
Advanced Texture Mapping

Difficulties with texture mapping●

Projective Texturing●

Shadow Mapping●

Environment Mapping●

Multi-texturing●

 Lecture 20 Slide 1 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide01.html [12/2/2000 12:48:15 AM]

Review of Label Textures
Increases the apparent
complexity of simple
geometry

■

Must specify texture
coordinates for each
vertex

■

Projective correction (can't
linearly interpolate in
screen space)

■

Specify variations in
shading within a primitive

■

Two aspects of shading

Illumination❍

Surface Reflectance❍

■

Label textures can handle
both kinds of shading effects but it gets tedious

■

Acquiring label textures is surprisingly tough■

Lecture 20 Slide 2 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide02.html [12/2/2000 12:48:20 AM]

Difficulties with Label Textures

Tedious to specify texture coordinates for
every triangle

■

Textures are attached to the geometry■

Easier to model variations in reflectance
than illumination

■

Can't use just any image as a label texture
The "texture" can't have projective
distortions
Reminder: linear interpolation in image
space is not equivalent to linear
interpolation in 3-space (This is why we
need "perspective-correct" texturing).
The converse is also true.

■

Textures are attached to the geometry■

Easier to model variations in reflectance than illumination■

Makes it hard to use pictures as textures■

Lecture 20 Slide 3 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide03.html [12/2/2000 12:48:27 AM]

Projective Textures

Treat the texture as a light source (like a slide projector)●

No need to specify texture coordinates explicitly●

A good model for shading variations due to illumination●

A fair model for reflectance (can use pictures)●

Lecture 20 Slide 4 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide04.html [12/2/2000 12:48:29 AM]

Projector Geometry

(See last lecture for details on how to compute the P matrix)

Lecture 20 Slide 5 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide05.html [12/2/2000 12:48:33 AM]

The Mapping Process
During the Illumination process:

For each vertex of triangle
 (in world or lighting space)

 Compute ray from the
 projective texture's origin
 to point
 Compute homogeneous
 texture coordinate,[ti, tj, t]
 (use equation from last slide)

During scan conversion
 (in projected screen space)

 Interpolate all three texture
 coordinates in 3-space
 (premultiply by w of vertex)

 Do normalization at
 each rendered pixel
 i = t i / t, j = t j / t
 Access projected texture

Lecture 20 Slide 6 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide06.html [12/2/2000 12:48:36 AM]

Projective Texture Mapping as a Light Source
 public Light(float px, float py, float pz, float lx, float ly, float lz,
 float upx, float upy, float upz, float hfov, Raster r) {
 lightType = SHADER;
 float t, ux, uy, uz, vx, vy, vz;

 x = px; y = py; z = pz;
 ir = 0; ig = 0; ib = 0;

 lx = lx - x; ly = ly - y; lz = lz - z;
 t = (float)(1 / Math.sqrt(lx*lx + ly*ly + lz*lz));
 lx *= t; ly *= t; lz *= t;

 ux = ly*upz - lz*upy; uy = lz*upx - lx*upz; uz = lx*upy - ly*upx;
 t = (float)(1 / Math.sqrt(ux*ux + uy*uy + uz*uz));
 ux *= t; uy *= t; uz *= t;

 vx = ly*uz - lz*uy; vy = lz*ux - lx*uz; vz = lx*uy - ly*ux;
 t = (float)(1 / Math.sqrt(vx*vx + vy*vy + vz*vz));
 vx *= t; vy *= t; vz *= t;

 t = (float)(1 / (2*Math.tan((0.5*hfov)*Math.PI/180)));
 lx = lx*t - 0.5f*(ux + vx);
 ly = ly*t - 0.5f*(uy + vy);
 lz = lz*t - 0.5f*(uz + vz);

 setProjective(lx, ly, lz, ux, uy, uz, vx, vy, vz); // Inverts matrix
 lightTexture = r;
 }

Lecture 20 Slide 7 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide07.html [12/2/2000 12:48:38 AM]

A Little More Code
In Triangle.Illuminate() ...

 if (l[i].lightType == Light.SHADER) {
 lx = vlist[v[j]].x - l[i].x;
 ly = vlist[v[j]].y - l[i].y;
 lz = vlist[v[j]].z - l[i].z;

 float u, v, w;
 u = l[i].m[0]*lx + l[i].m[1]*ly + l[i].m[2]*lz;
 v = l[i].m[3]*lx + l[i].m[4]*ly + l[i].m[5]*lz;
 w = l[i].m[6]*lx + l[i].m[7]*ly + l[i].m[8]*lz;
 tq[j] = (int) (lightTexture.width*TSCALE*u);
 ts[j] = (int) (lightTexture.height*TSCALE*v);
 tt[j] = (int) (TSCALE*w);
 } else

