
Antialiasing and Resampling

What is a pixel?●   

Signal Processing●   

Image Resampling●   
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What is a Pixel?
A pixel is not...

a box●   

a disk●   

a teeny tiny little light●   

A pixel is a point...

it has no dimension●   

it occupies no area●   

it cannot be seen●   

it can have a coordinate●   

A pixel is more than just a point, it is a sample
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More on Samples

We think of most things in the real world as continuous,
      yet, everything in a computer is discrete

The process of mapping a continuous function to a discrete one is called sampling

The process of mapping a continuous variable to a discrete one is called quantization

When we represent or render an image using a computer we must both sample and quantize
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Picturing an Image as a 2D Function
An ideal image can be viewed as a function, I(x, y), that gives an intensity for any given
coordinate (x, y). We could plot this function as a height field. This plot would lowest at
dark points in the image and highest at bright points.

Most of the functions that we
encounter are analytic and,
therefore, can be expressed as
simple algebraic relations. An
image, in general, cannot be
represented with such a simple
form. Instead, we represent images
as tabulated functions.

So how do we fill this table?
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Sampling Grid
The most common (but not the only) way to generate the table values necessary to represent
our function is to multiply the function by a sampling grid. A sampling grid is composed of
periodically spaced Kronecker delta functions.

The definiton of the 2-D Kronecker
delta is:

And a 2-D sampling grid:
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Sampling an Image
When a continuous image is multiplied by a sampling grid a discrete set of points are
generated. These points are called samples. These samples are pixels. We store them in
memory as arrays of numbers representing the intensity of the underlying function.

The same analysis can be applied
to geometric objects:
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The Big Question

How densely must we sample an image in order to capture its essence?

Since our sampling grid is periodic we can appeal to Fourier analysis for an answer. Fourier
analysis states that all periodic signals can be represented as a summation of sinusiodal
waves. Thus every image function that we understand as a height field in the spatial domain,
has a dual representaion in the frequency domain.

We can transform signals from one domain to the other using the Fourier transform.
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Convolution

In order to simplify our analysis we will consider 1-D signals for the moment. It will be
straightforward to extend the result to 2-D.

Some operations that are diffcult to compute in the spatial domain are simplified when the
function is tranformed to its dual representation in the frequency domain. One such function
is convolution.

Convolution describes how a system with impulse response, h(x), reacts to a signal, f(x).

This integral evaluation is equivalent to multiplication in the frequency domain

The converse is also true
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Sampling in the Frequency Domain
Image sampling was defined as multiplying a periodic series of delta functions by the
continuous image. This is the same as convolution in the frequency domain.

Consider the sampling grid:

And the function being sampled
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Reconstruction
This amounts to accumulating copies of the function's spectrum centered at the delta
functions of the sampling grid.

Remember the goal of a sampled represention is to faithfully represent the underlying
function. Ideally we would apply a low-pass filter to our sampled representation to
reconstruct our original function. We will call this processing a reconstruction filter.

In this example we mixed together copies of our function (as seen in the darker overlap
regions). In this case subsequent processing does not allow us to separate out a
representative copy of our function.
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Aliasing
This mixing of spectrums is called aliasing. It has the effect of introducing high-frequencies
into our original function. There are two ways of dealing with aliasing.

The first is to low pass filter our signal before we sample it.

The second is to increase the sampling frequency
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Sampling Theorem
In order to have any hope of accurately reconstructing a function from a periodically
sampled version of it, two conditions must be satisfied:

The function must be bandlimited.1.  

The sampling frequency, fs, must be at least twice the maximum
frequency, fmax, of the function.

2.  

Satisfying these conditions will eliminate aliasing.

In practice:

"Jaggies" are aliasing●   

Both of the techniques discussed are used

Super-sampling (more samples than pixels)1.  

Low-pass prefiltering (averaging of super-samples)2.  

●   
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Reconstruction Revisited
Once we've satified the sampling theorem we can theoretically reconstruct the function. This
requires low-pass filtering the samples that are used to represent the image.

Remember the samples that we store in memory are points; they have no area only positions.
It is this reconstruction filter that gives a pixel area.

Question: If what I say is true how can we just stick pixel values in our frame buffer and see
a picture? If they were just points (like I claim) we would see anything.

The fact is that a CRT has a built in reconstruction filter. Most real world devices do because
they do not have an infinite frequency response.

