
Exercise #1
Set up your course homepage by next Tuesday 9/19

Before 6.837 I was a normal lab rat, now I am the BRAIN!

My Projects:
Project #1●

Project #2●

Project #3●

Project #4●

Project #5●

Cool Places:
MIT's Graphics Group●

Avalon●

My REAL homepage●

6.837's homepage●

Narf!

Homepage
Requirements:

Locate on imagery in
/mit/imagery2/6.837/F00/username

(you must execute
"add imageory2" first)

●

Something about you●

Links to all 5 projects●

Area for links to
computer graphics sites
that you find interesting

●

A link back to the 6.837
homepage

●

Lecture 2 Slide 2 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide02.html [9/12/2000 4:46:06 PM]

Java Example
Next, the source of the demo.java file is shown.

 import java.applet.*;
 import java.awt.*;

 public class Demo extends Applet {
 Image image;
 int count;

 public void init() {
 image = getImage(getDocumentBase(), "World.jpg");
 count = 1;
 }

 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, this);
 g.setColor(Color.red);
 for (int y = 15; y < size().height; y += 15) {
 int x = (int) (size().width/2 + 30*Math.cos(Math.PI*y/75));
 g.drawString("Hello", x, y);
 }
 showStatus("Paint called "+count+" time"+((count > 1)?"s":""));
 count += 1;
 }
 }

You can get the source here and the World.jpg image here.

Lecture 2 Slide 4 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide04.html [9/12/2000 4:46:10 PM]

Pixels, Rasters, Sprites, and BitBlts

Experiencing
 JAVAphobia?

Exercise #1●

A Graphical Hello World●

Rasters●

Pixels●

Sprites●

BitBlts●

 Lecture 2 Slide 1 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide01.html [9/12/2000 4:46:01 PM]

A First Java Program

We start by writing what is called a Java applet. This is a form of a Java program that can be
embedded in a HTML document and accessed from the web. An example HTML document
that calls our example applet is shown below:

 <HTML>
 <HEAD>
 <TITLE>Demo Applet</TITLE>
 </HEAD>
 <BODY>

 <H1>Demo Applet</H1>
 <P>My favorite class is 6.837</P>
 <HR>
 <CENTER>
 <APPLET code="Demo.class" width=200 height=200>
 </APPLET>
 </CENTER>
 <HR>
 </BODY>
 </HTML>

The highlighted lines add the Java code to our document. Notice the .class extension. All Java
source code files should end with a .java extension. The source is here.

Lecture 2 Slide 3 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide03.html [9/12/2000 4:46:07 PM]

Review of Raster Displays

Display synchronized with CRT sweep●

Special memory for screen update●

Pixels are the discrete elements displayed●

Generally, updates are visible●

Lecture 2 Slide 6 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide06.html [9/12/2000 4:46:14 PM]

A Memory Raster

Maintains a copy of the screen (or some part of it) in memory●

Relies on a fast copy●

Updates are nearly invisible●

Conceptual model of a physical object●

Lecture 2 Slide 8 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide08.html [9/12/2000 4:46:17 PM]

The Applet in Action

Demo Applet
My favorite class is 6.837

This is all of the Java
programming language that
we will specifically cover in
class.

If you have never used Java before,
you might want to consider buying
one of the books discussed on the
course's home page.

Lecture 2 Slide 5 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide05.html [9/12/2000 4:46:11 PM]

High-End Graphics Display System

Adds a second frame buffer●

Swaps during vertical blanking●

Updates are invisible●

Costly●

Lecture 2 Slide 7 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide07.html [9/12/2000 4:46:16 PM]

Example Usage: Rastest.java
The code on
the right
demonstrates
the use of a
Raster object.
The running
Applet is
shown below.
Clicking on the
image will
cause it to be
negated.

The source
code for this
applet can be
downloaded
here:
Rastest.java.

 import java.applet.*;
 import java.awt.*;
 import Raster;

 public class Rastest extends Applet {
 Raster raster;
 Image output;
 int count = 0;

 public void init() {
 String filename = getParameter("image");
 output = getImage(getDocumentBase(), filename);
 raster = new Raster(output);
 showStatus("Image size: " + raster.getWidth() + " x " +
raster.getHeight());
 }

 public void paint(Graphics g) {
 g.drawImage(output, 0, 0, this);
 count += 1;
 showStatus("paint() called " + count + " time" + ((count > 1) ? "s":""));
 }

 public void update(Graphics g) {
 paint(g);
 }

 public boolean mouseUp(Event e, int x, int y) {
 int s = raster.getSize();
 int [] pixel = raster.getPixelBuffer();
 for (int i = 0; i < s; i++) {
 raster.pixel[i] ^= 0x00ffffff;
 }
 output = raster.toImage(this);
 repaint();
 return true;
 }
 }

