Physically-Based Illumination Models

- What and Why?
- Review of Electromagnetics
- Cook-Torrance
- Energy Conservation

"Whatever happened to elegant solutions?"

Revisiting Phong's Illumination Model

$$
I_{\text {total }}=k_{a} I_{\text {ambient }}+\sum_{i=1}^{\text {lights }} I_{i}\left(k_{d}(\hat{N} \cdot \hat{L})+k_{s}(\hat{V} \cdot \hat{R})^{n_{\text {shiney }}}\right)
$$

Problems with Empircal Models:

- What are the coefficients for copper?
- What are k_{a}, k_{s}, and $n_{\text {shiney }}$?

Are they measurable quanities?

- How does the incoming light at a point relate to the outgoing light? Is energy conserved?
- Just what is light intensity?
- Is my picture accurate?

Desiderata

- A model that uses physical properties that can be looked up in the CRC Handbook of Chemistry and Physics (indices of refraction, reflectivity, conductivity, etc.)

- Parameters that that have clear physical analogies (how rough or polished a surface is)
- Models that are predictive (the simulation attempts to model the real scene)
- Models that conserve energy
- Complex surface substructures
(crystals, amorphous materials, boundary-layer behavior)
- If it was easy... everyone would do it.

Better Illuminance Models

- Blinn-Torrance-Sparrow (1977)
- isotropic reflectors with smooth microstructure
- Cook-Torrance (1982)
- wavelength dependent Fresnel term
- He-Torrance-Sillion-Greenberg (1991)
- adds polarization, statistical microstructure, self-reflectance

Very little of this work has made its way into graphics H/W. Why?

Blocked Reflection

A portion of the out-going beam can be blocked.

This is called masking.

Blocked Beam

A portion of the incoming beam can be blocked.

Cook called this self-shadowing.

Geometric Attenuation Factor

In each case, the geometric configurations can be analyzed to compute the percentage of light that actually escapes from the surface. Blinn first did this analysis. The results are:

$$
\begin{gathered}
G=1-\frac{l_{\text {blocked }}}{l_{\text {fact }}} \\
G_{\text {masking }}=\frac{2(\bar{n} \cdot \bar{h})(\bar{n} \cdot \bar{v})}{\bar{v} \cdot \bar{h}} \\
G_{\text {shadowing }}=\frac{2(\bar{n} \cdot \bar{h})(\bar{n} \cdot \bar{l})}{\bar{v} \cdot \bar{h}} \\
G=\min \left\{1, G_{\text {masking }}, G_{\text {shadowing }}\right\}
\end{gathered}
$$

The geometric factor chooses the smallest amount of light that is lost as the local self-shadowing model.

Fresnel Reflection

The Fresnel term results from a complete analysis of the reflection process while considering light as an electromagnetic wave.

The electric field of light has a magnetic field associated with it (hence the name
electromagnetic). The magnetic field is always orthogonal to the electric field and the direction of propagation. Over time the orientation of the electric field may rotate. If the electric field is oriented in a particular constant direction it is called polarized.

The behavior of reflection depend on how the incoming electric field is oriented relative to the surface at the point where the field makes contact. This variation in reflectance is called the Fresnel effect.

Energy Conserving Approaches

There are still noticable flaws in physically based models.

$$
\text { Light }_{\text {out }}=\text { Light }_{\text {emitted }}+\text { Light }_{\text {in }}+\text { Light }_{\text {absorbed }}
$$

Definitions

- Radiant flux (W) - the rate at which light energy is emitted
- Steradian (sr) - a unit of solid (3D) angle (there are 4π steradians in a sphere)
- Radiant Intensity ($W / s r$) - the rate that light energy is radiated through a given solid angle
- Radiance $\left(W /\left(s r m^{2}\right)\right)$ - the rate of energy radiated through a given solid angle as seen reflected from a surface (i.e. the hemisphere is projected onto the surface)
- Irradiance ($\mathrm{W} / \mathrm{m}^{2}$) - the rate of incident or incoming energy at a surface point per unit surface area.

