
Alpha Blending

See Microsoft's Image Composer for more info on these images

Alpha blending simulates the opacity
of celluloid layers

General rules:

Adds one channel to each pixel [α, r, g, b]●

Usually process layers back-to-front (using the over
operator)

●

255 or 1.0 indicates an opaque pixel●

0 indicates a transparent pixel●

Result is a function of foregrond and background pixel
colors

●

Can simulate partial-pixel coverage for anti-aliasing●

Lecture 4 Slide 2 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide02.html [9/19/2000 4:09:48 PM]

Compositing Example

Alpha-blending features:

Allows image to encode
the shape of an object
(Sprite)

●

Can be used to represent
partial pixel coverage for
anti-aliasing
(independent of the final
background color)

●

Can be used for
transparency effects

●

Should be adopted by
everyone!
(what were you planning
to do with that extra byte
anyway)

●

Sprite 1

Sprite 2 and 3

Finished Composition

Lecture 4 Slide 4 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide04.html [9/19/2000 4:09:51 PM]

Topics in Imaging

A wee bit of
recursion

Alpha Compositing
Filling Algorithms
Dithering
DCTs

 Lecture 4 Slide 1 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide01.html [9/19/2000 4:09:42 PM]

Alpha Compositing Details

Definition of the Over compositing operation:

αresultcresult = αfg cfg + (1 - αfg) αbgcbg

αresult = αfg + (1 - αfg) αbg

Issues with alpha:
Premultiplied (integral) alphas:

pixel contains (α, αr, αg, αb)●

saves computation
αresultcresult = αfg cfg + αbgcbg - αfgαbgcbg

●

alpha value constrains color magnitude●

alpha modulates image shape●

conceptually clean - multiple composites
are well defined

●

Non-premultiplied (independent) alphas:

pixel contains (α, r, g, b)●

what Photoshop does●

color values are independent of alpha●

transparent pixels have a color●

divison required to get color component
back

●

(An excellent reference on the subject)

Lecture 4 Slide 3 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide03.html [9/19/2000 4:09:50 PM]

Parity Fill
Problem:

For each pixel determine if it is inside or outside of a given polygon.

Approach:

from the point being tested cast a ray in an arbitary direction●

if the number of crossings is odd then the point is inside●

if the number of crossings is even then the point is outside●

Very fragile algorithm●

What if ray crosses a vertex?●

What if ray falls on an edge?●

Commonly used in ECAD●

Suitable for H/W●

Lecture 4 Slide 6 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide06.html [9/19/2000 4:09:54 PM]

Boundary Fills
Boundary fills start from a point known to be inside of a region

and fill the region until a boundry is found.

A simple recursive algorithm can be used:

 public void boundaryFill(int x, int y, int
fill, int boundary) {
 if ((x < 0) || (x >= width)) return;
 if ((y < 0) || (y >= height)) return;
 int current = raster.getPixel(x, y);
 if ((current != boundary) && (current !=
fill)) {
 raster.setPixel(fill, x, y);
 boundaryFill(x+1, y, fill, boundary);
 boundaryFill(x, y+1, fill, boundary);
 boundaryFill(x-1, y, fill, boundary);
 boundaryFill(x, y-1, fill, boundary);
 }
 }

Lecture 4 Slide 8 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide08.html [9/19/2000 4:09:57 PM]

Area Fill Algorithms?

Used to fill regions after their boundary or contour has been
determined.

●

Handles Irregular boundaries ●

Supports freehand drawings●

Deferred fills for speed (only fill visible parts)●

Allows us to recolor primitives●

Can be adapted for other uses (selecting regions) ●

Unaware of any other primitives
previously drawn.

●

Later we'll discuss filling areas
during rasterization

●

Lecture 4 Slide 5 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide05.html [9/19/2000 4:09:53 PM]

Winding Number

Imagine yourself watching a point traverse the boundary of the polygon in a
counter-clockwise direction and pivoting so that you are always facing at it.

Your winding number is the number of full revolutions that you complete.

If you winding number is 0 then you are outside of the polygon, otherwise you are inside.

Lecture 4 Slide 7 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide07.html [9/19/2000 4:09:56 PM]

Serial Recursion is Depth-First

So the fill algorithm will continue
in one direction until a boundary is
reached.

It will then change directions
momentarily and attempt to
continue back in the original
direction.

Will parallel execution of the
algorithm behave the same way?

