
Clipping and Culling

Project #3

Trivial Rejection

Outcode Clipping

Plane-at-a-time
Clipping

Culling

 Lecture 12 Slide 1 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide01.html [11/14/2000 4:13:06 PM]

What is Clipping?
Two views of clipping:

Clipping is a procedure for spatially
partitioning geometric primitives, according
to their containment within some region.
Clipping can be used to:

Distinguish whether geometric primitives
are inside or outside of a viewing frustum

❍

Distinguish whether geometric primitives
are inside or outside of a picking frustum

❍

Detecting intersections between
primitives

❍

1.

Clipping is a procedure for subdividing geometric primitives. This view of clipping
admits several other potential applications.

Binning geometric primitives into spatial data structures.❍

Computing analytical shadows.❍

Computing intersections between primitives❍

2.

Lecture 12 Slide 2 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide02.html [11/14/2000 4:13:11 PM]

Why Do We Clip?
Clipping is a visibility preprocess. In real-world scenes clipping can remove a substantial

percentage of the environment from consideration.
●

Assures that only potentially visible primitives are
rasterized. What advantage does this have over

two-dimensional clipping. Are there cases where you have
to clip?

●

Clipping is an
important

optimization

Lecture 12 Slide 3 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide03.html [11/14/2000 4:13:13 PM]

Where do we Clip?
 xMin = (int) (v[sort[xflag][0]].x);

 xMax = (int) (v[sort[xflag][1]].x + 1);
 yMin = (int) (v[sort[yflag][1]].y);

 yMax = (int) (v[sort[yflag][0]].y + 1);

 /*
 clip triangle's bounding box to raster

 */
 xMin = (xMin < 0) ? 0 : xMin;

 xMax = (xMax >= width) ? width - 1 : xMax;
 yMin = (yMin < 0) ? 0 : yMin;

 yMax = (yMax >= height) ? height - 1 : yMax;

There are at least 3 different stages in the rendering pipeline where we do
various forms of clipping. In the trivial rejection stage we remove objects that

cannot be seen. The clipping stage removes objects and parts of objects that fall
outside of the viewing frustum. And, when rasterizing, clipping is used to

remove parts of objects outside of the viewport.

Lecture 12 Slide 4 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide04.html [11/14/2000 4:13:15 PM]

Trivial Rejection Clipping

One of the keys to all clipping algorithms is the notion of half-space partitioning. We've seen this
before when we discussed how edge equations partition the image plane into two regions, one

negative the other non-negative. The same notion extends to 3 dimensions, but partitioning elements
are planes rather than lines.

The equation of a plane in 3D is given as:
If we orient this plane so that it passes through our viewing position and our look-at direction is
aligned with the normal. Then we can easily partition objects into three classes, those behind our

viewing frustum, those in front, and those that are partially in both half-spaces. Click on the image
above to see examples of these cases.

Lecture 12 Slide 5 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide05.html [11/14/2000 4:13:18 PM]

Outcode Clipping
(a.k.a. Cohen-Sutherland Clipping)

The extension of plane partitioning to multiple planes,
gives a simple form of clipping called
Cohen-Sutherland Clipping. This is a rough approach
to clipping in that it only classifies each of its input
primitives, rather than forces them to conform to the
viewing window.

A simple 2-D example is shown on the right. This
technique classifies each vertex of a primitive, by
generating an outcode. An outcode identifies the
appropriate half space location of each vertex relative
to all of the clipping planes. Outcodes are usually
stored as bit vectors.

By comparing the bit vectors from all of the vertices
associated with a primitive we can develop conclusions
about the whole primitive.

Lecture 12 Slide 6 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide06.html [11/14/2000 4:13:20 PM]

Outcode Clipping of Lines

First, let's consider line segments.

 if (outcode1 == '0000' and outcode2 == 0000) then
 line segment is inside
 else
 if (outcode1 and outcode2 == 0000) then
 line segment potentially crosses clip region
 else
 line is entirely outside of clip region
 endif
 endif

Notice that the test cannot conclusively state whether the
segment crosses the clip region. This might cause some
segments that are located entirely outside of the clipping
volume to be subssequently processed. Is there a way to
modify this test so that it can eliminate these false positives?

