
Texture Mapping

Why texture map?●

How to do it●

How to do it right●

Spilling the beans●

A couple tricks●

News on Project #4●

 Lecture 18 Slide 1 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide01.html [11/21/2000 2:38:40 PM]

The Quest for Visual Realism

Lecture 18 Slide 2 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide02.html [11/21/2000 2:38:47 PM]

Photo-textures
The concept is very simple!

Lecture 18 Slide 3 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide03.html [11/21/2000 2:38:50 PM]

Texture Coordinates
Specify a texture coordinate at each
vertex (s, t) or (u, v)

●

Canonical coordinates where u and v
are between 0 and 1

●

Simple modifications to triangle
rasterizer

●

public void Draw(Raster raster) {
 :
 PlaneEqn(uPlane, u0, u1, u2);
 PlaneEqn(vPlane, v0, v1, v2);
 :
 for (y = yMin; y <= yMax; y += raster.width) {
 e0 = t0; e1 = t1; e2 = t2;
 u = tu; v = tv; z = tz;
 boolean beenInside = false;
 for (x = xMin; x <= xMax; x++) {
 if ((e0 >= 0) && (e1 >= 0) && (e2 >= 0)) {
 int iz = (int) z;
 if (iz <= raster.zbuff[y+x]) {
 int uval = u * texture.width;
 uval = tile(uval, texture.width);
 int vval = v * texture.height;
 vval = tile(vval, texture.height);
 int pix = texture.getPixel(uval, vval);
 if ((pix & 0xff000000) != 0) {
 raster.pixel[y+x] = pix;
 raster.zbuff[y+x] = iz;
 }
 }
 beenInside = true;
 } else if (beenInside) break;
 e0 += A0; e1 += A1; e2 += A2;
 z += Az; u += Au; v += Av;
 }
 t0 += B0; t1 += B1; t2 += B2;
 tz += Bz; tu += Bu; tv += Bv;
 }
}

Lecture 18 Slide 4 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide04.html [11/21/2000 2:38:52 PM]

The Result
Click and drag on the applet above to rotate the texture mapped cube.

Wait a minute... that doesn't look right.
What's going on here?

Lecture 18 Slide 5 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide05.html [11/21/2000 2:38:55 PM]

Another Example
Let's try again with a simpler texture...

Click and drag on the applet above to rotate the texture mapped cube.

Notice how the texture seems to bend and warp along the diagonal
triangle edges. Let's take a closer look at what is going on.

Lecture 18 Slide 6 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide06.html [11/21/2000 2:38:58 PM]

Looking at One Edge
First, let's consider one edge from a given triangle. This edge
and its projection onto our viewport lie in a single common
plane. For the moment, let's look only at that plane, which is
illustrated below:

Lecture 18 Slide 7 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide07.html [11/21/2000 2:39:01 PM]

Visualizing the Problem

Notice that uniform steps on the image plane do
not correspond to uniform steps along the edge.

WLOG, let's assume that the viewport is located 1 unit away from the center of projection.

Lecture 18 Slide 8 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide08.html [11/21/2000 2:39:03 PM]

Linear Interpolation in Screen Space

Compare linear interpolation in screen space

Lecture 18 Slide 9 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide09.html [11/21/2000 2:39:04 PM]

Linear Interpolation in 3-Space

to interpolation in 3-space

Lecture 18 Slide 10 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide10.html [11/21/2000 2:39:06 PM]

How to Make Them Mesh
Still need to scan convert in screen space... so we need a mapping from t values to s values.

We know that the all points on the 3-space edge project onto our screen-space line. Thus we
can set up the following equality:

and solve for s in terms of t giving:

Unfortunately, at this point in the pipeline (after projection) we no longer have z1 and z2
lingering around (Why?). However, we do have w1 = 1/z1 and w2 = 1/z2.

Lecture 18 Slide 11 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide11.html [11/21/2000 2:39:07 PM]

Interpolating Parameters
We can now use this expression for s to interpolate arbitrary parameters, such as texture
indices (u, v), over our 3-space triangle. This is accomplished by substituting our solution for
s given t into the parameter interpolation.

Therefore, if we premultiply all parameters that we wish to interpolate in 3-space by
their corresponding w value and add a new plane equation to interpolate the w values
themselves, we can interpolate the numerators and denominator in screen-space. We then
need to perform a divide a each step to get to map the screen-space interpolants to their
corresponding 3-space values.

Once more, this is a simple modification to our existing triangle rasterizer.