Lecture 4 Slide 10 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide10.html [9/19/2000 4:10:02 PM]

A Flood-Fill
Sometimes we'd like a area fill algorithm that replaces all connected pixels of a selected
color with a fill color. The flood-fill algorithm does exactly that.

 public void floodFill(int x, int y,
int fill, int old) {
 if ((x < 0) || (x >= width))
return;
 if ((y < 0) || (y >= height))
return;
 if (raster.getPixel(x, y) == old)
{
 raster.setPixel(fill, x, y);
 floodFill(x+1, y, fill, old);
 floodFill(x, y+1, fill, old);
 floodFill(x-1, y, fill, old);
 floodFill(x, y-1, fill, old);
 }
 }

Flood fill is a small variant on a boundary fill. It replaces old pixels with the fill color.

Lecture 4 Slide 12 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide12.html [9/19/2000 4:10:05 PM]

Let's Watch it in Action

First, you should guess how you expect the algorithm to behave. Then
select a point on the figure's interior. Did the algorithm act as you
expected?

Lecture 4 Slide 9 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide09.html [9/19/2000 4:09:59 PM]

At Full Speed

To the right is the same algorithm operating at full speed.

Left-button click inside one of the regions to start the fill process. Click the right button to
reset the image to its original state

Lecture 4 Slide 11 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide11.html [9/19/2000 4:10:03 PM]

Self-Starting Fast Flood-Fill Algorithm
The follow implementation self-starts, and is also somewhat faster.

 public void fillFast(int x, int y, int
fill)
 {
 if ((x < 0) || (x >=
raster.width)) return;
 if ((y < 0) || (y >=
raster.height)) return;
 int old = raster.getPixel(x, y);
 if (old == fill) return;
 raster.setPixel(fill, x, y);
 fillEast(x+1, y, fill, old);
 fillSouth(x, y+1, fill, old);
 fillWest(x-1, y, fill, old);
 fillNorth(x, y-1, fill, old);
 }

Lecture 4 Slide 14 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide14.html [9/19/2000 4:10:08 PM]

Working Algorithm

private void fillSouth(int x, int y, int fill, int
old) {
 if (y >= raster.height) return;
 if (raster.getPixel(x, y) == old) {
 raster.setPixel(fill, x, y);
 fillEast(x+1, y, fill, old);
 fillSouth(x, y+1, fill, old);
 fillWest(x-1, y, fill, old);
 }
}

You can figure out the other routines yourself.

Lecture 4 Slide 16 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide16.html [9/19/2000 4:10:10 PM]

Flood-Fill in Action

It's a little awkward to kick off a flood fill algorithm, because it requires that the old color
must be read before it is invoked. It is usually, established by the initial pixel (x, y) where a
mouse is clicked.

Lecture 4 Slide 13 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide13.html [9/19/2000 4:10:07 PM]

Fill East

 private void fillEast(int x, int y, int fill,
int old) {
 if (x >= raster.width) return;
 if (raster.getPixel(x, y) == old) {
 raster.setPixel(fill, x, y);
 fillEast(x+1, y, fill, old);
 fillSouth(x, y+1, fill, old);
 fillNorth(x, y-1, fill, old);
 }
 }

Note:

There is only one clipping test, and only three subsequent calls.
Why?
How much faster do you expect this algorithm to be?

Lecture 4 Slide 15 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide15.html [9/19/2000 4:10:09 PM]

Code for an 8-Way Connected Flood Fill

As you expected...
 the code is a simple modification of the 4-way connected flood fill.

 public void floodFill8(int x, int y, int fill,
int old) {
 if ((x < 0) || (x >= raster.width)) return;
 if ((y < 0) || (y >= raster.height)) return;
 if (raster.getPixel(x, y) == old) {
 raster.setPixel(fill, x, y);
 floodFill8(x+1, y, fill, old);
 floodFill8(x, y+1, fill, old);
 floodFill8(x-1, y, fill, old);
 floodFill8(x, y-1, fill, old);
 floodFill8(x+1, y+1, fill, old);
 floodFill8(x-1, y+1, fill, old);
 floodFill8(x-1, y-1, fill, old);
 floodFill8(x+1, y-1, fill, old);
 }
 }

Lecture 4 Slide 18 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide18.html [9/19/2000 4:10:13 PM]

Flood-Fill Embellishments

The flood-fill and boundary-fill algorithms can easily be modified for a wide variety of new
uses:

Patterned fills1.