Lecture 12 Slide 7 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide07.html [11/14/2000 4:13:21 PM]

Outcode Clipping of Triangles

For triangles we need merely modify the tests so that all
vertices are considered:

 if (outcode1 == '0000' and
 outcode2 == '0000' and
 outcode3 == '0000') then
 triangle is inside
 else
 if (outcode1 and outcode2 and outcode3 == '0000') then
 line segment potentially crosses clip region
 else
 line is entirely outside of clip region
 endif
 endif

This form of clipping is not limited to triangles or convex
polygons. Is is simple to implement. But it won't handle all
of our problems...

Lecture 12 Slide 8 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide08.html [11/14/2000 4:13:22 PM]

Dealing with Crossing Cases

The hard part of clipping is handling objects and primitives that straddle clipping planes. In some
cases we can ignore these problems because the combination of screen-space clipping and outcode
clipping will handle most cases. However, there is one case in general that cannot be handled this
way. This is the case when parts of a primitive lie both in front of and behind the viewpoint. This
complication is caused by our projection stage. It has the nasty habit of mapping objects in behind

the viewpoint to positions in front of it.
(Click above to see projection)

Lecture 12 Slide 9 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide09.html [11/14/2000 4:13:24 PM]

One-Plane-at-a-Time Clipping
(a.k.a. Sutherland-Hodgeman Clipping)

The Sutherland-Hodgeman triangle clipping algorithm uses a
divide-and-conquer strategy. It first solves the simple problem
of clipping a triangle against a single plane.

There are four possible relationships that a triangle can have
relative to a clipping plane as shown in the figures on the right.

Each of the clipping planes are applied in succession to every
triangle. There is minimal storage requirements for this
algorithm, and it is well suited to pipelining. As a result it is
often used in hardware implementations.

(Click on the image below to see the various clipping
cases for a single plane.)

Lecture 12 Slide 10 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide10.html [11/14/2000 4:13:25 PM]

Plane-at-a-Time Clipping
The results of Sutherland-Hodgeman clipping can get complicated very
quickly once multiple clip-planes are considered. However, the
algorithm is still very simple. Each clip plane is treated independently,
and each triangle is treated by one of the four cases mentioned
previously.

It is straightforward to extend this algorithm to 3D.

(Click on the image below to see
clipping against multiple planes.)

Lecture 12 Slide 11 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide11.html [11/14/2000 4:13:27 PM]

The Trick: Interpolating Parameters
The complication of
clipping is computing the
new vertices. This process
is greatly simplified by
using a canonical clipping
volume.

We mentioned last lecture
that it is often desireable to
introduce an intermediate
coordinate frame
in-between eyespace and
the final projection stage
(i.e. the dividing through by
w). In this space the viewable region is mapped into a volume that ranges from -1 to +1 in
all dimensions after projection.

This space has several advantages. It simplifies the clipping test (all dimensions are
compared against the w component of the vertex) and it is the perfect place in the pipeline to
transistion from a floating-point to a fixed-point representation. It also simplifes the
interpolation of the new vertex positions and triangle parameters as shown in the figure.

Lecture 12 Slide 12 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide12.html [11/14/2000 4:13:28 PM]

Recap of Plane-at-a-time Clipping
Advantages:

Elegant (few special cases)●

Robust (handles boundary and edge conditions well)●

Well suited to hardware●

Canonical clipping makes fixed-point
implementations manageable

●

Disadvantages:

Hard to fix into O-O paradigm (Reentrant, objects
spawn new short-lived objects)

●

Only works for convex clipping volumes●

Often generates more than the minimum number of
triangles needed

●

Requires a divide per edge●

Lecture 12 Slide 13 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide13.html [11/14/2000 4:13:29 PM]

Alternatives to Plane-at-a-time
Clipping againist concave volumes (Wieler-Atherton clipping)

Can clip abitrary polygons against abitrary polygons
Maintains more state than plane-at-a-time clipping

●

Handle all planes at once (Nicholle-Lee-Nicholle clipping)

It waits before geneating triangles to reduce the number of clip sections generated.
Tracks polygon through the 27 sub-regions relative to the clip volume

Might need to generate a "corner vertex"

●

Over the years there have been several improvements to plane-at-a-time clipping.

