

Total Momentum

The total momentum of an aggregate object (set of point masses) is given by:

Total Momentum: $\vec{p}_{\text {Total }}=\sum_{i} m_{i} \vec{v}_{i}(t)=\sum_{i} m_{i} \frac{d}{d t} \dot{x}_{i}(t)=M \frac{d}{d t} \dot{x}_{C M}(t)=M \vec{v}_{C M}(t)$
Since force is the time derivative of momentum. We can also define the total force

$$
\text { Total Force: } \vec{F}_{\text {total }}=\frac{d}{d t} \vec{p}_{\text {Total }}=M \frac{d}{d t} \vec{v}_{C M}(t)=M \vec{a}_{C M}(t)
$$

This means that we can treat all forces acting on a given rigid body as if their vector sum was acting on a single point at the body's center of mass with the same mass as the entire body.
 6.837 Fall 'oo Menral
4 Dasy Lecture 22 Slide 5 Ment

- ure $22-$ - 6.877 Fall 00

Rotational Kinematics

Recall our approach to specifying rotations at the origin around an axis \boldsymbol{a} by an angle θ from Lecture 10 .
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left(\operatorname{Symmetric}\left(\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\right)(1-\cos \theta)+\mathbf{S k e w}\left(\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\right) \sin \theta+\mathbf{I} \cos \theta\right)\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

Rotating Away from the Origin

Generally, our center of rotation is not at the origin. We can simply fix our equation to handle this case. We introduce the center of rotation, \boldsymbol{o}.

$$
\begin{aligned}
\frac{d}{d t}(\dot{x}-\dot{o}) & =\frac{d}{d t} \dot{x}-\frac{d}{d t} \dot{o}=\operatorname{Skew}(\vec{\omega})(\dot{x}-\dot{o}) \\
\frac{d}{d t} \dot{x} & =\frac{d}{d t} \dot{o}+\operatorname{Skew}(\vec{\omega})(\dot{x}-\dot{o})
\end{aligned}
$$

This equation states that the total velocity at a point is the sum of the point's angular velocity and the velocity seen at the center of rotation. The total acceleration is given by differentiating once more.

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} \dot{x}=\frac{d^{2}}{d t^{2}} \dot{o}+\frac{d}{d t} \operatorname{Skew}(\vec{\omega})(\dot{x}-\dot{o})+\operatorname{Skew}(\vec{\omega}) \frac{d}{d t}(\dot{x}-\dot{o}) \\
\frac{d^{2}}{d t^{2}} \dot{x}=\frac{d^{2}}{d t^{2}} \dot{o}+\frac{d}{d t} \operatorname{Skew}(\vec{\omega})(\dot{x}-\dot{o})+\operatorname{Skew}(\vec{\omega})(\operatorname{Skew}(\vec{\omega})(\dot{x}-\dot{o}))
\end{gathered}
$$

Often, you will see the angular velocity vector defined as:

$$
\vec{\alpha}=\frac{d}{d t} \vec{\omega}=\frac{d^{2}}{d t^{2}} \theta \quad \vec{a} \quad \frac{d^{2}}{d t^{2}} \dot{x}=\frac{d^{2}}{d t^{2}} \dot{o}+\operatorname{Skew}(\vec{\alpha})(\dot{x}-\dot{o})+\operatorname{Skew}(\vec{\omega}) \operatorname{Skew}(\vec{\omega})(\dot{x}-\dot{o})
$$

What's going on with that third term in the total acceleration expression?

- Daser Lecture 22

Slide 7

e 22 - -6.837 Fall 10

Angular Dynamics

Angular momentum is the component of momentum due to rotation. Angular momentum must be specified relative to a center of rotation. $L_{\dot{x}, \dot{o}}=\operatorname{Skew}(\dot{x}-\dot{o}) \vec{p}_{\dot{x}}=\operatorname{Skew}(\dot{x}-\dot{o}) m_{\dot{x}} \vec{v}_{\dot{x}}$

Angular momentum describes the rotational motion of the vector from \mathbf{o} to \mathbf{x} due to the motion at $\mathbf{x}(\mathbf{p})$. In other words, the fraction of \mathbf{x}^{\prime} s momentum rotating around \mathbf{o}. This rotational motion will be about an axis perpendicular to both the vector and \mathbf{p}. The angular momentum captures this axis of rotation (centered at $\mathbf{0}$).

