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Visibility - Part 2

“I hate 1o break up rhe set, but one of you kaSzo go”
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Binary Space
Partitioning Trees

Ray-Casting

Depth-Buffering
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Visibility - Last Time

Back-Face Culling
Removes faces of closed (oriented manifold) objects
that are facing away from the eye point.
Simple test based on the normal of each face.
Could be done in three ways:
View-direction culling
(done after projection)
Oriented-face culling
(done at triangle set-up)
Viewpoint culling
(can be done anywhere)
O(n)

Painters Algorithm
Sort triangles by their depth
(min, max, centroid)
Subdivide cycle overlaps or intersecting triangles
O(nlogn)
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Power of Plane Equations

We've gotten alot of mileage out of one simple equation.

Basis for 3D outcode-clipping *
Basis for plane-at-a-time clipping [ _d] ¥
Basis for viewpoint back-face culling i fy e A
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One More Trick with Planes
We can develop avisibility alogorthim based on evaluating plane equations.
Consider the complement argument of the viewpoint culling aogrithm.
Any facet that contains the eye point within its negative half-space isinvisible.
Any facet that contains the eye point within its positive half-space is visible.
Well almost... it would work if there were no overlapping facets.
However, notice how the overlapping facets partition each other.
Suppose we build atree of these partitions.
I'm on the pusitive side,
does that mean it's visible? __
f -
¥ el N
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Constructing aBSP Tree

The agorithm to build aBSP tree is very simple:
1. Select apartitioning plane/facet.

2. Partition the remaining planes/facets
according to the side of the
partioning plane that they fall
on (+or-).

3. Repeat with each of the two new sets.

Partitioning facets:

Partitioning requires testing all facetsin the active
set to find if they lie entirely on the positive side
of the partition plane, entirely on the negative
side, or if they crossit. In the case of a crossing

facet we clip it into two halves (using our
plane-at-a-time clipping alogithm).
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BSP Tree Example

Computing visibility or depth-sorting with
BSP treesis both simple and fast.

It resolves visibility at the primitive level.

Visibility computation is independent of
screen size

Requires considerable preprocessing of the
scene primitives

Primitives must be easy to subdivide along
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Computing Visibility with BSP trees

Starting from the root of the tree.

1. Classify viewpoint as being in the positive
or negative halfspace of our plane

2. Cal thisroutine with the negative child
(if it exists)

3. Draw the current partitioning plane

4. Cdll thisroutine with the positive child

(if it exists)
Intuitively, at each partition, we first draw the
stuff further away than the current plane, then we
draw the current plane, and then we draw the
closer stuff. BSP traversal is called a"hidden

surface elimination” algorithm, but it doesn't
really "eliminate” anything; it ssmply orders the
drawing of primitive in a back-to-front order like
the Painter's algorithm.
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planes
Supports CSG
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Thus far, we've considered visibility at the level of primitives. Now we will turn our
attention to a class of algorithms that consider visibilitiy at the level of each pixel.
e
44 H
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Algorithm:
Cast aray from the viewpoint through each pixel to find the closest surface

Rendering Loop:

foreach pixel inimage
compute ray for pixel
set depth = ZMAX;
foreach primitive in scene
if (ray intersects primitive) then
if (distance < depth) then

pixel = object color
depth = distance to object

endif
endif
endfor
endfor
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Ray Casting Advantages
Conceptually simple
Can support CSG
Can take advantage of spatial coherence in scene
Can be extended to handle global illumination effects
(ex: shadows and reflectance)
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Ray Casting Disadvantages
Renderer must have access to entire retained model
Hard to map to special-purpose hardware
Visihility determination is coupled to sampling

Subject to aliasing
Visibility computation is a function of resolution

= Doy Lecture 15 Slide 11 6.837 Fall '00

les.mit. FOO/Lecture15/Slide11.html [11/9/2000 12:03:14 PM]

Nesr =

Lecture 15 --- 6.837 Fall '00

Depth Buffering
Algorithm:
Cast aray from the viewpoint through each pixel to find the closest surface

Rendering Loop:

set depth of all pixelsto ZMAX
foreach primitive in scene

determine pixels touched
foreach pixel in primitive

compute z at pixel
if (z < depth) then

pixel = object color
depth=2z

endif
endfor

endfor
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Depth-Buffering Advantages

Primitives can be processed immediately
Hence: Immediate mode graphics API's

Primitives can be processed in any order
Exception: primitives at same depth

Well suited to H/W implementation
simple control of low-level (per pixel) operations

Spatial coherence

Incremental evaluation of loops
Good memory access pattern
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Depth-Buffering Disadvantages

Visibility determination is coupled to sampling
Subject to aliasing

Requires a Raster-sized arrray to store depth

Read-Modify-Write
Hard to make fast

Excessive over-drawing

= Poew Lecture 15 Slide 14 6.837 Fall '00 Near»

hitp://graphics.Ics.mit.edu/classes/6.837/F00/Lecture15/Slide14.html [11/9/2000 12:03:17 PM]

Lecture 15 --- 6.837 Fall '00

What Exactly Gets Stored in a Depth-Buffer?

Recall that we augmented our projection matrix to include a mapping for z values.

. it —leftxwisitls
x Hi‘lzghijif_;r 0 right-left 0 x
' heightxnear —height=top
¥y _ 0 battom—tap battom—tap 0 Y
A= 2 e K ST 2 X JRrxEar
z 0 0 Jar—near Jar-near z
1 0 0 1 0 1
There are two important considerations.
1. The mapping isfrom 3D (Affine) to 3D (Projective)
2. The mapping islinear (in general, planes map to planes)
. ' ,,,J,,",T:"!i;",”,,:,, \"Not This";
e
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Computing the"Z" Term

We get the following expression for z' from our projection matrix:

. far-zmax-(zfnear) _Jar-zgas [linear

z-{ far — near) far —near z

This mapping of z valuesis non-linear:

z r Sar-z,u
iar - near
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near far b4
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Monotonic Z values

We need to be careful when reading the values out of a z-buffer and interpolating them. Eventhough,
our interpolated values of z lie on a plane, uniform differences in depth-buffer values do no

correspond to a uniform differences in space.

Linear yet Non-Linear?

What does it mean for the projection mapping to preserve planes and lines, yet, have a non-linear
mapping of z values. How can this be?

Consider these examples:
s X X, dx X X, dx
x]_[*e e X I ] =%, 2t
Y| Yo Ay Y| [Yo dy Y| |Ye| t+t|ay
Asthe parameter t is varied from 0 to 1, what geometric object is described?

Linearity of the spaceis preserved, but linearity of the parameterization is not.
So, suppose we have function of that maps one of these forms to one of the others. Allow this

function to even change the actual values of X, Yo, dx, and dy, aslong as thislinear combination
formis preserved.

Does this mapping preserve lines?
What is the advantage of doing this?

Why do we care?
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Interpolating Z

Preserving the linearity of the space allows us to use our plane equation method for interpolating

Thus, we can used

However, our z-comparisions will still work because this parameter mapping, while not linear, is
monotonic.

S - 2y

r
Z far="near

Lamax

Note that when the z values are uniformly

far z
quantized the number of discrete discernable depthsis greater closer to the near plane than near the
Nesr o

near
far plane. Isthis good?
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Next Time
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values of zin theinterior of the triangle.
1 A, A A g 4,
—~——|B, B, B |%|=|B
2area
. . e . 2 Ca C1 %2 Cr
our handy formulafor interpolating parameters within atriangle.
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