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Algebraic Groups●   
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Projective●   

Bovine●   
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Two-Dimensional Geometric Transforms
Geometric transforms are functions that map points from one place to another

Geometric transforms
can be applyed to

drawing primitives
(lines, conics, triangles)

●   

pixel coordinates of an image   
(or sprites)

●   

We'll begin with simple transforms and generalize them.
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Translations
Translations are a simple family of two-dimensional transforms. Translations were at the
heart of our Sprite implementations in Project #1.

Translations have the following form

x' = x + tx
y' = y + ty

For every translation there exists an inverse function which undoes the translation. In our
case the inverse looks like:

x = x' - tx
y = y' - ty

There also exists a special translation, called the identity, that leaves every point unchanged.

x' = x + 0
y' = y + 0
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Groups and Composition

For Translations:

There exists an inverse mapping for each function1.  

There exists an identity mapping2.  

These properties might seem trivial at first glance, but they are actually very
important, because when these conditions are shown for any class of
functions it can be proven that such a class is closed under composition (i.e.
any series of translations can be composed to a single translation). In
mathematical parlance this the same as saying that translations form an
algebraic group.
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Rotations
Another group of 2-transforms are the rotations about the origin.
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Euclidean Transforms
The union of translations and rotation functions defines the Euclidean Set

Properties of Euclidean Transformations:

They preserve distances●   

They preserve angles●   

How do you represent these functions?
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Problems with this Form
Must consider Translation and Rotation separately●   

Computing the inverse transform involves multiple steps●   

Order matters between the R and T parts

These problem can be remedied by considering our 2 dimensional image plane as a 2D
subspace within 3D.

●   
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Choose a Subspace
We can use any planar subspace as long as it does not contain the origin

WLOG assume the our 2D space of points lies on the 3D plane z = 1

Now we can express all Euclidean Transforms in matrix form:

This gives us a three parameter group of Transformations.
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Playing with Euclidean Transforms

In what order are the translation and rotation performed?●   

Will this family of transforms always generate points on our choosen
3-D plane?
Why?

●   
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Similitude Transforms
We can define a 4-parameter superset of Euclidean Transforms with additional capabilities

Properties of Similtudes:

Distance between any 2 points
are changed by a fixed ratio

●   

Angles are preserved●   

Maintains "similar" shape
(similar triangles, circles map to circles, etc)

●   
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Playing with Similitude Transforms

Adds reflections●   

Scales in x and y must be the same. Why?●   

Order?●   

Will this family of transforms always generate points on our choosen
3-D plane?
Why?

●   
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Affine Transformations
A 6-parameter group of transforms
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Affine Properties

To the right is a simple illustration of how we
can map our parameters into a four arbitrary
numbers

Properties of Affine Transforms:

They perserve our selected plane
(sometimes called the Affine plane)

●   

They preserve parallel lines●   
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Playing with Affine Transforms

σx scales the x-dimension●   

σy scales the y-dimension●   

σxy is often called the skew parameter●   
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Determining Affine Transforms
The coordinates of three corresponding points uniquely determine and Affine Transform

If we know where we would like at least three points to map to, we can solve for an Affine
transform that will give this mapping.
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Solution Method

We've used this technique several
times now. We set up 6 linear
equations in terms of our 6
unknown values. In this case, we
know the coordinates before and
after the mapping, and we wish to
solve for the entries in our Affine
transform matrix.

This gives the following solution:
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Projective Transformations
The most general linear transformation that we can apply to 2-D points

There is something different about this group of
transformations. The result will not necessarily lie on our
selected plane. Since our world (to this point) is 2D we
need some way to deal with this.
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Projection

The mapping of points from an N-D space to a M-D subspace (M < N)

We need a rule for mapping points resulting of this transform back onto our plane z = 1.

We will identify points by lines through the origin of the 3-D space that we have embedded
our plane within.

Thus, 

Since the origin lies on all of these lines (and thus cannot be uniquely specified) we will
disallow it. This is no big loss since it wasn't on our selected plane anyway (This is the real
reason that we chose a plane not containing the origin).

If we want to find the coordinate of any point in our selected plane we need only scale it
such that it's third coordinate, w, is 1.
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Projective Transforms

Since all of the resulting points are defined to within a non-zero scale factor. We can also
scale the transformation by an arbitrary and it will still give the same result.

We might as well choose α so that one of the parameters of our matrix is 1 (i.e. p33 = 1).
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Degrees of Freedom

A projective transform has 8 free-parameters
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Specifying a projective transform

A projective transform can be uniquely defined by how it maps 4 points
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Projective Example

With the applet on the right you can select any corner and drag it to where you would like.

Things are starting to look 3-D... We'll get there soon.
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Next Time
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