
Texture-Mapping Tricks

Filtering Textures●

Textures and Shading●

Bump Mapping●

Solid Textures●

Lecture 21 Slide 1 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide01.html [11/30/2000 6:03:27 PM]

Sampling Texture Maps
When texture mapping it is rare that the screen-space sampling density matches the sampling
density of the texture. Typically one of two things can occur:

Oversamping of the texture or Undersampling of the texture

In the case of oversampling we already know what to do... interpolation (review on
Antialiasing and Resampling). But, how do we handle undersampling?

Lecture 21 Slide 2 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide02.html [11/30/2000 6:03:32 PM]

How Bad Does it Look?
Let's take a look at what oversampling looks like:

Click and drag the texture to rotate the plane.

Notice how details in the texture, in particular the motar between the bricks, tend to pop
(disappear and reappear). This popping is most noticable around details (parts of the texture
with a high-spatial frequency). This is indicative of aliasing (high-frequency details showing
up in areas wher we expect to see low frequencies).

Lecture 21 Slide 3 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide03.html [11/30/2000 6:03:33 PM]

We've Seen this Sort of Thing Before

Remember...Aliasing?
This was the phenomenon that occurred when we undersampled a signal. It caused certain
high frequency features to appear as low frequencies.

To eliminate aliasing we had to either band limit (low pass filter) our input signal or sample it
at a higher rate:

Lecture 21 Slide 4 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide04.html [11/30/2000 6:03:35 PM]

Spatial Filtering
In order to get the sort of images the we expect, we must prefilter the texture to remove the
high frequencies that show up as artifacts in the final rendering. The prefiltering required in
the undersampling case is basically a spatail integration over the extent of the sample.

We could perform this filtering while texture mapping (during rasterization),
by keeping track of the area enclosed by sequential samples and performing the
integration as required. However, this would be expensive. The most common
solution to undersampling is to perform prefiltering prior to rendering.

Lecture 21 Slide 5 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide05.html [11/30/2000 6:03:36 PM]

MIP Mapping
MIP Mapping is one popular technique for precomputing and performing this prefiltering.
MIP is an acronym for the latin phrase multium in parvo, which means "many in a small
place". The technique was first described by Lance Williams. The basic idea is to construct a
pyramid of images that are prefiltered and resampled at sampling frequencies that are a binary
fractions (1/2, 1/4, 1/8, etc) of the original image's sampling.

While rasterizing we compute the index
of the decimated image that is sampled at
a rate closest to the density of our desired
sampling rate (rather than picking the
closest one can in also interpolate
between pyramid levels).

Computing this series of filtered images requires only a small
fraction of addtional storage over the original texture (How
small of a fraction?).

Lecture 21 Slide 6 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide06.html [11/30/2000 6:03:37 PM]

Storing MIP Maps
One convenient method of storing a MIP map is shown below. (It also nicely illustrates the 1/3
overhead of maintaining the MIP map).

We must make a few small modifications to our rasterizer to
compute the MIP map level. Recall the equations that we
derived for mapping screen-space interpolants to their 3-space
equivalent.

Lecture 21 Slide 7 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide07.html [11/30/2000 6:03:43 PM]

Finding the MIP level
What we'd like to find is the step size that a uniform step in screen-space causes in
three-space, or, in other words how a screen-space change relates to a 3-space change. This
sounds like the derivatives, (du/dt, dv/dt). They can be computed simply using the chain rule:

Notice that the term being squared under the numerator is just the w plane equation that we are
already computing. The remaining terms are constant for a given rasterization. Thus all we
need to do to compute the derivative is a square the w accumulator and multiply it by a couple
of constants.

Now, we know how a step in screen-space relates to a step in 3-space. So how do we translate
this to an index into our MIP table?

Lecture 21 Slide 8 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide08.html [11/30/2000 6:03:47 PM]

MIP Indices
Actually, you have a choice of ways to translate this gradient value into a MIP level. This
also brings up one of the shortcomings of MIP mapping. MIP mapping assumes that both the u
and v components of the texture index are undergoing a uniform scaling, while in fact the
terms du/dt and dv/dt are relatively independent. Thus, we must make some sort of
compromise. Two of the most common approaches are given below:

The differences between these level selection methods is illustrated by the accompanying
figure.

Lecture 21 Slide 10 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide10.html [11/30/2000 6:03:48 PM]

Summed-Area Tables
There are other approaches to computing this prefiltering integration on the fly. One, which
was introduced by Frank Crow is called a summed-area table. Basically, a summed-area table
is a tabularized two-dimensional cummulative distribution function. Imagine having a 2-D
table of numbers the cummulative distribution function could be found as shown below.

To find the sum of region contained in a box bounded by (x0, y0) and (x1, y1):

T(x1, y1) - T(x0, y1) - T(x1, y0) + T(x0, y0)

This approach can be used to compute the integration of pixels that lie under a
pixel by dividing the resulting sum by the area of the rectangle,

(y1 - y0)(x1 - x0).

With a little more work you can compute the area under any four-sided polygon (How?).

Lecture 21 Slide 11 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide11.html [11/30/2000 6:03:50 PM]

Summed-Area Tables
How much storage does a summed-area table require?●

Does it require more or less work per pixel than a MIP map?●

What sort of low-pass filter does a summed-area table represent?●

What do you remember about this sort of filter?

No filtering MIP mapping Summed-Area Table

These nice images were grabbed from the following web page.

●

Lecture 21 Slide 12 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide12.html [11/30/2000 6:03:53 PM]

Phototextures
To this point we've only used textures as labels over geometry.
Their applications are much broader, however.

