Geometric Image Transformations

- Algebraic Groups
- Euclidean
- Affine
- Projective
- Bovine

6.837 Fall '00 Mewnas

Translations

Translations are a simple family of two-dimensional transforms. Translations were at the heart of our Sprite implementations in Project \#1.

Translations have the following form

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
& \mathrm{y}^{\prime}=\mathrm{y}+\mathrm{t}_{\mathrm{y}}
\end{aligned}
$$

For every translation there exists an inverse function which undoes the translation. In our case the inverse looks like:

$$
\begin{aligned}
& x=x^{\prime}-t_{x} \\
& y=y^{\prime}-t_{y}
\end{aligned}
$$

There also exists a special translation, called the identity, that leaves every point unchanged.

$$
\begin{aligned}
& x^{\prime}=x+0 \\
& y^{\prime}=y+0
\end{aligned}
$$

- Dack

Groups and Composition

For Translations:

1. There exists an inverse mapping for each function
2. There exists an identity mapping

These properties might seem trivial at first glance, but they are actually very important, because when these conditions are shown for any class of functions it can be proven that such a class is closed under composition (i.e. any series of translations can be composed to a single translation). In mathematical parlance this the same as saying that translations form an algebraic group

$$
x^{\prime}=\underbrace{T_{1} T_{2} T_{3} \cdots T_{n}}_{T^{\prime}} x
$$

Rotations

Problems with this Form

- Must consider Translation and Rotation separately
- Computing the inverse transform involves multiple steps
- Order matters between the R and T parts

$$
R(T(\bar{x})) \neq T(R(\bar{x}))
$$

These problem can be remedied by considering our 2 dimensional image plane as a 2 D subspace within $3 D$.

- beat

Lecture 7
Slide 7
6.837 Fall oo

Menpas
http:/graphicis.s.s.s.mit.educlicaseses6.837/F00

Euclidean Transforms

The union of translations and rotation functions defines the Euclidean Set

Choose a Subspace

We can use any planar subspace as long as it does not contain the origin

Properties of Euclidean Transformations

- They preserve distances
- They preserve angles

How do you represent these functions?

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]_{6.837 \text { Fall }}
$$

 Slide 6

Playing with Euclidean Transforms

- In what order are the translation and rotation performed?
- Will this family of transforms always generate points on our choosen 3-D plane?
Why?

Similitude Transforms

We can define a 4-parameter superset of Euclidean Transforms with additional capabilities

Properties of Similtudes:

- Distance between any 2 points are changed by a fixed ratio
- Angles are preserved
- Maintains "similar" shape (similar triangles, circles map to circles, etc)

Playing with Similitude Transforms

- Adds reflections
- Scales in x and y must be the same. Why?
- Order?
- Will this family of transforms always generate points on our choosen 3-D plane?
Why?

Lecture 7-- 6.837 Fall 00

Affine Transformations

A 6-parameter group of transforms

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\sigma_{x y} \sin \theta+\sigma_{x} \cos \theta & \sigma_{x y} \cos \theta-\sigma_{x} \sin \theta & t_{x} \\ \sigma_{y} \sin \theta & \sigma_{y} \cos \theta & t_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
4Daek

Affine Properties

To the right is a simple illustration of how we can map our parameters into a four arbitrary numbers

Properties of Affine Transforms:

- They perserve our selected plane (sometimes called the Affine plane)
- They preserve parallel lines

- σ_{x} scales the x-dimension
- σ_{y} scales the y -dimension
- $\sigma_{x y}$ is often called the skew parameter

Determining Affine Transforms

The coordinates of three corresponding points uniquely determine and Affine Transform

If we know where we would like at least three points to map to, we can solve for an Affine transform that will give this mapping.

Solution Method

We've used this technique severa times now. We set up 6 linear equations in terms of our 6
unknown values. In this case, we know the coordinates before and after the mapping, and we wish to solve for the entries in our Affine transform matrix.

This gives the following solution:

$$
\mathbf{X}^{-1} \mathbf{x}^{\prime}=\mathbf{a}
$$

$[\begin{array}{l}{\left[\begin{array}{l}x_{1}^{\prime} \\ y_{1}^{\prime} \\ x_{2}^{\prime} \\ y_{2}^{\prime} \\ x_{3}^{\prime} \\ y_{3}^{\prime}\end{array}\right]}\end{array} \underbrace{\left[\begin{array}{llllll}x_{1} & y_{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{3} & y_{3} & 1\end{array}\right]}_{\mathbf{x}^{\prime}} \underbrace{\left[\begin{array}{l}a_{11} \\ a_{23} \\ a_{12} \\ a_{23} \\ a_{21} \\ a_{22} \\ a_{23}\end{array}\right]}_{\mathbf{X}}$

Projective Transformations

The most general linear transformation that we can apply to 2-D points

There is something different about this group of transformations. The result will not necessarily lie on our transformations. The result will not necessarily lie on ou
selected plane. Since our world (to this point) is 2D we need some way to deal with this.

${ }^{6.837 \text { Fall } 00}$

Projective Transforms

Since all of the resulting points are defined to within a non-zero scale factor. We can also scale the transformation by an arbitrary and it will still give the same result.

We might as well choose α so that one of the parameters of our matrix is 1 (i.e. $p_{33}=1$)

Projection

The mapping of points from an N-D space to a M-D subspace ($M<N$)

We need a rule for mapping points resulting of this transform back onto our plane $\mathrm{z}=1$.
We will identify points by lines through the origin of the 3-D space that we have embedded our plane within.

$$
\text { Thus, } x^{\prime} \equiv \alpha x^{\prime}
$$

Since the origin lies on all of these lines (and thus cannot be uniquely specified) we will disallow it. This is no big loss since it wasn't on our selected plane anyway (This is the real reason that we chose a plane not containing the origin).

If we want to find the coordinate of any point in our selected plane we need only scale it such that it's third coordinate, w, is 1 .

Degrees of Freedom

A projective transform has 8 free-parameters

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

which can be expressed as the following rational linear equation

$$
x^{\prime}=\frac{p_{11} x+p_{12} y+p_{13}}{p_{31} x+p_{32} y+1} \quad y^{\prime}=\frac{p_{21} x+p_{22} y+p_{23}}{p_{31} x+p_{32} y+1}
$$

rearranging terms gives a linear expression in the coefficients:
$x^{\prime}=p_{11} x+p_{12} y+p_{13}-p_{31} x x^{\prime}-p_{32} y x^{\prime}$

$$
y^{\prime}=p_{21} x+p_{22} y+p_{23}-p_{31} x y^{\prime}-p_{32} y y^{\prime}
$$

- Daent Lecture 7 Slide 20

