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Visibility Problem
The problem of visibility is to determine which transformed, illuminated, and projected
primitives contribute to pixels on the screen. In many cases, however, rather than solving the
direct problem of determining what is visible, we will instead address the converse problem of
eliminating those primitives that are invisible.

A primitive can be invisible for one of
three reasons:

It lies outside of the field of view1.  

It is a back-facing component of a
closed object

2.  

It is occluded by some object closer to
the viewpoint

3.  
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Outside the Field-of-View
Clipping, as we discussed the lecture before last, addresses the problem of removing those
objects outside of the field of view. Outcode clipping attempted to remove all those objects that
were entirely outside of the field of view (it came up a little short of that goal, however).
Frustum clipping, as demonstrated by the plane-at-a-time approach that we discussed, removed
portions of objects that were partially inside of and partially outside of the field of view.
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Back-Face Culling
Back-face culling addresses a special case of occlusion called convex self-occlusion. Basically,
if an object is closed (having a well defined inside and outside) then some parts of the outer
surface must be blocked by other parts of the same surface. We'll be more precise with our
definitions in a minute. On such surfaces we need only consider the normals of surface
elements to determine if they are invisible.

We can apply back-face culling to any orientable two-manifold. Orientable two-manifolds have
the following properties.

Everywhere on their surface, they are locally like a plane. They have no holes, cracks,
or self-intersections.

1.  

Their boundary partitions 3D space into interior and exterior regions.2.  

In our case, manifolds will be composite objects made of many primitives, generally triangles.
Back-face culling eliminates a subset of these primitives & assumes that you are outside of all
objects.
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Removing Back-Faces

Idea: Compare the normal of each face with the viewing direction

Given n, the outward-pointing normal of F

foreach face F of object
    if (n . v > 0)
        throw away the face

Does it work?
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Fixing the Problem

We can't do view direction clipping just anywhere!

Downside: Projection comes fairly late in the pipeline. It would be nice to cull objects sooner.

Upside: Computing the dot product is simpler. You need only look at the sign of the z.
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Culling Technique #2
Detect a change in screen-space orientation. 

If all face vertices are ordered in a consistent
way, back-facing primitives can be found by
detecting a reversal in this order. One choice
is a counterclockwise ordering when viewed
from outside of the manifold. This is
consistent with computing face normals
(Why?). If, after projection, we ever see a
clockwise face, it must be back facing.  

This approach will work for all cases, but it comes even later in the
pipe, at triangle setup. We already do this calculation in our triangle
rasterizer. It is equivalent to determining a triangle with negative area.
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Culling Plane-Test

Here is a culling test that will work anywhere in the pipeline. Remove faces that have the eye
in their negative half-space. This requires computing a plane equation for each face considered.

We will still need to compute the normal (How?). But we don't
have to normalize it.

How do we go about computing a value for d? 

Once we have the plane equation, we substitute the coordinate of the viewing point (the eye
coordinate in our viewing matrix). If it is negative, then the surface is back-facing.
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Handling Occlusion

For most interesting scenes and viewpoints, some polygons will overlap; somehow, we must
determine which portion of each polygon is visible to eye.

 

Solving the occlusion problem used to be one of the BIG PROBLEMS in computer
graphics.
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A Painter's Algorithm

The painter's algorithm, sometimes called depth-sorting, gets its name from the process which an
artist renders a scene using oil paints. First, the artist will paint the background colors of the sky and
ground. Next, the most distant objects are painted, then the nearer objects, and so forth. Note that oil
paints are basically opaque, thus each sequential layer completely obscures the layer that its covers. 

A very similar technique can be used for rendering objects in a
three-dimensional scene. First, the list of surfaces are sorted according to their
distance from the viewpoint. The objects are then painted from back-to-front.

While this algorithm seems simple there are many subtleties. The first issue is
which depth-value do you sort by? In general a primitive is not entirely at a

single depth. Therefore, we must choose some point on the primitive to sort by.
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Implementation

    import Raster;

    public abstract interface Drawable {
        public abstract void Draw(Raster r);
        public abstract float zCentroid();

    } 

    public final float zCentroid() {
        return (1f/3f) * (vlist[v[0]].z + vlist[v[1]].z +

vlist[v[2]].z);
    } 

The algorithm can be implemented very easily. First we extend the drawable interface so that any
object that might be drawn is capable of supplying a z value for sorting. Next, we add the required

method to our triangle routine:
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Sorting Code
    //

    // Use QuickSort to order the vertices from near to far
    //

    private void sort(int lo0, int hi0) {
            int lo = lo0;
            int hi = hi0;
            if (lo >= hi)
                return;

            float mid = triList[(lo + hi) / 2].zCentroid();
            while (lo < hi) {

                while ((lo < hi) && (triList[lo].zCentroid() < mid)) {
                        lo++;

                }
                while ((lo < hi) && (triList[hi].zCentroid() >= mid)) {

                        hi--;
                }

                if (lo < hi) {
                        FlatTri T = (FlatTri) triList[lo];

                        triList[lo] = triList[hi];
                        triList[hi] = T;

                }
            }

            if (hi < lo) {
                int T = hi;
                hi = lo;
                lo = T;

            }
            sort(lo0, lo);

            sort((lo == lo0) ? lo + 1 : lo, hi0);
    }
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Rendering Code

    void DrawScene() {
        view.transform(vertList, tranList, vertices);
        ((FlatTri) triList[0]).setVertexList(tranList);

        raster.fill(getBackground());

        sort(0, triangles-1);
        for (int i = triangles-1; i >= 0; i--) {

            triList[i].Draw(raster);
        }

    }

Here is a rendering method that we can add to any applet.
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Problems with Painters
Big triangles and little triangles. This problem can usually be resolved using further tests (i.e. considering the bounding boxes as

well). Suggest some.
1.  

Another problem occurs when the triangle from a model interpenetrate as shown below. This problem is a lot more difficult to
handle. Generally it requires that primitive be subdivided (which requires clipping).

2.  

Cycles among primitives3.  

The painter's algorithm works great... unless one of the following happens:  

  
Usually the painter algorithm is used only when the database does not include interpenetrating primitives. Examples of this type of

model include meshes and height fields.
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Next Time
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