Simple extensions include:

Spatially varying surface properties:

The diffuse shading coefficient, kd, could be stored as a texture.❍

Likewise for the intrinsic color, ka, ks, and nshiny.❍

●

Textures can also be used in a lot of other ways●

Lecture 21 Slide 13 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide13.html [11/30/2000 6:03:56 PM]

Adding Texture Mapping to Illumination
Texture mapping can be used to alter some or all of the constants in the illumination equation.
We can simply use the texture as the final color for the pixel, or we can just use it as diffuse
color, or we can use the texture to alter the normal, or... the possibilities are endless!

Phong's Illumination Model

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color

Lecture 21 Slide 14 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide14.html [11/30/2000 6:04:47 PM]

Bump Mapping
Textures can be used to alter the surface normal of an object. This does not actual shape of the
surface -- we are only shading it as if it were a different shape! This technique is called bump
mapping. The texture map is treated as a single-valued height function. The value of the
function is not actually used, just its partial derivatives. The partial derivatives tell how to alter
the true surface normal at each point on the surface to make the object appear as if it were
deformed by the height function.

Since the actual shape of the object does not change, the silhouette edge of the object will not
change. Bump Mapping also assumes that the Illumination model is applied at every pixel (as
in Phong Shading or ray tracing).

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

Lecture 21 Slide 15 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide15.html [11/30/2000 6:04:49 PM]

More Bump Map Examples

Cylinder w/Diffuse Texture Map Bump Map Cylinder w/Texture Map & Bump Map

Lecture 21 Slide 16 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide16.html [11/30/2000 6:04:50 PM]

One More Bump Map Example

Notice that the shadow boundaries remain unchanged.

Lecture 21 Slide 17 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide17.html [11/30/2000 6:04:53 PM]

Displacement Mapping
We use the texture map to actually move the surface point. This is called displacement
mapping. How is this fundamentally different than bump mapping?

The geometry must be displaced before visibility is determined. Is this easily done in the
graphics pipeline? In a ray-tracer?

Lecture 21 Slide 18 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide18.html [11/30/2000 6:04:55 PM]

Displacement Mapping Example

It is however possible to use displacement maps when
ray tracing.

Image from

Geometry Caching
for Ray-Tracing Displacement Maps

by Matt Pharr and Pat Hanrahan.

Lecture 21 Slide 19 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide19.html [11/30/2000 6:04:56 PM]

Another Displacement Mapping Example
Image from Ken
Musgrave

Lecture 21 Slide 20 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide20.html [11/30/2000 6:04:58 PM]

Three Dimensional or Solid Textures
The textures that we have discussed to this point are
two-dimensional functions mapped onto two-dimensional
surfaces. Another approach is to consider a texture as a
function defined over a three-dimensional surface. Textures of
this type are called solid textures.

Solid textures are very effective at representing some types of
materials such as marble and wood. Generally, solid textures
are defined procedural functions rather than tabularized or
sampled functions as used in 2-D (Any guesses why?)

The approach that we will explore is based on
An Image Synthesizer, by Ken Perlin,
SIGGRAPH '85. The vase to the right is from this paper.

Lecture 21 Slide 22 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide22.html [11/30/2000 6:04:59 PM]

Noise and Turbulence
When we say we want to create an "interesting" texture, we usually don't care exactly what it
looks like -- we're only concerned with the overall appearance. We want to add random
variations to our texture, but in a controlled way. Noise and turbulence are very useful tools
for doing just that.

A noise function is a continuous funtions that varies throughout space at a uniform frequency.
To create a simple noise function, consider a 3D lattice, with a random value assigned to each
triple of integer coordinates:

Lecture 21 Slide 23 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide23.html [11/30/2000 6:05:00 PM]

Interpolating Noise
To calculate the noise value of any point in space, we first determine which cube of the lattice
the point is in. Next, we interpolate the desired value using the 8 corners of the cube:

Trilinear interpolation is illustrated above. Higher-order interpolation can also be used.

Lecture 21 Slide 24 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide24.html [11/30/2000 6:05:02 PM]

Evaluating Noise

Since noise is a 3D function, we can evaluate it at any point we want. We don't have to worry
about about mapping the noise to the object, we just use (x, y, z) at each point as our 3D
texture coordinates! It is as if we are carving our object out of a big block of noise.

Original Object Trilinear Noise Triquadratic Noise

Lecture 21 Slide 25 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide25.html [11/30/2000 6:05:03 PM]

Turbulence
Noise is a good start, but it looks pretty ugly all by itself. We can use noise to make a more
interesting function called turbulence. A simple turbulence function can be computed by
summing many different frequencies of noise functions:

One Frequency Two Frequencies Three Frequencies Four Frequencies

Now we're getting somewhere. But even turbulence is rarely used all by itself. We can use
turbulence to build even more fancy 3D textures...

Lecture 21 Slide 26 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide26.html [11/30/2000 6:05:05 PM]

Marble Example
We can use turbulence to generate beautiful 3D marble textures, such as the marble vase
created by Ken Perlin. The idea is simple. We fill space with black and white stripes, using a
sine wave function. Then we use turbulence at each point to distort those planes.

By varying the frequency of the sin function, you get a few thick veins, or many thin veins.
Varying the amplitude of the turbulence function controls how distorted the veins will be.

Marble = sin(f * (x + A*Turb(x,y,z)))

Experiment with different values of frequency and amplitude to create new solid marble textures.

Lecture 21 Slide 27 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide27.html [11/30/2000 6:05:06 PM]

Next Time - Animation

Lecture 21 Slide 28 6.837 Fall '00

Lecture 21 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture21/Slide28.html [11/30/2000 6:05:07 PM]