Lecture 12 Slide 14 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide14.html [11/14/2000 4:13:30 PM]

2-D/3-D/Outcode Clipping Hybrids
Do we really need to implement 6 clipping planes?

Lecture 12 Slide 15 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide15.html [11/14/2000 4:13:32 PM]

An Example Clipper
One of the difficult aspects of clipping is fitting it into a clean conceptual model. Here we'll
consider how I added clipping to our Triangle class.

 public void Draw(Raster raster) {
 int flag = 0;

 v0 = vlist[v[0]];
 v1 = vlist[v[1]];
 v2 = vlist[v[2]];

 float near = Vertex3D.getNear();
 if (v0.z > Raster.MAXZ) flag += 1;
 if (v1.z > Raster.MAXZ) flag += 2;
 if (v2.z > Raster.MAXZ) flag += 4;

This first segment of code computes our outcodes.

Lecture 12 Slide 16 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide16.html [11/14/2000 4:13:34 PM]

More Clipping
 if (flag == 0) { // entirely inside clipping volume
 ScanConvert(raster);
 } else
 if (flag == 7) { // entirely outside clipping volume
 return;
 } else {
 // permute triangle vertices to one of two canonical forms:
 // 1. Just v2 outside of clipping volume (flag == 4)
 // 2. v1 and v2 outside of clippling volume (flag == 6)
 if (flag == 1) {
 Vertex3D tv = v0;
 v0 = v1;
 v1 = v2;
 v2 = tv;
 flag = 4;
 } else
 if (flag == 2) {
 Vertex3D tv = v0;
 v0 = v2;
 v2 = v1;
 v1 = tv;
 flag = 4;
 } else
 if (flag == 3) {
 Vertex3D tv = v0;
 v0 = v2;
 v2 = v1;
 v1 = tv;
 } else
 if (flag == 5) {
 Vertex3D tv = v0;
 v0 = v1;
 v1 = v2;
 v2 = tv;
 }

Lecture 12 Slide 17 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide17.html [11/14/2000 4:13:35 PM]

Actual Clipping Code
 float t;
 v0 = normalize(v0);
 v1 = normalize(v1);
 v2 = normalize(v2);
 if (flag == 4) { // hither clipping yields 2 triangles
 float tx = v2.x, ty = v2.y, tz = v2.z, tw = v2.w;
 int trgb = rgb[2];

 t = (near - v1.w)/(tw - v1.w);
 Vertex3D.lerp(v2, v1, v2, t);
 rgb[2] = rgbLerp(rgb[1], trgb, t);
 v0 = normalize(v0);
 v1 = normalize(v1);
 v2 = normalize(v2);
 ClipYon(raster);

 v0 = normalize(v0);
 v1.x = v2.x; v1.y = v2.y; v1.z = v2.z; v1.w = v2.w; rgb[1] = rgb[2];
 v2.x = tx; v2.y = ty; v2.z = tz; v2.w = tw;

 t = (near - v0.w)/(tw - v0.w);
 Vertex3D.lerp(v2, v0, v2, t);
 rgb[2] = rgbLerp(rgb[0], trgb, t);
 v0 = normalize(v0);
 v2 = normalize(v2);
 ClipYon(raster);
 } else

Lecture 12 Slide 18 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide18.html [11/14/2000 4:13:37 PM]

The Other Case

 } else { // hither clipping yields one triangle
 t = (near - v0.w)/(v2.w - v0.w);
 Vertex3D.lerp(v2, v0, v2, t);
 rgb[2] = rgbLerp(rgb[0], rgb[2], t);
 t = (near - v0.w)/(v1.w - v0.w);
 Vertex3D.lerp(v1, v0, v1, t);
 rgb[1] = rgbLerp(rgb[0], rgb[1], t);
 v0 = normalize(v0);
 v1 = normalize(v1);
 v2 = normalize(v2);
 ClipYon(raster);
 }
 }
 }

Lecture 12 Slide 19 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide19.html [11/14/2000 4:13:38 PM]

Culling

Argh, I ran out of time!!!!

So we'll get back to this later when
we discuss visibility.

Lecture 12 Slide 20 6.837 Fall '00

Lecture 12 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture12/Slide20.html [11/14/2000 4:13:39 PM]

