
Visibility - Part 2

Binary Space
Partitioning Trees

Ray-Casting

Depth-Buffering
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Visibility - Last Time
Back-Face Culling
    Removes faces of closed (oriented manifold) objects
    that are facing away from the eye point.
    Simple test based on the normal of each face.
    Could be done in three ways:
        View-direction culling
          (done after projection)
        Oriented-face culling
          (done at triangle set-up)
        Viewpoint culling
          (can be done anywhere)
    O(n)

Painters Algorithm
    Sort triangles by their depth
      (min, max, centroid)
    Subdivide cycle overlaps or intersecting triangles
    O(n log n)
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Power of Plane Equations

We've gotten a lot of mileage out of one simple equation.

    Basis for 3D outcode-clipping
    Basis for plane-at-a-time clipping
    Basis for viewpoint back-face culling 
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One More Trick with Planes
We can develop a visibility alogorthim based on evaluating plane equations.

Consider the complement argument of the viewpoint culling alogrithm.
      Any facet that contains the eye point within its negative half-space is invisible.
      Any facet that contains the eye point within its positive half-space is visible.

Well almost... it would work if there were no overlapping facets.
However, notice how the overlapping facets partition each other.
Suppose we build a tree of these partitions.
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Constructing a BSP Tree
The algorithm to build a BSP tree is very simple: 

Select a partitioning plane/facet.1.  

Partition the remaining planes/facets
according to the side of the
partioning plane that they fall
on (+ or -).

2.  

Repeat with each of the two new sets.3.  

Partitioning facets:

Partitioning requires testing all facets in the active
set to find if they lie entirely on the positive side
of the partition plane, entirely on the negative
side, or if they cross it. In the case of a crossing
facet we clip it into two halves (using our
plane-at-a-time clipping alogithm).
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Computing Visibility with BSP trees
Starting from the root of the tree.

Classify viewpoint as being in the positive
or negative halfspace of our plane

1.  

Call this routine with the negative child
(if it exists)

2.  

Draw the current partitioning plane3.  

Call this routine with the positive child
(if it exists)

4.  

Intuitively, at each partition, we first draw the
stuff further away than the current plane, then we
draw the current plane, and then we draw the
closer stuff. BSP traversal is called a "hidden
surface elimination" algorithm, but it doesn't
really "eliminate" anything; it simply orders the
drawing of primitive in a back-to-front order like
the Painter's algorithm.
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BSP Tree Example

Computing visibility or depth-sorting with
BSP trees is both simple and fast.

It resolves visibility at the primitive level.

Visibility computation is independent of
screen size

Requires considerable preprocessing of the
scene primitives

Primitives must be easy to subdivide along
planes

Supports CSG
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Pixel-level Visibility
Thus far, we've considered visibility at the level of primitives. Now we will turn our
attention to a class of algorithms that consider visibilitiy at the level of each pixel.
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Ray-Casting
Algorithm:

Cast a ray from the viewpoint through each pixel to find the closest surface

Rendering Loop:

foreach pixel in image

compute ray for pixel
set depth = ZMAX;
foreach primitive in scene

if (ray intersects primitive) then

if (distance < depth) then

pixel = object color
depth = distance to object

endif

endif

endfor

endfor
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Ray Casting Advantages

Conceptually simple

Can support CSG

Can take advantage of spatial coherence in scene

Can be extended to handle global illumination effects
    (ex: shadows and reflectance)

Lecture 15  Slide 10  6.837 Fall '00

Lecture 15 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture15/Slide10.html [11/9/2000 12:03:13 PM]

Ray Casting Disadvantages

Renderer must have access to entire retained model

Hard to map to special-purpose hardware

Visibility determination is coupled to sampling
    Subject to aliasing
    Visibility computation is a function of resolution
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Depth Buffering
Algorithm:

Cast a ray from the viewpoint through each pixel to find the closest surface

Rendering Loop:

set depth of all pixels to ZMAX
foreach primitive in scene

determine pixels touched

foreach pixel in primitive

compute z at pixel
if (z < depth) then

pixel = object color
depth = z

endif

endfor

endfor
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Depth-Buffering Advantages

Primitives can be processed immediately
    Hence: Immediate mode graphics API's

Primitives can be processed in any order
    Exception: primitives at same depth

Well suited to H/W implementation
    simple control of low-level (per pixel) operations

Spatial coherence
    Incremental evaluation of loops
    Good memory access pattern

Lecture 15  Slide 13  6.837 Fall '00

Lecture 15 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture15/Slide13.html [11/9/2000 12:03:16 PM]

Depth-Buffering Disadvantages

Visibility determination is coupled to sampling
    Subject to aliasing

Requires a Raster-sized arrray to store depth

Read-Modify-Write
    Hard to make fast

Excessive over-drawing
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What Exactly Gets Stored in a Depth-Buffer?
Recall that we augmented our projection matrix to include a mapping for z values.

There are two important considerations.

The mapping is from 3D (Affine) to 3D (Projective)1.  

The mapping is linear (in general, planes map to planes)2.  
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Computing the "Z" Term

We get the following expression for z' from our projection matrix:

 This mapping of z values is non-linear:

Lecture 15  Slide 16  6.837 Fall '00

Lecture 15 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture15/Slide16.html [11/9/2000 12:03:21 PM]



Linear yet Non-Linear?

What does it mean for the projection mapping to preserve planes and lines, yet, have a non-linear
mapping of z values. How can this be?

Consider these examples:

As the parameter t is varied from 0 to 1, what geometric object is described?

Linearity of the space is preserved, but linearity of the parameterization is not.
So, suppose we have function of that maps one of these forms to one of the others. Allow this

function to even change the actual values of x0, y0, dx, and dy, as long as this linear combination
form is preserved.

    Does this mapping preserve lines?
    What is the advantage of doing this?

    Why do we care?
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Interpolating Z

Preserving the linearity of the space allows us to use our plane equation method for interpolating

values of z in the interior of the triangle.  Thus, we can used

our handy formula for interpolating parameters within a triangle. 

Lecture 15  Slide 18  6.837 Fall '00

Lecture 15 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture15/Slide18.html [11/9/2000 12:03:24 PM]

Monotonic Z values

We need to be careful when reading the values out of a z-buffer and interpolating them. Eventhough,
our interpolated values of z lie on a plane, uniform differences in depth-buffer values do no

correspond to a uniform differences in space.

However, our z-comparisions will still work because this parameter mapping, while not linear, is
monotonic.

 Note that when the z values are uniformly
quantized the number of discrete discernable depths is greater closer to the near plane than near the

far plane. Is this good?
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Next Time
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