
Line-Drawing Algorithms

A Study in Optimization

Make it work
Make it right
Make it fast

 Lecture 5 Slide 1 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide01.html [9/21/2000 4:20:52 PM]

Line-Drawing Algorithms

Our first adventure into scan conversion.

Scan-conversion or rasterization�

Due to the scanning nature of raster displays�

Algorithms are fundamental to both
2-D and 3-D computer graphics

�

Transforming the continuous into this discrete
(sampling)

�

Line drawing was easy for vector displays�

Most incremental line-drawing algorithms
were first developed for pen-plotters

�

Most of the early scan-conversion algorithms developed
for plotters can be attributed to one man, Jack Bresenham.

Lecture 5 Slide 2 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide02.html [9/21/2000 4:21:01 PM]

Quest for the Ideal Line

The best we can do is a discrete approximation of an ideal line.

Important line qualities:

Continuous appearence�

Uniform thickness and brightness�

Accuracy (Turn on the pixels nearest the ideal line)�

Speed (How fast is the line generated)�

Lecture 5 Slide 3 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide03.html [9/21/2000 4:21:03 PM]

Simple Line

Based on the simple slope-intercept algorithm from algebra

y = m x + b

 public void lineSimple(int x0, int y0, int x1, int y1, Color
color) {
 int pix = color.getRGB();
 int dx = x1 - x0;
 int dy = y1 - y0;

 raster.setPixel(pix, x0, y0);
 if (dx != 0) {
 float m = (float) dy / (float) dx;
 float b = y0 - m*x0;
 dx = (x1 > x0) ? 1 : -1;
 while (x0 != x1) {
 x0 += dx;
 y0 = Math.round(m*x0 + b);
 raster.setPixel(pix, x0, y0);
 }
 }
 }

Lecture 5 Slide 4 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide04.html [9/21/2000 4:21:05 PM]

lineSimple() Demonstration

Draw a line by clicking and dragging on the pixel grid shown with the left
mouse button. An ideal line is displayed until the left button is released.
Upon release a discrete approximation of the line is drawn on the display
grid using the lineSimple() method described in the previous slide. An
ideal line is then overlaid for comparison.

The lineSimple() method:

Does it work?

Try various slopes.

Lecture 5 Slide 5 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide05.html [9/21/2000 4:21:06 PM]

Let's Make it Work!

Problem: lineSimple() does not give satisfactory results for slopes > 1

Solution: symmetry
public void lineImproved(int x0, int y0, int x1, int y1, Color color
 int pix = color.getRGB();
 int dx = x1 - x0;
 int dy = y1 - y0;

 raster.setPixel(pix, x0, y0);
 if (Math.abs(dx) > Math.abs(dy)) { // slope < 1
 float m = (float) dy / (float) dx; // compute slope
 float b = y0 - m*x0;
 dx = (dx < 0) ? -1 : 1;
 while (x0 != x1) {
 x0 += dx;
 raster.setPixel(pix, x0, Math.round(m*x0 + b));
 }
 } else
 if (dy != 0) { // slope >= 1
 float m = (float) dx / (float) dy; // compute slope
 float b = x0 - m*y0;
 dy = (dy < 0) ? -1 : 1;
 while (y0 != y1) {
 y0 += dy;
 raster.setPixel(pix, Math.round(m*y0 + b), y0);
 }
 }
}

Lecture 5 Slide 6 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide06.html [9/21/2000 4:21:07 PM]

lineImproved() Demonstration

Draw a line by clicking and dragging on the pixel grid shown with the left
mouse button. An ideal line is displayed until the left button is released.
Upon release a discrete approximation of the line is drawn on the display
grid using the lineImproved() method described in the previous slide. An
ideal line is then overlaid for comparison.

The lineImproved() method:

Notice that the slope-intercept equation of the line is executed at each step of the inner loop.

Lecture 5 Slide 7 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide07.html [9/21/2000 4:21:07 PM]

Optimize Inner Loops

Optimize those code fragments where the algorithm spends most of its time.

Often these fragments
are inside loops.

Overall code organization:

 lineMethod()
 {
 // 1. general set up
 // 2. special case set up
 while (notdone) {
 // 3. inner loop
 }
 }

remove unnecessary method invocations
replace Math.round(m*x0 + b)
with (int)(m*x0 + b + 0.5)
Does this always work?

