

Power of Plane Equations

We've gotten a lot of mileage out of one simple equation.

Basis for 3D outcode-clipping
Basis for plane-at-a-time clipping
Basis for viewpoint back-face culling

One More Trick with Planes

We can develop a visibility alogorthim based on evaluating plane equations.
Consider the complement argument of the viewpoint culling alogrithm.
Any facet that contains the eye point within its negative half-space is invisible.
Any facet that contains the eye point within its positive half-space is visible.
Well almost... it would work if there were no overlapping facets. However, notice how the overlapping facets partition each other. Suppose we build a tree of these partitions.

Constructing a BSP Tree

BSP Tree Example

The algorithm to build a BSP tree is very simple:

1. Select a partitioning plane/facet.
2. Partition the remaining planes/facets according to the side of the partioning plane that they fall on (+ or -).
3. Repeat with each of the two new sets

Partitioning facets:
Partitioning requires testing all facets in the active set to find if they lie entirely on the positive side of the partition plane, entirely on the negative side, or if they cross it. In the case of a crossing facet we clip it into two halves (using our plane-at-a-time clipping alogithm).

Lecture $15-$ - 6.837 Fall 100

Computing Visibility with BSP trees

Starting from the root of the tree

1. Classify viewpoint as being in the positive or negative halfspace of our plane
2. Call this routine with the negative child (if it exists)
3. Draw the current partitioning plane
4. Call this routine with the positive child (if it exists)

Intuitively, at each partition, we first draw the stuff further away than the current plane, then we draw the current plane, and then we draw the closer stuff. BSP traversal is called a "hidden surface elimination" algorithm, but it doesn't really "eliminate" anything; it simply orders the drawing of primitive in a back-to-front order like the Painter's algorithm.

Computing visibility or depth-sorting with BSP trees is both simple and fast.

It resolves visibility at the primitive level.
Visibility computation is independent of screen size

Requires considerable preprocessing of the scene primitives

Primitives must be easy to subdivide along planes

Supports CSG

Pixel-level Visibility

Thus far, we've considered visibility at the level of primitives. Now we will turn our attention to a class of algorithms that consider visibilitiy at the level of each pixel.

Lecture $15-$ - 6.837 Fall 00
 Depth-Buffering Advantages

Primitives can be processed immediately
Hence: Immediate mode graphics API's

Primitives can be processed in any order
Exception: primitives at same depth
Well suited to H/W implementation simple control of low-level (per pixel) operations

Spatial coherence
Incremental evaluation of loops
Good memory access pattern

Hoser

Depth-Buffering Disadvantages

Visibility determination is coupled to sampling Subject to aliasing

Requires a Raster-sized arrray to store depth

Read-Modify-Write

Hard to make fas

Excessive over-drawing

What Exactly Gets Stored in a Depth-Buffer?

Recall that we augmented our projection matrix to include a mapping for z values

There are two important considerations.

1. The mapping is from 3D (Affine) to 3D (Projective)
2. The mapping is linear (in general, planes map to planes)

Lecture $15-$ - 6.837 Fall 10

Computing the "Z" Term

We get the following expression for z^{\prime} from our projection matrix:

$$
z^{\prime}=\frac{\text { far } \cdot z_{\max }-(z-n e a r)}{z \cdot(\text { far }- \text { near })}=\frac{\text { far }-z_{\max }}{\text { far }- \text { near }}\left(1-\frac{\text { near }}{z}\right)
$$

This mapping of z values is non-linear:

Linear yet Non-Linear?

What does it mean for the projection mapping to preserve planes and lines, yet, have a non-linear

Monotonic Z values

We need to be careful when reading the values out of a z-buffer and interpolating them. Eventhough our interpolated values of z lie on a plane, uniform differences in depth-buffer values do no correspond to a uniform differences in space.

However, our z-comparisions will still work because this parameter mapping, while not linear, is monotonic.

\bar{z} Note that when the z values are uniformly quantized the number of discrete discernable depths is greater closer to the near plane than near the

Lecture 15 far plane. Is this good?

Lecture 15-- 6.837 Fall 00

Interpolating Z

Preserving the linearity of the space allows us to use our plane equation method for interpolating

$$
\text { Lecture } 15-\text {-. } 6.837 \text { Fall } 00
$$

values of z in the interior of the triangle

$$
\frac{1}{\text { 2area }}\left[\begin{array}{lll}
A_{2} & A_{3} & A_{1} \\
B_{2} & B_{3} & B_{1} \\
C_{2} & C_{3} & C_{1}
\end{array}\right]\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{1} \\
B_{r} \\
C_{r}
\end{array}\right]
$$

our handy formula for interpolating parameters within a triangle.
Next Time