In Triangle.ScanConvert() after setting up plane equations for q, s, and t...

 if (lightTexture != null) {
 int i = (int) (q/t);
 int j = (int) (s/t);
 if (i < 0) i = 0;
 else if (i >= lightTexture.width) i = lightTexture.width - 1;
 if (j < 0) j = 0;
 else if (j >= lightTexture.height) j = lightTexture.height - 1;
 int rgb = lightTexture.getPixel(i, j);

Lecture 20 Slide 8 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide08.html [12/2/2000 12:48:39 AM]

Projective Texture Examples
First, let's consider projective textures as a source of illumination...

These are the two textures that were used: and .

Lecture 20 Slide 9 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide09.html [12/2/2000 12:48:41 AM]

More Examples
First, let's consider projective textures to model reflectance...

The texture used was . Since we are viewing the scene from a slightly different

point of view than the projective texture we see some points that are not shaded.

Lecture 20 Slide 10 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide10.html [12/2/2000 12:48:42 AM]

Shadow Maps
Projective Textures with Depth

Textures can also be used to generate shadows.
First, the scene is rendered from the point of
view of each light source, but only the
depth-buffer values are retained.

In this example the closer points are lighter and
more distant parts are darker (with the exception
of the most distant value which is shown as
white for contrast).

As each pixel is shaded (once more shadow
mapping assumes that the illumination model is
applied at each pixel) a vector from the visible
point to the light source is computed (Remember
it is needed to compute, N . L). As part of
normalizing it we compute its length. If we find
the projection of the 3D point that we are
shading onto each lights shadow buffer we can
compare this length with the value stored in the
shadow buffer. If the shadow-buffer is less than
the current point's length then the point is in
shadow and the corresponding light source can
be ignored for that point.

Lecture 20 Slide 11 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide11.html [12/2/2000 12:48:44 AM]

Environment Maps
If, instead of using the ray from the surface point to the projected texture's center, we used
the direction of the reflected ray to index a texture map. We can simulate reflections. This
approach is not completely accurate. It assumes that all reflected rays begin from the same
point, and that all objects in the scene are the same distance from that point.

Lecture 20 Slide 12 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide12.html [12/2/2000 12:48:45 AM]

What's the Best Chart?

Lecture 20 Slide 13 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide13.html [12/2/2000 12:48:47 AM]

Other Texture Mappings

A small variation on environment maps- specular maps.

Specular maps can model extended or areas light sources in
the scene. This can be done in combination with modeling the
environment. This approach gives a much smoother highlight
when per-vertex shading is used to compute specular
highlights.

Lecture 20 Slide 14 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide14.html [12/2/2000 12:48:49 AM]

Relief Textures
Texture Maps with Depth...

Lecture 20 Slide 15 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide15.html [12/2/2000 12:48:50 AM]

The Best of All Worlds
All these texture mapping modes are great! The problem is, no one of them does everything
well. Suppose we allowed several textures to be applied to each primitive during
rasterization.

Lecture 20 Slide 16 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide16.html [12/2/2000 12:48:52 AM]

Multipass vs. Multitexture

Multipass (the old way) - Render the image in in multiple passes, and "add" the results.

Multitexture - Make multiple texture accesses within the rasterizing loop and "blend" results.

Blending approaches:

Texture modulation●

Alpha Attenuation●

Additive textures●

Weird modes●

Lecture 20 Slide 17 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide17.html [12/2/2000 12:48:53 AM]

Texture Mapping in Quake
Quake uses light maps in addition to texture maps. Texture maps are used to add detail to
surfaces, and light maps are used to store pre-computed illumination. The two are multiplied
together at run-time, and cached for efficiency.

Texture Maps Light Maps

Data RGB Intensity

Instanced Yes No

Resolution High Low

Light map image
by Nick Chirkov.

Textures Only Textures & Light Maps

Lecture 20 Slide 18 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide18.html [12/2/2000 12:48:55 AM]

Examples

Next time... Texture mapping techniques with per-pixel shading.

Lecture 20 Slide 19 6.837 Fall '00

Lecture 20 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture20/Slide19.html [12/2/2000 12:48:57 AM]