Lecture 2 Slide 10 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide10.html [9/12/2000 4:46:19 PM]

True-Color Frame Buffers

Each pixel requires at least 3 bytes. One byte for each primary color.●

Sometimes combined with a look-up table per primary●

Each pixel can be one of 2^24 colors●

Worry about your Endians●

Lecture 2 Slide 12 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide12.html [9/12/2000 4:46:22 PM]

A Java Model of a Memory Raster
class Raster implements ImageObserver {
 ////////////////////////// Constructors /////////////////////
 public Raster(); // allows class to be extended
 public Raster(int w, int h); // specify size
 public Raster(Image img); // set to size and contents of image

 ////////////////////////// Interface Method /////////////////
 public boolean imageUpdate(Image img, int flags, int x, int y, int w, int h);

 ////////////////////////// Accessors //////////////////////////
 public int getSize(); // pixels in raster
 public int getWidth(); // width of raster
 public int getHeight(); // height of raster
 public int[] getPixelBuffer(); // get array of pixels

 ////////////////////////// Methods ////////////////////////////
 public void fill(int argb); // fill with packed argb
 public void fill(Color c); // fill with Java color
 public Image toImage(Component root);
 public int getPixel(int x, int y);
 public Color getColor(int x, int y);
 public boolean setPixel(int pix, int x, int y);
 public boolean setColor(Color c, int x, int y);
}

Download Raster.java here.

Lecture 2 Slide 9 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide09.html [9/12/2000 4:46:18 PM]

Lets Talk About Pixels

Pixels are stored as a 1-dimensional array of ints●

Each int is formatted according to Java's standard pixel model●

Alpha Red Green Blue

The 4 bytes of a 32-bit Pixel int.
if Alpha is 0 the pixel is transparent.
if Alpha is 255 the pixel is opaque.

Layout of the pixel array on the display:●

This is the image format used internally by Java●

Lecture 2 Slide 11 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide11.html [9/12/2000 4:46:21 PM]

High-Color Frame Buffers

Pixels are packed in a short.
Each primary uses 5 bits.

Popular PC/(SVGA) standard (popular with Gamers)●

Each pixel can be one of 2^15 colors●

Can exhibit worse quantization (banding) effects than Indexed-color●

Lecture 2 Slide 14 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide14.html [9/12/2000 4:46:25 PM]

A Sprite is a Raster

 class Sprite extends Raster {
 int x, y; //
position of sprite on playfield
 public void Draw(Raster bgnd); //
draws sprite on a Raster
 }

Things to consider:

The Draw() method must handle transparent pixels, and it must
also handle all cases where the sprite overhangs the playfield.

Lecture 2 Slide 16 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide16.html [9/12/2000 4:46:27 PM]

Indexed-Color Frame Buffers

Each pixel uses one byte●

Each byte is an index into a color map●

If the color map is not updated synchronously then Color-map flashing may occcur.●

Color-map Animations●

Each pixel may be one of 2^24 colors, but only 256 color be displayed at a time●

Lecture 2 Slide 13 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide13.html [9/12/2000 4:46:23 PM]

Sprites

Sprites are rasters that can be overlaid onto a background raster called a playfield.

A sprite can be animated, and it generally can be
repositioned freely any where within the playfield.

Lecture 2 Slide 15 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide15.html [9/12/2000 4:46:26 PM]

A Playfield is a Raster and has Animated Sprites
 class Playfield extends Raster {
 Raster background; // background image
 AnimatedSprite sprite[]; // list of sprites on this playfield

 public Playfield(Image bgnd, int numSprites);
 public void addSprite(int i, AnimatedSprite s);
 public void Draw();
 }

Lecture 2 Slide 18 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide18.html [9/12/2000 4:46:30 PM]

Luckily, We Already Have
From our Raster class:
 public final Image toImage(Component root) {
 return root.createImage(new MemoryImageSource(width, height, pixel, 0,
width));
 }