Approximate fills2.

Gradient fills3.

Region selects4.

Triangle Rendering!5.

Lecture 4 Slide 20 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide20.html [9/19/2000 4:10:16 PM]

4-Way and 8-Way Connectedness

A final consideration when writing a area-fill algorithm is the size and connectivity of the
neighborhood, around a given pixel.

An eight-connected neighborhood is able to get into knooks and crannies that an algorithm
based on a four-connected neighborhood cannot.

Lecture 4 Slide 17 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide17.html [9/19/2000 4:10:12 PM]

More 8-Way Connectedness

Sometimes 8-way connectedness can be too much.

Lecture 4 Slide 19 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide19.html [9/19/2000 4:10:14 PM]

When do we need dithering?

We can discern approximately 100 brightness levels
(depends on hue and ambient lighting)

●

True-color displays are usually adequate under normal indoor lighting
(when the nonlinearities of the display are properly compensated for).

●

High-color displays provide only 32 shades of a each primary.
Without dithering you will see contours.

●

Made worse by Mach-banding●

Worse on indexed displays●

Largest use of dithering is in printed media (newsprint, laser printers)●

Lecture 4 Slide 22 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide22.html (1 of 2) [9/19/2000 4:10:20 PM]

The Secret... Noise
Dithering requires the addition of spatial noise to the original signal (color intensity). This
noise can be regular (a repeated signal that is independent of either the input or output),
correlated (a signal that is related to the input), random, or some combination.

Dithering can be neatly summarized as a quantization process where noise has has been
introduced to the input. The character of the dither is determined entirely by the structure of the
noise. Note: Dithering decreases the SNR yet improves the percieved quality of the output.

Lecture 4 Slide 24 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide24.html [9/19/2000 4:10:32 PM]

Monochrome and Color Dithering

Dithering techniques are used to render images
and graphics with more apparent colors than are
actually displayable. Dithering is sometimes
called digital half-toning.

When our visual systems are confronted with
large regions of high-frequency color changes
they tend to blend the individual colors into
uniform color field. Dithering attempts to uses
this property of perception to represent colors
that cannot be directly represented.

Lecture 4 Slide 21 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide21.html [9/19/2000 4:10:17 PM]

Quantization and Thresholding

The process of representing a continuous function with discrete values is called quantization. It
can best be visualized with a drawing:

The input values that cause the quantization levels to change output values are called
thresholds. The example above has 4 quantization levels and 3 thresholds. When the spacing
between the thresholds and the quantization levels is constant the process is called uniform
quantization.

Lecture 4 Slide 23 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide23.html [9/19/2000 4:10:31 PM]

Ordered Dither
The next noise function uses a regular spatial pattern. This
technique is called ordered dithering. Ordered dithering
adds a noise pattern with specific amplitudes.

Units are the fraction of the
difference between quantization
levels.

Ordered dither gives a very
regular screen-like pattern
remincent of newsprint.

Lecture 4 Slide 26 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide26.html [9/19/2000 4:10:35 PM]

Lossy Image Compression

The topic of image compression
is a very involved and decribes a
wide range of methods. Our
goal here is to provide a
sufficient background for
understanding the most common
compression techniques used. In
particular those used on the
WWW.

There are generally two types of
images that are widely used on
the WWW, gifs and jpegs. As
you are probably aware, each
method has its own strengths
and weaknesses. Both methods
also use some form of image
compression.

Some of the highlights of these
compression methods are
summarized in the table shown
on the right.

GIF JPEG

Colors 256 224

Compression
Dictionary-based

(LZW)
Transform

Based

Processing
Order

Quantize,
Compress

Transform,
Quantize

Primary Use
Graphics, Line

Art
Photos

Special
Features

Transparency,
Interleaving

Progressive

Lecture 4 Slide 28 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide28.html [9/19/2000 4:10:37 PM]

Dither Noise Patterns
Let's consider some dither noise patterns.

One simple type of noise is called uniform or
white noise. White noise generates values within
an interval such that all outcomes are equally
likely. Here we add zero-mean white noise to our
image. The term zero-mean indicates that the
average value of the noise is zero. This will
assure that our dithering does not change the
apparent brightness of our image.