�

use incremental calculations

Consider the expression

y = (int)(m*x + b + 0.5)

The value of y is known at x0 (i.e. it is y0 + 0.5)
Future values of y can be expressed in terms of
previous values with a difference equation:

yi+1 = yi + m;
or

yi+1 = yi - m;

�

Lecture 5 Slide 8 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide08.html [9/21/2000 4:21:08 PM]

Modified Algorithm
This line drawing method is called a Digital Differential Analyzer or DDA for short.

 public void lineDDA(int x0, int y0, int x1, int y1, Color color) {
 int pix = color.getRGB();
 int dy = y1 - y0;
 int dx = x1 - x0;
 float t = (float) 0.5; // offset for rounding
 raster.setPixel(pix, x0, y0);
 if (Math.abs(dx) > Math.abs(dy)) { // slope < 1
 float m = (float) dy / (float) dx; // compute slope
 t += y0;
 dx = (dx < 0) ? -1 : 1;
 m *= dx;
 while (x0 != x1) {
 x0 += dx; // step to next x value
 t += m; // add slope to y value
 raster.setPixel(pix, x0, (int) t);
 }
 } else { // slope >= 1
 float m = (float) dx / (float) dy; // compute slope
 t += x0;
 dy = (dy < 0) ? -1 : 1;
 m *= dy;
 while (y0 != y1) {
 y0 += dy; // step to next y value
 t += m; // add slope to x value
 raster.setPixel(pix, (int) t, y0);
 }
 }
 }

Lecture 5 Slide 9 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide09.html [9/21/2000 4:21:09 PM]

lineDDA() Demonstration

Draw a line by clicking and dragging on the pixel grid shown with the left
mouse button. An ideal line is displayed until the left button is released.

Upon release a discrete approximation of the line is drawn on the display
grid using the lineDDA() method described in the previous slide. An ideal

line is then overlaid for comparison.

The lineDDA() method:

You should not see any difference in
the lines generated by this method and the lineImproved() method
mentioned previously.

Lecture 5 Slide 10 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide10.html [9/21/2000 4:21:10 PM]

Was Our Objective Met?

This applet above allows you to select from the various line drawing
algorithms discussed. You can draw lines using the selected algorithm by
clicking and dragging with the first mouse button. You can also time the
algorithms by clicking on Benchmark. In order to get more accurate
timings the pattern is drawn five times (without clearing), and the final
result is displayed.

To the left is a benchmarking applet

Modern compilers will often find these sorts of optimizations

Dilemma:

Is it better to retain readable code, and depend a compiler to do the optimization implicitly,
or code the optimization explicitly with some loss in readability?

Lecture 5 Slide 11 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide11.html [9/21/2000 4:21:11 PM]

Low-Level Optimizations

Low-level optimizations are dubious, because
they often depend on specific machine details.

However, a set of general rules that are more-or-less consistent across machines include:

Addition and Subtraction are generally faster than Multiplication.�

Multiplication is generally faster than Division.�

Using tables to evaluate discrete functions is faster than computing them�

Integer caluculations are faster than floating-point calculations.�

Avoid unnecessary computation by testing for various special cases.�

The intrinsic tests available to most machines are greater than,
less than, greater than or equal, and less than or equal to zero (not an arbitrary value).

�

Lecture 5 Slide 12 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide12.html [9/21/2000 4:21:12 PM]

Applications of Low-level Optimizations

Notice that the slope is always rational (a ratio of two integers).

 m = (y1 - y0) / (x1 - x0)

Note that the incremental part of the algorithm never generates a new y that is more than one
unit away from the old one (because the slope is always less than one)

 yi+1 = yi + m

Thus, if we maintained the only the only fractional part of y we could still draw a line by
noting when this fraction exceeded one. If we initialize fraction with 0.5, then we will also
handle the rounding correctly as in our DDA routine.

 fraction += m;
 if (fraction >= 1) { y = y + 1; fraction -= 1; }

Lecture 5 Slide 13 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide13.html (1 of 2) [9/21/2000 4:21:13 PM]

More Low-level Optimizations

Note that y is now an integer.
Can we represent the fraction as an integer?

