Aw*xMin + Bw*yMin - 0.5f*(Aw*(x0 + x1) + Bw*(y0 + y1));

yMin *= width;
yMax *= width;

// scan convert line
for (y = yMin; y <= yMax; y += width) {

float el = tl;
float ew = tw;
boolean beenInside = false;
for (x = xMin; x <= xMax; x++) {

if ((el > -0.5f*w) && (el < 0.5f*w) && (ew > -d) && (ew < d)) {
pixel[y+x] = argb;
beenInside = true;

} else if (beenInside) break;
el += Al;
ew += Aw;

}
tl += Bl;
tw += Bw;

}
}

This Draw() method is defined within a FatLine Object with the following floating point instance
variables: x0, y0, x1, y1, and w. These are defined according to the figure above.

6.837 Fall ’00 Midterm Quiz

Part A: (5 points) Give expressions for the constant terms of the two discriminators, Cl and Cw (i.e. the C
term in the expression A x + B y + C = 0).

The constant terms are just the right-most terms of the two expressions that initialize theThe constant terms are just the right-most terms of the two expressions that initialize theThe constant terms are just the right-most terms of the two expressions that initialize theThe constant terms are just the right-most terms of the two expressions that initialize the
discriminators:discriminators:discriminators:discriminators:

Cl = -0.5*(Al*(x0 + x1) + Cl = -0.5*(Al*(x0 + x1) + Cl = -0.5*(Al*(x0 + x1) + Cl = -0.5*(Al*(x0 + x1) + Bl*(y0 + y1))Bl*(y0 + y1))Bl*(y0 + y1))Bl*(y0 + y1))
Cw = -0.5*(Cw = -0.5*(Cw = -0.5*(Cw = -0.5*(Aw*(x0 + x1) + Aw*(x0 + x1) + Aw*(x0 + x1) + Aw*(x0 + x1) + Bw*(y0 + y1))Bw*(y0 + y1))Bw*(y0 + y1))Bw*(y0 + y1))

Alternatively, you could derive the expression as:Alternatively, you could derive the expression as:Alternatively, you could derive the expression as:Alternatively, you could derive the expression as:

2222)10()10(2

y1)-y1)(y0(y0x1)-x1)(x0(x0- Cw
)10()10(

0110

yyxxyyxx
yxyxCl

−−−
+++=

−−−
−=

but, for reasons discussed in lecture, this form in not as well behaved numerically.but, for reasons discussed in lecture, this form in not as well behaved numerically.but, for reasons discussed in lecture, this form in not as well behaved numerically.but, for reasons discussed in lecture, this form in not as well behaved numerically.

Part B: (10 points) Another approach to scan-converting variable-width lines would use 4 oriented-edge
equations to represent the boundaries of the line, similar to the way we represented triangles. Discuss any
advantages or disadvantages of this alternative method when compared to the method given.

A clear disadvantage of using A clear disadvantage of using A clear disadvantage of using A clear disadvantage of using 4 edge equations is that you would have to update 44 edge equations is that you would have to update 44 edge equations is that you would have to update 44 edge equations is that you would have to update 4
discriminators in the inner loop of the discriminators in the inner loop of the discriminators in the inner loop of the discriminators in the inner loop of the rasterizer rather than 2 as in this version. You would alsorasterizer rather than 2 as in this version. You would alsorasterizer rather than 2 as in this version. You would alsorasterizer rather than 2 as in this version. You would also
have to compute those extra coefficients, which could be a little tricky.have to compute those extra coefficients, which could be a little tricky.have to compute those extra coefficients, which could be a little tricky.have to compute those extra coefficients, which could be a little tricky.

One advantage of the One advantage of the One advantage of the One advantage of the 4 edge-equation approach is it avoids normalizing the discriminator4 edge-equation approach is it avoids normalizing the discriminator4 edge-equation approach is it avoids normalizing the discriminator4 edge-equation approach is it avoids normalizing the discriminator
coefficients, thus possibly avoiding the square-root.coefficients, thus possibly avoiding the square-root.coefficients, thus possibly avoiding the square-root.coefficients, thus possibly avoiding the square-root.

Part C: (10 points) If the line width of the given line drawing method is set to 1 and the endpoints are
limited to integer values, would it always generate the same result as the DDA line drawing algorithm
given in class? Explain why or why not.

