Radiosity

References:
Cohen and Wallace, Radiosity and Realistic Image Synthesis
Sillion and Puech,
Radiosity and Global Illumination

Thanks to François Sillion for images

An early application of radiative heat transfer in stables.

Why Radiosity?

A powerful demonstration introduced by Goral et al. of the differences between radiosity and traditional ray tracing is provided by a sculpture by John Ferren. The sculpture consists of a series of vertical boards painted white on the faces visible to the viewer. The back faces of the boards are painted bright colors. The sculpture is illuminated by light entering a window behind the sculpture, so light reaching the viewer first reflects off the colored surfaces, then off the white surfaces before entering the eye. As a result, the colors from the back boards "bleed" onto the white surfaces.

Radiosity vs. Ray Tracing

Ray traced image. A standard Image rendered with radiosity. Ray tracer cannot simulate the note color bleeding effects. interreflection of light between diffuse Surfaces.

Ray Tracing vs. Radiosity

Ray tracing is an image-space algorithm, while radiosity is computed in object-space.

Because the solution is limited by the view, ray tracing is often said to provide a viewdependent solution, although this is somewhat misleading in that it implies that the radiance itself is dependent on the view, which is not the case. The term view-independent refers only to the use of the view to limit the set if locations and directions for which the radiance is computed

Radiosity Introduction

The radiosity approach to rendering has its basis in the theory of heat transfer. This theory was applied to computer graphics in 1984 by Goral et al.

Surfaces in the environment are assumed to be perfect (or Lambertian) diffusers, reflectors, or emitters. Such surfaces are assumed to reflect incident light in all directions with equal intensity.

A formulation for the system of equations is facilitated by dividing the environment into a set of small areas, or patches. The radiosity over a patch is constant.

The radiosity, B, of a patch is the total rate of energy leaving a surface and is equal to the sum of the emitted and reflected energies:

Interchange Between Patches

We can set up an equation that relates the energy reflected from a patch to any self-emitted energy plus the energy incoming from all other patches as follows:

$$
B_{i} d A_{i}=E_{i} d A_{i}+\rho_{i} \int_{i} B_{j} d A_{j} F_{d A_{j} d A_{i}}
$$

Radiosity X area $=$ emitted energy + reflected energy

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & & \\
\vdots & & \ddots & \\
-\rho_{n} F_{n 1} & \cdots & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

A solution yields a single radiosity value B_{i} for each patch in the environment - a viewindependent solution. The B_{i} values can be used in a standard renderer and a particular view of the environment constructed from the radiosity solution.

For an environment that has been discretized into n patches, over which the radiosity is constant, (i.e. both B and E are constant across a patch), we have the basic radiosity relationship:

- discrete representation - iterative solution
costly geometric/visibility calculations
6.837 Fall '00

Mewrat

The Radiosity Matrix

Such an equation exists for each patch, and in a closed environment, a set of n simultaneous equations in n unknown B_{i} values is obtained:
view of the environment constructed from the radiosity solution.

Standard Solution of the Radiosity Matrix

The radiosity of a single patch i is updated for each iteration by gathering radiosities from all other patches:

- Daser

Computing Vertex Radiosities

\checkmark Recall that radiosity values are
constant over the extent of a patch.
\checkmark A standard renderer requires vertex radiosities (intensities). These can be obtained for a vertex by computing the average of the radiosities of patches that contribute to the vertex under consideration.
\checkmark Vertices on the edge of a surface can be allocated values by
extrapolation through interior vertex values, as shown on the right:

Stages in a Radiosity Solution
Input of scene geometry
Form facto
calculation
Input of
$\stackrel{\text { Input of }}{\text { reflectance properties }}$
Solution
the s
of equations

Radiosity solution
Viewing conditions
Visualization

Radiosity image
Lecture 23
Slide 11
6.837 Fall ${ }^{\circ} 00$

- Dases

Progressive Refinement

\checkmark The idea of progressive refinement is to provide a quickly rendered image to the user that is then gracefully refined toward a more accurate solution. The radiosity method is especially amenable to this approach.
\checkmark The two major practical problems of the radiosity method are the storage costs and the calculation of the form factors.
\checkmark The requirements of progressive refinement and the elimination of precalculation and storage of the form factors are met by a restructuring of the radiosity algorithm.
\checkmark The key idea is that the entire image is updated at every iteration, rather than a single patch.

Reordering the Solution for PR

Shooting: the radiosity of all patches is updated for each iteration:

Progressive Refinement Pseudocode
while(not convergedX
picki, suchthat $\Delta \mathrm{B}_{\mathrm{i}} * A_{i}$ is largest;
for (everyelement)
$\Delta \mathrm{rad}=\Delta \mathrm{B}_{\mathrm{i}} * \rho_{j} F_{j i} ;$
$\Delta \mathrm{B}_{\mathrm{j}}=\Delta \mathrm{B}_{\mathrm{j}}+\Delta \mathrm{rad} ;$
$\mathrm{B}_{\mathrm{j}}=\mathrm{B}_{\mathrm{j}}+\Delta \mathrm{rad} ;$
\}
$\Delta \mathrm{B}_{\mathrm{i}}=0$
displayimageusing B_{i} as the intensity of element;
\}

Form Factor Determination

The Nusselt analog: the form factor of a patch is equivalent to the faction of the the unit circle that is formed by taking the projection of the patch onto the hemisphere surface and projecting it down onto the circle.

Hemicube Algorithm

A hemicube is constructed around the
center of each patch. (Faces of the
hemicube are divided into 'pixels'.)
We project a patch onto the faces of the hemicube. The form factor is determined by summing the pixels onto which the patch projects

Occlusion is handled by comparing distances of patches that project onto the same hemicube pixels.

Simultaneously offers an efficient (though
approximate) method of form factor
determination and a solution to the
occlusion problem between patches.

- Bray
Lecture 23

Increasing the Accuracy of the Solution

\checkmark The quality of the image is a function of the size of the patches.
\checkmark In regions of the scene, such as shadow boundaries, that exhibit a high radiosity gradient, the patches should be subdivided. We call this adaptive subdivision.
\checkmark The basic idea is as follows:
Compute a solution on a uniform initial mesh; the mesh is then refined by subdividing elements that exceed some error tolerance.

What's wrong with this picture?

Lecture 23
Slide 19
6.837 Fall ‘00

Menrat

Coarse patch solution (145 patches)

Improved solution (1021 subpatches)

Adaptive subdivision (1306 subpatches)

Adaptive Subdivision Pseudocode

Adaptive_subdivision (error_tolerance) \{
Create initial mesh of constant elements;
Compute form factors;
Solve linear system;
do until (all elements within error tolerance
or minimum element size reached) \{
Evaluate accuracy by comparing adjacent element radiosities; Subdivide elements that exceed user-specified error tolerance; for (each new element) \{

Compute form factors from new element to all other elements;
Compute radiosity of new element based on old radiosity values; \}

Structure of the Solution