Assuming that θ is a function of time, we can determine the component of linear velocity our frame of reference so that $\theta=0$ at $t=0$

$$
\frac{d}{d t} \dot{x}=\left(\frac{d \theta}{d t} \sin \theta(\operatorname{Symmetric}(\vec{a})-\mathrm{I})+\frac{d \theta}{d t} \cos \theta \operatorname{Skew}(\vec{a})\right) \dot{x}
$$

$$
\theta(0) \rightarrow 0 \quad \frac{d}{d t} \dot{x}=\frac{d \theta}{d t} \operatorname{Skew}(\vec{a}) \dot{x}
$$

The instantaneous angular velocity vector is often used to simplify this equation:

$$
\vec{\omega}=\frac{d \theta}{d t} \vec{a} \quad \frac{d}{d t} \dot{x}=\operatorname{Skew}(\vec{\omega}) \dot{x}
$$

- Doay

Total Angular Momentum

We can compute the total angular momentum of a body relative to the point \mathbf{o} as follows:

$$
L_{T, \dot{o}}=\sum_{i} \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right) m_{i} \vec{v}_{i}=\sum_{i} \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right) m_{i} \frac{d}{d t} \dot{x}_{i}
$$

Substituting in the angular velocity term from two slides ago gives:

$$
L_{T, \dot{o}}=\sum_{i} m_{i} \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right) \operatorname{Skew}(\vec{\omega})\left(\dot{x}_{i}-\dot{o}\right)=\sum_{i}-m_{i} \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right) \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right) \vec{\omega}
$$

Now the only term that we have that varies with time is the angular velocity vector. We can factor it out of the summation and the resulting summation is fixed for a given $\mathbf{0}$. We call this term the Inertial tensor (it's just a 3 by 3 matrix, however).

$$
L_{T, \dot{o}}=\left(\sum_{i}-m_{i} \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right) \operatorname{Skew}\left(\dot{x}_{i}-\dot{o}\right)\right) \vec{\omega}=I_{\dot{o}} \vec{\omega}
$$

For rigid bodies we will find it convenient to specify the Inertial tensor relative to the object's center of mass.

- baer $\underline{\text { Lecture } 22}$ Slide 9
6.837 Fall 100
ecture 22--6.837 Fall '00

What Now?

Generally, we will be given rigid bodies with forces applied to them. Those forces cause the objects to move (animate). We now know everything we need to simulate this.

The Key to Dynamics

 application of Forces. How the object's translation changes can be determined by summing up all of the Forces applied to the object. The object's rotation is changed according to where the forces are applied relative to the center of mass.We only need to know a few more things. We'll need a method for solving first-orde differential equations. Here we'll use the simplest solution technique, Euler Integration.

$$
\vec{x}(t+h) \approx \vec{x}(t)+h \frac{d}{d t} \vec{x}(t)
$$

The Simulation Loop

Deternine rigid body constants : $I_{C M}^{-1}, M$ Initial conditions : $x_{C M}(0), \bar{v}(0), R(0), L_{C M}(0)$
Compute Auxillary information : $I_{R C M}^{-1}(\theta)=R(\theta) I_{C M}^{-1} R^{T}(0) \quad \vec{\omega}(\theta)=I_{C M}^{-1} L_{C M}(0)$
Find individual forces and their points of application : F_{1}
Compute total forces and torques :
$F_{T}(t)=\sum F_{i}$

$$
\tau_{T}(t)=\sum \operatorname{Skew}\left(x_{i}-x_{C M}\right) F_{i}
$$

Integrate over interval \boldsymbol{h}
$x_{C M}(t+h)=x_{C M}(t)+h \vec{h}_{C M}(t)$
$\vec{v}_{C M}(t+h)=\vec{v}_{C M}(t)+h \frac{F_{T}(t)}{M}$
$R(t+h)=R(t)+h$ Skew $(\bar{\omega}) R(t)$ // we' ll need to reorthogonalize $R(t+h)$
$L_{C M}(t+h)=L_{C M}(t)+h \tau_{T}(t)$
Update Auxillary information :
$I_{R C M}^{-I}(t+h)=R(t+h) I_{C M}^{-1} R^{T}(t+h)$
$\bar{\omega}(t+h)=I_{C M}^{-1} L_{C M}(t+h)$

Key Framing