Lecture 18 Slide 12 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide12.html [11/21/2000 2:39:09 PM]

Modified Triangle Code
 .
 .
 PlaneEqn(uPlane, (u0*w0), (u1*w1), (u2*w2));
 PlaneEqn(vPlane, (v0*w0), (v1*w1), (v2*w2));
 PlaneEqn(wPlane, w0, w1, w2);
 .
 .
 for (y = yMin; y <= yMax; y += raster.width) {
 e0 = t0; e1 = t1; e2 = t2;
 u = tu; v = tv; w = tw; z = tz;
 boolean beenInside = false;
 for (x = xMin; x <= xMax; x++) {
 if ((e0 >= 0) && (e1 >= 0) && (e2 >= 0))) {
 int iz = (int) z;
 if (iz <= raster.zbuff[y+x]) {
 float denom = 1.0f / w;
 int uval = (int) (u * denom + 0.5f);
 uval = tile(uval, texture.width);
 int vval = (int) (v * denom + 0.5f);
 vval = tile(vval, texture.height);
 int pix = texture.getPixel(uval, vval);
 if ((pix & 0xff000000) != 0) {
 raster.pixel[y+x] = pix;
 raster.zbuff[y+x] = iz;
 }
 }
 beenInside = true;
 } else if (beenInside) break;
 e0 += A0; e1 += A1; e2 += A2;
 z += Az; u += Au; v += Av; w += Aw;
 }
 t0 += B0; t1 += B1; t2 += B2;
 tz += Bz; tu += Bu; tv += Bv; tw += Bw;
 }

Lecture 18 Slide 13 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide13.html [11/21/2000 2:39:10 PM]

Demonstration
For obvious reasons this method of interpolation is called perspective-correct interpolation.
The fact is, the name could be shortened to simply correct interpolation. You should be
aware that not all 3-D graphics APIs implement perspective-correct interpolation.

Clicking and dragging on these cubes should give a more reasonable result.

Lecture 18 Slide 14 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide14.html [11/21/2000 2:39:12 PM]

Dealing with Incorrect Interpolation
You can reduce the perceived artifacts of non-perspective correct interpolation by
subdividing the texture-mapped triangles into smaller triangles (why does this work?). But,
fundamentally the screen-space interpolation of projected parameters is inherently flawed.

In this example the front face of the right cube is subdivided into 8 triangles
and screen-space interpolation is used. While the artifacts of this approximation

are less obvious, they can still be seen as you move around the cubes.

Lecture 18 Slide 15 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide15.html [11/21/2000 2:39:13 PM]

When we did Gouraud shading didn't we interpolate illumination values
that we found at each vertex using screen-space interpolation?

Didn't I just say that screen-space interpolation is wrong
(I believe "inherently flawed" were my exact words)?

Does that mean that Gouraud shading is wrong?

Is everything that I've been telling you all one big lie?

Has 6.837 amounted to a total waste of time?

Lecture 18 Slide 16 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide16.html [11/21/2000 2:39:15 PM]

Yes, Yes, Yes, Maybe, and
No, you've been exposed to nice purple cows.

Gourand shading is wrong. However, you usually will not notice because the transition in
colors is very smooth (And we don't know what the right color should be anyway, all we
care about is a pretty picture).

There are some cases where the errors in Gourand shading become obvious:

When switching between different levels-of-detail representations●

At "T" joints.●

Lecture 18 Slide 17 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide17.html [11/21/2000 2:39:17 PM]

Texture Tiling
Often it is useful to repeat or tile a texture over the surface of a polygon. This was
implemented in the tile method of the examples that I gave.

 .
 .
 .
 float denom = 1.0f / w;
 int uval = (int) (u * denom + 0.5f);
 uval = tile(uval, texture.width);
 int vval = (int) (v * denom + 0.5f);
 vval = tile(vval, texture.height);
 .
 .
 .

 private int tile(int val, int size) {
 if (val >= size) {
 do { val -= size; } while (val >= size);
 } else {
 while (val < 0) { val += size; }
 }
 }

Lecture 18 Slide 18 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide18.html [11/21/2000 2:39:18 PM]

Texture Transparency
There was also a little code snippet to handle texture transparency.

 .
 .
 .
 int pix = texture.getPixel(uval, vval);
 if ((pix & 0xff000000) != 0) {
 raster.pixel[y+x] = pix;
 raster.zbuff[y+x] = iz;
 }
 .
 .
 .

Now you can all go out and write DOOM!

Lecture 18 Slide 19 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide19.html [11/21/2000 2:39:20 PM]

Here is Where I Give Away Project #4

All vertices sent to the Triangle's ClipAndDraw() method are
unnormalized and in a canonical clipping space. You might want to
take advantage of this when clipping.

1.

hither = near, yon = far (Eventually I will find all of these throughout
my notes)

2.

You must implement the transformation of vertex normals, although
you won't need them unless you choose to implement per-vertex
shading.

3.

The box sits above a plane. It looks weird because clipping is not
implemented. Use this example to test your clipping and culling code.
To test culling, I suggest that you comment out a cube face (place a #
in front of the line).

4.

Due date is extended to midnight of next Wednesday (11/22).5.

Any other questions?6.
Lecture 18 Slide 20 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide20.html [11/21/2000 2:39:22 PM]

Next Time

Ray Tracing...
but for now, let's play Doom!

Lecture 18 Slide 21 6.837 Fall '00

Lecture 18 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture18/Slide21.html [11/21/2000 2:39:25 PM]