After we draw the first pixel (which happens outside our main loop) the correct fraction is:

 fraction = 1/2 + dy/dx

If we scale the fraction by 2*dx the following expression results:

 scaledFraction = dx + 2*dy

and the incremental update becomes:

 scaledFraction += 2*dy // 2*dx*(dy/dx)

and our test must be modified to reflect the new scaling

 if (scaledFraction >= 2*dx) { ... }

Lecture 5 Slide 14 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide14.html [9/21/2000 4:21:14 PM]

More Low-level Optimizations

This test can be made against a value of zero if the inital value of scaledFraction has 2*dx
subtracted from it. Giving, outside the loop:

 OffsetScaledFraction = dx + 2*dy - 2*dx =
2*dy - dx

and the inner loop becomes

 OffsetScaledFraction += 2*dy
 if (OffsetScaledFraction >= 0) {
 y = y + 1;
 fraction -= 2*dx;
 }

We might as well double the values of dy and dx (this can be accomplished with either an
add or a shift outside the loop).

Lecture 5 Slide 15 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide15.html [9/21/2000 4:21:14 PM]

The resulting method is known as Bresenham's line drawing algorithm

 public void lineBresenham(int x0, int y0, int x1, int y1, Color color) {
 int pix = color.getRGB();
 int dy = y1 - y0;
 int dx = x1 - x0;
 int stepx, stepy;
 if (dy < 0) { dy = -dy; stepy = -1; } else { stepy = 1; }
 if (dx < 0) { dx = -dx; stepx = -1; } else { stepx = 1; }
 dy <<= 1; // dy is now 2*dy
 dx <<= 1; // dx is now 2*dx
 raster.setPixel(pix, x0, y0);
 if (dx > dy) {
 int fraction = dy - (dx >> 1); // same as 2*dy - dx
 while (x0 != x1) {
 if (fraction >= 0) {
 y0 += stepy;
 fraction -= dx; // same as fraction -= 2*dx
 }
 x0 += stepx;
 fraction += dy; // same as fraction -= 2*dy
 raster.setPixel(pix, x0, y0);
 }
 } else {
 int fraction = dx - (dy >> 1);
 while (y0 != y1) {
 if (fraction >= 0) {
 x0 += stepx;
 fraction -= dy;
 }
 y0 += stepy;
 fraction += dx;
 raster.setPixel(pix, x0, y0);
 }
 }
 }

Lecture 5 Slide 16 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide16.html [9/21/2000 4:21:15 PM]

lineBresenham() Demonstration

Draw a line by clicking and dragging on the pixel grid shown with the left
mouse button. An ideal line is displayed until the left button is released.
Upon release a discrete approximation of the line is drawn on the display
grid using the lineBresenham() method described in the previous slide. An
ideal line is then overlaid for comparison.

The lineBresenham() method:

Does it work?

Lecture 5 Slide 17 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide17.html [9/21/2000 4:21:16 PM]

Was it worth it?

This applet above allows you to select from the various line drawing
algorithms discussed. You can draw lines using the selected algorithm by
clicking and dragging with the first mouse button. You can also time the
algorithms by clicking on Benchmark. In order to get more accurate
timings the pattern is drawn five times (without clearing), and the final
result is displayed.

To the left is a benchmarking applet

Lecture 5 Slide 18 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide18.html [9/21/2000 4:21:17 PM]

Question Infrastructure

There is still a hidden multiply inside of our inner loop

 /**
 * Sets a pixel to a given value
 */
 public final boolean setPixel(int pix, int x, int y)
 {
 pixel[y*width+x] = pix;
 return true;
 }

Our next optimization of Bresenham's algorithm
eliminates even this multiply.

Lecture 5 Slide 19 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide19.html [9/21/2000 4:21:17 PM]

Faster Bresenham Algorithm
 public void lineFast(int x0, int y0, int x1, int y1, Color color) {
 int pix = color.getRGB();
 int dy = y1 - y0;
 int dx = x1 - x0;
 int stepx, stepy;
 int width = raster.getWidth():
 int pixel = raster.getPixelBuffer();
 if (dy < 0) { dy = -dy; stepy = -width; } else { stepy = -width; }
 if (dx < 0) { dx = -dx; stepx = -1; } else { stepx = 1; }
 dy <<= 1;
 dx <<= 1;
 y0 *= width;
 y1 *= width;
 pixel[x0+y0] = pix;
 if (dx > dy) {
 int fraction = dy - (dx >> 1);
 while (x0 != x1) {
 if (fraction >= 0) {
 y0 += stepy;
 fraction -= dx;
 }
 x0 += stepx;
 fraction += dy;
 pixel[x0+y0] = pix;
 }
 } else {
 int fraction = dx - (dy >> 1);
 while (y0 != y1) {
 if (fraction >= 0) {
 x0 += stepx;
 fraction -= dy;
 }
 y0 += stepy;
 fraction += dx;
 pixel[x0+y0] = pix;
 }
 }
 }

Lecture 5 Slide 20 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide20.html [9/21/2000 4:21:18 PM]

Was it worth it?