No, it will not generate the same result as a No, it will not generate the same result as a No, it will not generate the same result as a No, it will not generate the same result as a DDA. A DDA. A DDA. A DDA. A DDA line-drawing algorithm will set the DDA line-drawing algorithm will set the DDA line-drawing algorithm will set the DDA line-drawing algorithm will set the oneoneoneone
closest pixel on each row or column (depending upon which is the dominant axis). A pixel-closest pixel on each row or column (depending upon which is the dominant axis). A pixel-closest pixel on each row or column (depending upon which is the dominant axis). A pixel-closest pixel on each row or column (depending upon which is the dominant axis). A pixel-
sampling approach, like the one given, will set all pixels that satisfy the discriminators. Thesampling approach, like the one given, will set all pixels that satisfy the discriminators. Thesampling approach, like the one given, will set all pixels that satisfy the discriminators. Thesampling approach, like the one given, will set all pixels that satisfy the discriminators. The
closest pixel of the closest pixel of the closest pixel of the closest pixel of the DDA is determined at integer values along the dominant axis and is no moreDDA is determined at integer values along the dominant axis and is no moreDDA is determined at integer values along the dominant axis and is no moreDDA is determined at integer values along the dominant axis and is no more
than 0.5 a pixel from the ideal line as measured in the minor axis direction. The given algorithmthan 0.5 a pixel from the ideal line as measured in the minor axis direction. The given algorithmthan 0.5 a pixel from the ideal line as measured in the minor axis direction. The given algorithmthan 0.5 a pixel from the ideal line as measured in the minor axis direction. The given algorithm
will turn on all pixels within 0.5 a pixel of the ideal line as measured in the direction perpendicularwill turn on all pixels within 0.5 a pixel of the ideal line as measured in the direction perpendicularwill turn on all pixels within 0.5 a pixel of the ideal line as measured in the direction perpendicularwill turn on all pixels within 0.5 a pixel of the ideal line as measured in the direction perpendicular
to the line. This distance is generally greater than 0.5 a pixel measured in the minor axisto the line. This distance is generally greater than 0.5 a pixel measured in the minor axisto the line. This distance is generally greater than 0.5 a pixel measured in the minor axisto the line. This distance is generally greater than 0.5 a pixel measured in the minor axis
direction as shown. This results in an occasional minor axis column or row with two pixels set asdirection as shown. This results in an occasional minor axis column or row with two pixels set asdirection as shown. This results in an occasional minor axis column or row with two pixels set asdirection as shown. This results in an occasional minor axis column or row with two pixels set as
shown below.shown below.shown below.shown below.

0.5 >0.5

6.837 Fall ’00 Midterm Quiz

Problem 4. THREE DIMENSIONAL TRANSFORMS: Suppose we define a transformation called
pivot(ba,) that maps the unit vector a to the desired unit vector b via a rotation of π radians about the

vector that bisects the two given vectors,
ba

bam
++++

++++==== .

Part A: (10 points) Express pivot as a matrix operator in terms of the three vectors given. Assume the
vector elements are indexed as follows [[[[]]]]Taaaa 321 ,,==== .

�

�
�
�

�

�

−
−

−
=

�
�
�
�

�
�
�

�

�

−
�
�
�
�

�
�
�

�

�

=

�
�
�
�

�
�
�

�

�

π+
�
�
�
�

�
�
�

�

�

−
−

−
π+

�
�
�
�

�
�
�

�

�

π−=

1222
2122
2212

100
010
001

2),(

100
010
001

)cos(
0

0
0

)sin())cos(1(),(

2
33231

32
2
221

3121
2
1

2
33231

32
2
221

3121
2
1

12

13

23

2
33231

32
2
221

3121
2
1

mmmmm
mmmmm
mmmmm

mmmmm
mmmmm
mmmmm

bapivot

mm
mm
mm

mmmmm
mmmmm
mmmmm

bapivot

Part B: (5 points) Describe the class of input vectors for which the pivot operation is undefined.

When the vectors When the vectors When the vectors When the vectors a and and and and b are antipodes (i. e. are antipodes (i. e. are antipodes (i. e. are antipodes (i. e. ba −=).).).).

Part C: (5 points) Suppose a pivot transform was used to modify the current viewing transform view. In
particular, suppose it was used to map the original look-at vector, a to the new look-at vector b (the
matrix composition would be [),,(uaeyeeyeview �� ++++][),(abpivot] where u is the up vector). Describe the
impact of this mapping on the rendered image.

In addition to the final viewing direction being alongIn addition to the final viewing direction being alongIn addition to the final viewing direction being alongIn addition to the final viewing direction being along b rather than rather than rather than rather than a , the up direction will be, the up direction will be, the up direction will be, the up direction will be
flipped. Thus, the image will appear upside down relative to the original.flipped. Thus, the image will appear upside down relative to the original.flipped. Thus, the image will appear upside down relative to the original.flipped. Thus, the image will appear upside down relative to the original.

Part D: (5 points) Suppose that two sequential pivot transforms are composed with a viewing transform
as follows [),,(uaeyeeyeview �� ++++][),(ampivot][),(mbpivot]. Assume that coordinates are multiplied as column
vectors on the right. Describe the impact of this mapping on the rendered image.

Here the final viewing direction will be alongHere the final viewing direction will be alongHere the final viewing direction will be alongHere the final viewing direction will be along b rather than rather than rather than rather than a , as before, but the up direction will, as before, but the up direction will, as before, but the up direction will, as before, but the up direction will
be consistent with the original up vector.be consistent with the original up vector.be consistent with the original up vector.be consistent with the original up vector.