The only thing left to specify is the range of noise
values, this is called the noise's amplitude. The
amplitude that makes the most sense is the
spacing between thresholds. This is not, however
a requirement. It is rare to specify a larger
amplitude (Why?), but frequently slightly smaller
amplitudes are used. Let's look back at our
example to see what random noise dithering
looks like.

The result is not a good as expected. The
noise pattern tends to clump in different
regions of the image. The unsettling
aspect of this clumping is that it is
unrelated to the image. Thus the dithering
process adds apparent detail to the image
that are not really in the image.

Lecture 4 Slide 25 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide25.html [9/19/2000 4:10:33 PM]

Error Diffusion
Error diffusion is a correlated dithering technique, meaning
that the noise value added to a given pixel is a function of
the image.

Error diffusion attempts to transfer the residual error due to
quantization to a region of surrounding pixels. Most
common techniues are designed so that the pixels can be
processed in an ordered single pass. For example the
following pattern assumes that each scanline is processed
from left to right as the image is scaned from top to bottom.

Error diffusion is generally, the
preferred method for the
display of images on a
computer screen. The most
common artifacts are vissible
worm-like patterns, and the
leakage of noise into uniform
regions.

Lecture 4 Slide 27 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide27.html [9/19/2000 4:10:36 PM]

Transform Coding
Transform coding removes the redundancies (correlation) in an images by changing
coordinate systems.

We can think of a cluster of pixels, for instance those in an 8 by 8 block, as a vector in some
high-dimensional space (64 dimension in this case). If we transform this matrix
appropriately we can discover that a otherwise random collection of numbers is, in fact,
highly correlated.

One common transform basis function that you have seen if the Fourier Basis (FFT).
However the Fourier basis makes some assumptions that are not optimal for images.

First, it assumes that the image
tiles an infinite plane. This
leads to a transform that
contains both even (cosine-like)
and odd (sine-ike) components.

If we make copies of the
images with various flips we
can end up with a function that
has only even (cosine-like)
components.

The resulting FFT will only
have real parts. This transform
is called the Cosine Transform.

Lecture 4 Slide 30 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide30.html [9/19/2000 4:10:40 PM]

Next Time
(Really and Truly this time)

Lecture 4 Slide 32 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide32.html [9/19/2000 4:10:42 PM]

LZW Compression

LZW compression is an acronym for Lemple-Ziv-Welch
compression. This is a classical, lossless dictionary-based
compression system.

Prior, to compression any GIF image must be reduced to
256 colors. This can be done using quantitzation followed
by dithering as discussed earlier. This is the where the
loss occurs in GIF compression.

After the image is quantized then LZW compression is
applied to reduce the image size. LZW compression starts
with a dictionary that contains all possible symbols (in our
case numbers from 0 to 255). For the sake of illustration, I
will use characters in this explaination.

Basically, builds up a dictionary of longer and longer
strings based on the input stream. The encoder compares
the incoming characters for the longest possible match
and returns the index for that dictionary entry. It then then
adds a new dictionary entry with the current character
concatenated to the longest match.

Input String ="*WED*WE*WEE*WEB*WET"

Input Output New Dictionary Entry

*W * 256="*W"

E W 257="WE"

D E 258="ED"

* D 259="D*"

WE 256 260="*WE"

* E 261="E*"

WEE 260 262="*WEE"

*W 261 263="E*W"

EB 257 264="WEB"

* B 265="B*"

WET 260 266="*WET"

Lecture 4 Slide 29 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide29.html [9/19/2000 4:10:38 PM]

DCT example

By clicking on the image below you can transform it to
and from it's Discrete Cosine Representation.

The DCT like the FFT is a separable
transfrom. This means that a 2-D transfrom
can be realized by first transfroming in the
x direction, followed by a transforms in the
y direction.

The blocksize shown here is 8 by 8 pixels.

Notice how the transformed image is a uniform
gray color. This is indicative of a correlated
image. In fact, most of the coefficients in a
DCT transform are typically very close to zero
(shown as gray here because these coefficients
are signed values). Both JPEG and MPEG take
advantage of this property by applying a
quantization to these coefficents, which causes
most values to be zero.

If we ignore floating point trucation errors, then
the DCT transformation is an entirely lossless
transform. The loss incurred in JPEG and
MPEG types of compression is due to the
quantization that is applied to each of the
cofficients after the DCT transform.

Lecture 4 Slide 31 6.837 Fall '00

Lecture 4 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture04/Slide31.html [9/19/2000 4:10:41 PM]