Each pixel illuminates a spot on the screen whose intensity fall off is well approximated by a
gaussian.
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Gaussian Reconstruction
So how does a Gaussian do as a reconstruction filter? In the spatial domain:

In the frequency domain:
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Gaussian Verdict

Wider in spatial domain corresponds to narrower in the frequency domain●   

We are forced to live with either low-frequency attenuation of high-frequency leakage●   

Live with blur●   

Infinite extent●   

CRT resolution●   

Only reconstruction kernel that is both linearly separable and radially symmetric●   

For a CRT images we basically have to live with the reconstruction filters that we are given.
However, when we write an magnification program we are in control of the magnification.
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Nearest-Neighbor Reconstruction

One possible reconstruction filter has the shape of a simple box in the spatial domain.
Note: This is not the shape of the pixel but rather the shape of the reconstruction filter!

In the spatial domain:

In the frequency domain:
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Nearest-Neighbor Example

Blockiness is due to high-frequency leakage in the reconstruction filter

Even properly sampled images are rendered as blocky

"Post-sampling aliasing"

This is a rather poor reconstruction
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Problems with Reconstruction Filters

Many of the "blocky" artifacts visible in resampled images are not due to classical aliasing,
but instead caused by poor reconstruction filters.

Excessive pass-band attenuation results in images that are noticeably blurry.

Excessive high-frequency leakage can lead to ringing or it can accentuate the sampling grid
which is sometimes called anisotropy.
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Is there an Ideal Reconstruction Filter?

Theoretically yes, practically no

We can work backwards from our desired frequency domain response:

To compute the ideal reconstruction filter in the spatial domain:
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Problems with a Sinc Reconstruction Filter

It has infinite spatial extent.
Every pixel contributes to every point that we interpolate.

●   

Hard to compute in the spatial domain.●   

Assumes the samples of the source image tile an infinite plane●   

Every interpolated point requires an infinite summation●   

Truncating this summation leads to Gibb's phenomenon●   
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Lessons from the Sinc Function

Notice the values of the sinc function at the sample points (integer values).

It has a value of one at the point being reconstructed and a zero everywhere else.

This means that a sinc will exactly reconstruct the sample values at the sample points.

Also, notice that it has even symmetry (like a cosine function) and a slope of 0 at the sample
point.

Lecture 8  Slide 21  6.837 Fall '00

Lecture 8 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture08/Slide21.html [10/5/2000 2:54:54 PM]

Approximations with Finite Extent

What sort of reconstruction we can do if we limit ourselves to considering only the pixels
immediately surrounding a given point? One possibility is bilinear reconstruction:

Which has the frequency response:
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Bilinear Example

Sometimes called a
tent filter

High-frequencies are significantly attenuated

Easy to implement
(just linearly interpolate between samples)

Still can produce artifacts
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Larger Extents

We can use our knowledge about splines to design filters with arbitrary extents. Here we
will consider a 4 by 4 neighborhood surrouding the desired pixel.

We can constrain our design usin the knowledge that we have gleaned from the ideal sinc
reconstruction filter.
First, we divide our spline into four piecewise sections sections.
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Spline Constraints
The piecewise cubic spline should satisfy the following:

The function must be symmetric:

k(x) = k(-x)

We can reformulate our general cubic such that it is symmetric as follows:

This also allows us to consider only 2 segments instead of 4.

1.  

C0 and C1 continuity between spline segments

k1(1) = k2(1),   k2(2) = 0

k'1(0) = 0,   k'1(1) = k'2(1),   k'2(2) = 0

2.  

In order to assure that a uniform array of samples is reconstructed as a uniform
continuous function it should satisfy the following convex relationship:

3.  

Lecture 8  Slide 25  6.837 Fall '00

Lecture 8 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture08/Slide25.html [10/5/2000 2:55:12 PM]

Bicubic Derivation

Starting with the equations of our two spline segments and their derivitives we can construct
the two desired spline segments.

The resulting family of reconstruction filters is:

These bicubic reconstruction splines are commonly called

Mitchell's 2-parameter spline family

Notes:

k(0)=(3 - B)/3,   k(1)=B/6
thus, if B = 0 then k(0) = 1, k(1) = 0 like sinc(x)
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Bicubic Example

Mitchell's 2-parameter spline family

Very low leakage

Includes:

Cardinal splines
(B=0, C=-a)

Catmull-Rom Spline
(B=0, C=0.5)

Cubic B-spline
(B=1, C=0)
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Next Time

(Have a good vacation; see you next Thursday)
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