

Outside the Field-of-View

Clipping, as we discussed the lecture before last, addresses the problem of removing those objects outside of the field of view. Outcode clipping attempted to remove all those objects that were entirely outside of the field of view (it came up a little short of that goal, however). Frustum clipping, as demonstrated by the plane-at-a-time approach that we discussed, removed portions of objects that were partially inside of and partially outside of the field of view.

- Dasy

Slide 3

Removing Back-Faces

Idea: Compare the normal of each face with the viewing direction Given \mathbf{n}, the outward-pointing normal of F

```
foreach face F of object
```

 if (\(\mathbf{n} \cdot \mathbf{v}>0\))
 throw away the face

Does it work?
,

Fixing the Problem

We can't do view direction clipping just anywhere!

Downside: Projection comes fairly late in the pipeline. It would be nice to cull objects sooner.
Upside: Computing the dot product is simpler. You need only look at the sign of the z .

Culling Technique \#2

Detect a change in screen-space orientation.
If all face vertices are ordered in a consistent way, back-facing primitives can be found by detecting a reversal in this order. One choice is a counterclockwise ordering when viewed from outside of the manifold. This is
consistent with computing face normals
(Why?). If, after projection, we ever see a
clockwise face, it must be back facing.

This approach will work for all cases, but it comes even later in the pipe, at triangle setup. We aready do this calculation in our triangl rasterizer. It is equivalent to determining a triangle with negative area.

- Daes

Culling Plane-Test

Here is a culling test that will work anywhere in the pipeline. Remove faces that have the eye in their negative half-space. This requires computing a plane equation for each face considered.
$\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}-d\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\begin{aligned} & \text { We will still need to compute the normal (How?). But we don't } \\ & \text { have to normalize it. }\end{aligned}$

Once we have the plane equation, we substitute the coordinate of the viewing point (the eye coordinate in our viewing matrix). If it is negative, then the surface is back-facing.

Handling Occlusion

For most interesting scenes and viewpoints, some polygons will overlap; somehow, we must determine which portion of each polygon is visible to eye.

Solving the occlusion problem used to be one of the BIG PROBLEMS in computer graphics.

Whay Lecture 14 Slide 9 6.837 Fall 'oo Mewry

A Painter's Algorithm

The painter's algorithm, sometimes called depth-sorting, gets its name from the process which an artist renders a scene using oil paints. First, the artist will paint the background colors of the sky and ground. Next, the most distant objects are painted, then the nearer objects, and so forth. Note that oil paints are basically opaque, thus each sequential layer completely obscures the layer that its covers.

A very similar technique can be used for rendering objects in a three-dimensional scene. First, the list of surfaces are sorted according to their distance from the viewpoint. The objects are then painted from back-to-front.

While this algorithm seems simple there are many subtleties. The first issue is which depth-value do you sort by? In general a primitive is not entirely at a which depth-value do you sort by? In general a primitive is not entirely at a
single depth. Therefore, we must choose some point on the primitive to sort by.

Implementation

import Raster;
public abstract interface Drawable \{ public abstract void Draw (Raster r); public abstract float zCentroid();
public final float zCentroid() \{
return (1f/3f) * (vlist[v[0]].z + vlist[v[1]].z + vlist[v[2]].z);
\}

The algorithm can be implemented very easily. First we extend the drawable interface so that any object that might be drawn is capable of supplying a z value for sorting. Next, we add the required method to our triangle routine

Sorting Code

// Use QuickSort to order the vertices from near to far
private void sort (int 100 , int hio)
int $10=100$;
int $\mathrm{hi}=$ hio;

wile (10 < hi) ${ }_{\text {2 }}$.zCentroid();
while ((lo < hi) \&\& (triList[10]. zCentroid) $)$ mid))
while (($10<\mathrm{hi}$) \&\& (triList [hid. zCentroid ()$>=$ mid $)$) $\{$ hi--;
if $\left(10{ }^{\prime}<\mathrm{hi}\right)$
FlatTri $T=$ (FlatTri) triList[10];
triList [10] $=$ triList [hi];
triList [hi] $=T$;
if (hi ${ }^{\prime}<10$)
$\mathrm{int} \mathrm{T}=\mathrm{hi} ;$
$\mathrm{hi}=10$;
$10=\mathrm{T} ;$

- Dacer Lecture 14 Side 12

Slide 12
6.837 Fall 00