The MemoryImageSource method is an imageProducer (root is an imageObserver).
 public class ppmDecoder {
 Raster imgRaster; // declare a Raster

 public ppmDecoder() { }
 public Image getppmImage(URL url) {
 // open url and read image header
 .
 .
 .
 // create imgRaster
 .
 .
 .
 // copy data from file into imgRaster
 .
 .
 .
 return (imgRaster.toImage());
 }
 }

Lecture 2 Slide 20 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide20.html [9/12/2000 4:46:33 PM]

An Animated Sprite is a Sprite
 class AnimatedSprite extends Sprite {
 int frames; // frames in sprite
 // there are other private variables

 public AnimatedSprite(Image images, int frames);
 public void addState(int track, int frame, int ticks, int dx, int dy);
 public void Draw(Raster bgnd);
 public void nextState();
 public void setTrack();
 }

A track is a series of frames. The frame is displayed for ticks periods. The sprite's position is then moved (dx, dy) pixels.

Lecture 2 Slide 17 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide17.html [9/12/2000 4:46:29 PM]

Other Image Formats

What if we want to read in some other image format?

.bmp, .ppm, .tif, .tga, .rgb, .ras, .psd, ...

We must implement an imageProducer to
read pixels, an imageConsumer to make
the image, and keep imageObservers updated.

Where?
How?

Lecture 2 Slide 19 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide19.html [9/12/2000 4:46:32 PM]

Seems Easy
Here's a PixBlt method:

 public void PixBlt(int xs, int ys, int w, int
h, int xd, int yd)
 {
 for (int j = 0; j < h; j++) {
 for (int i = 0; i < w; i++) {

this.setPixel(raster.getPixel(xs+i, ys+j), xd+i,
yd+j);
 }
 }
 }

But does this work?
What are the issues?
How do you fix it?

Lecture 2 Slide 22 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide22.html [9/12/2000 4:46:36 PM]

Graphics System Architecture
Computer Graphics is one of the few computer system
functions where specialized H/W is still commonly used.

Why?

 The numbers:
 1M pixels * 60 f/s * 1 op/(pixel frame) = 60M ops/s

 Wouldn't you like to compute while your screen scrolls?

 Isn't graphics why you have a computer?

Lecture 2 Slide 24 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide24.html [9/12/2000 4:46:39 PM]

PixBlts

PixBlts are raster methods for moving and clearing sub-blocks of
pixels from one region of a raster to another

Very heavily used by window systems:

moving windows around●

scrolling text●

copying and clearing●

Lecture 2 Slide 21 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide21.html [9/12/2000 4:46:34 PM]

The Tricky Blits

Our PixBlt Method works fine when the source and destination regions do not
overlap. But, when these two regions do overlap we need to take special care
to avoid copying the wrong pixels. The best way to handle this situation is by
changing the iteration direction of the copy loops to avoid problems.

The iteration direction must always be opposite of the direction of the block's movement for
each axis. You could write a fancy loop which handles all four cases. However, this code is
usually so critical to system performace that, generally, code is written for all 4 cases and called
based on a test of the source and destination origins. In fact the code is usually unrolled.

Lecture 2 Slide 23 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide23.html [9/12/2000 4:46:37 PM]

Finer Grain Parallelism

In the absence of pixel-level interleaving, we need to
constantly shuffle primitives in order to achieve a good
load balance. There are many possible options:

Sort-First●

Sort-Middle●

Sort-Last●

Lately, new architures have been suggested...
Sort-Everywhere

Eldridge, Ighey, and Hanrahan,
Pomegranate: A Fully Scalable Graphics Architecture, SIGGRAPH
'00

Lecture 2 Slide 26 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide26.html [9/12/2000 4:46:41 PM]

Next Time

How do we see?

How do we percieve color?

Why do we only need red,
green, and blue channels?

Is gamma greek to you?

What is a Just-noticable
diffference anyway?

Lecture 2 Slide 27 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide27.html [9/12/2000 4:46:43 PM]

The Problem is Bandwidth
Graphics is one of the most bandwidth intensive tasks that a computer does. For graphics,
caching is not the effective solution that it is for traditional computing. Since we are always
operating at or near the maximum capabilities of the current processing technology, graphics
relys on architectural innovations to achieve the required performance. The most popular
solution is parallelism.

Lets discuss how parallelism is exploited in graphics architectures.

Pixel Interleaving:

Lecture 2 Slide 25 6.837 Fall '00

Lecture 2 --- 6.837 Fall '00

http://graphics.lcs.mit.edu/classes/6.837/F00/Lecture02/Slide25.html [9/12/2000 4:46:40 PM]