This applet above allows you to select from the various line drawing
algorithms discussed. You can draw lines using the selected algorithm by
clicking and dragging with the first mouse button. You can also time the
algorithms by clicking on Benchmark. In order to get more accurate
timings the pattern is drawn five times (without clearing), and the final
result is displayed.

To the left is a benchmarking applet

Can we go even faster?

Lecture 5 Slide 21 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide21.html [9/21/2000 4:21:19 PM]

Beyond Bresenham
Most books would have you believe that the development
of line drawing algorithms ended with Bresenham's
famous algorithm. But there has been some signifcant
work since then. The following 2-step algorithm,
developed by Xiaolin Wu, is a good example. The
interesting story of this algorithm's development is
discussed in an article that appears in Graphics Gems I by
Brian Wyvill.

The two-step algorithm takes the interesting approach of
treating line drawing as a automaton, or finite state
machine. If one looks at the possible configurations that
the next two pixels of a line, it is easy to see that only a
finite set of possiblities exist.

The two-step algorithm also exploits the symmetry of
line-drawing by simultaneously drawn from both ends
towards the midpoint.

The code, which is further down this web page, is a bit
long to show an a slide.

Lecture 5 Slide 22 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide22.html (1 of 6) [9/21/2000 4:21:20 PM]

Was it worth it?
Note: Compare the speed of lineBresenham() to
lineTwoStep(). This comparision is most fair since
I did not remove the calls to raster.setPixel() in the
two-step algorithm.

Hardly!

Lecture 5 Slide 23 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide23.html [9/21/2000 4:21:21 PM]

Epilogue

There are still many important issues associated with line drawing

Examples:

Non-integer endpoints
(occurs frequently when rendering 3D lines)

�

Can we make lines appear less "jaggy"?�

What if a line endpoint lies outside the viewing area?�

How do you handle thick lines?�

Optimizations for connected line segments�

Lines show up in the strangest places�

Lecture 5 Slide 24 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide24.html [9/21/2000 4:21:22 PM]

A Line in Sheep's Clothing

Movies developed for theaters are usually shot at 24 frames per second, while video on
television is displayed at 30 frames per second. Thus, when motion pictures are transferred
to video formats they must undergo a process called "3-2 pull-down", where every fourth
frame is repeated thus matching the frame rates of the two media, as depicted below.

Lecture 5 Slide 25 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide25.html [9/21/2000 4:21:23 PM]

The Plot Thickens...
Once, I was employed by a company with a similar, yet more complicated problem.
They had developed a multimedia movie-player technology that they wished to display
on a workstation's CRT screen. They also made screens with various update rates
including 60, 66, 72, and 75 frames-per-second. Their movie player had to support a
wide range of source materials including, but not limited to:

Source Frame Rate

Motion Pictures 24 fps

NTSC Video (frames) 30 fps

NTSC Video (fields) 60 fps

PAL Video (frames) 25 fps

PAL Video (fields) 50 fps

Common Multimedia 10 fps

These source materials were to be displayed as close as possible to the correct frame rate.
We were not expected to support frame rates higher than the CRT's update rate. Upon
having the problem explained, someone commented, "It's just a line-drawing algorithm!"

Lecture 5 Slide 26 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide26.html [9/21/2000 4:21:24 PM]

Generalized Pull Down
The generalized pull-down problem is nothing more that drawing the best discrete
approximation of the ideal line from (1, 1) to (desired frame rate, source frame rate), as
shown in the following diagram for the (30 fps, 24 fps).

Moreover, it is a very special case of a line. Can you think of addition optimizations to our
Bresenham line drawing code that could be applyed for the special case of pull-down?

Lecture 5 Slide 27 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide27.html [9/21/2000 4:21:25 PM]

Next Time
(A week from today, 9/28)

Lecture 5 Slide 28 6.837 Fall '00

Lecture 5 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture05/Slide28.html [9/21/2000 4:21:26 PM]

