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1 Introduction

This document provides a detailed description of the dedonv
tion algorithms used in the paper: A. Levin, R. Fergus, F.dbdr
and W. T. Freemanmage and Depth from a Conventional Cam-
erawith a Coded Aperture, SIGGRAPH 2007. An implementation
of the methods described below is available onlinehtt p: / /
groups. csail.mt.edu/ graphi cs/ CodedAperture

Given an observed blurry imagend a filterf the deblurring prob-
lem can be defined as finding a sharp imagech that:

y=fxx (1)
A variety of different methods exist for solving fot such as the
Richardson-Lucy deconvolution algorithm. However, irsthote
we propose alternative strategies that make use of priorsitural
images.

We start by noting that convolution is a linear operator dnsteq 1
can be written as
@

whereC; is anN x N convolution matrix, and the imagesy are
written asN x 1 element vectors. It will also be useful to express the
convolution in the frequency domain, whefgv, w), the Fourier
transform ofC; is a diagonal matrix:

y=CtXx

Y(v,w) =F(v,0)X(v,w) ®3)
HereX,Y are the frequency representationxg§ andv, w are co-
ordinates in the frequency domain.

If the matrixCs is a full rank matrix, and no noise is involved in the
imaging process, the simplest approach to deconvwpliseo invert

Ct and definex = C{ly. Or in the frequency domairX (v, w) =
Y(v,w)/F(v,w) This, however, is very rarely stable enough. For
example, the inverse is not defined in frequen¢igsv) for which
F(v,w) = 0. Even in casé¢F (v, w)| is not exactly O but small, the
inverse is very sensitive to noise. That is, if theve are observ-
ing includes some nois¥(v, w) = F(v,w)X(v,w) + n, than the
inverse will produceY (v, w)/F (v, w) = X(v,w) +n/F (v, w), so,
when|F (v, w)| is small the noise contribution is increased.

To overcome these difficulties it is helpful to introduceqgprinto
the deconvolution process, and search foxavhich will more or
less explain the observed imagebut will also be a good image
according to a prior model of natural images. That is, we @oul
like to find the maximum a-posteriori explanation fogiveny:

x = argmaxcP(xly) 0 P(y|x)P(x) @)
Assuming the noise in the measurement process is an i.i.sd@au
noise with variance) we can express the likelihood as:

sz |x=Cryll?

P(yx) Oe 2 (5)

For the prior orx we use a set of filtergy and prefer that the image
response for this filter set be small:

P(x)=e @ YikP(Gikxx) (6)

wherei sums over image pixels argl, denotes théth filter cen-
tered at pixel, for some functionp. The simplest choice of filters
Ok is the horizontal and vertical derivative filtergy = [1 -1] and
gy=[1 -1T. It can also be useful to include second order deriva-
tives, or the more sophisticated filters learned by [Roth Blaatk
2005; Weiss and Freeman 2007]. The functns selected to
be a sparse, or heavy tailed function, and in the providedeimp
mentation we use@(z) = |2°8 (other popular parameterizations
of a sparse prior are student-t distributions [Roth and IBR@05]
and scale mixtures of Gaussians [Portilla et al. 2003; Waigh
Freeman 2007; Fergus et al. 2006]). However, for computatio
reasons, we will start by considering the case of Gaussianspr
that is, setting(z) = |z/2. Intuitively, the above priors suggest that
images are often smooth and their derivatives are closerto ze

Taking the log of equations 4,5,6, the maximum a-posteexypia-
nation forx reduces to minimizing:

Hy_CfXHZ“'WZP(gi,k*X) ()

wherew = an?2. By minimizing eq 7 we search for theminimiz-
ing the reconstruction errdjC¢x — y||2, with the prior preferring
to be as smooth as possible. The following sections desseNxral
approaches for minimizing eq 7.

2 Deconvolution using a Gaussian Prior
We start with the simpler case, in which the image prior is<3&@an
andp(2) = |z

By differentiating eq 7 with respect toand setting the derivative
to zero, we can conclude that the optimal solution can beddayn
solving a sparse set of linear equatioAg:= b for

A=Clcy +wgcgkcgk b=Cly (8)

2.1 Deconvolution in the frequency domain
The simplest way to solve eq 8 is in the frequency domain. &inc

Ais a sum of convolution matrices, its diagonal in the fregqyen
domain and we get

(IF(v.0)f? +WZ |G(v, @)[))X(v, w) = F(v,0)*Y(v,w) (9)

and as a result

*

X(v, @) = FUOYV.0) (10)

IF(v, )|+ W3k |Gk(v, )|
If no prior is used W = 0) eq 10 will reduce to dividiny by F.
Including priors, however, will pull the solution towardroe espe-
cially in frequencies in whichF (v, w)| is small. It should also be
noted that the response of a derivative filter is larger inhiigher
frequencies and small in the lower frequencies. Thus, tloe pf-
fect will be stronger in the higher frequencies. This is asogmble



thing to do since in those frequencies, the image contempisaed
to be small and the noise contribution is stronger.

In the frequency domain, the deconvolution problem can beedo
extremely efficiently (a matter of seconds even for 2M pixet i
ages) the most expensive part being the Fourier transforire T
price to pay, however, is that expressing convolution in ftiee
guency domain assumes the convolution operation is fulglicy
and this assumption is wrong along image boundaries. Ttreref
applying deconvolution in the frequency domain usuallyutes
artifacts at the image edges. For the application desciibgatvin

et al. 2007], having to clip a narrow strip along image bouiata
out of a 2M pixel image is not a huge price to pay.

In the accompanying code, a frequency domain deconvolusion
implemented in the functiodeconvL2_f r equency. m

2.2 Deconvolution in the spatial domain

To avoid the cyclic convolution assumption we would like o i
clude in the convolution matriceS¢,Cgy, only valid pixels (or in
other words- to omit rows corresponding to boundary pixats)
thus the convolution matrices will have less rows than colsim
The penalty for doing this is that the convolution operatigt no
longer be diagonal in the frequency domain. We can stillesely 8
explicitly in the spatial domain. However, if the image igje, or if
the support of the filters is large, explicitly inverting thmatrix A in
eg 8 will be impractical. In the accompanying code, we sokg®
numerically using the Conjugate Gradient algorithm (eBarfett
etal. 1994]). The bottleneck in each iteration of this aildon is the
multiplication of each residual vector by the matAx Luckily the
form of A (Eq 8) enables this to be performed relatively efficiently
as a concatenation of convolution operations.

It should be noted that the usage of a numerical solver méwats t
while each iteration reduces the error score, the globahoph will
not necessarily be achieved, or at least, won't be achieveidina
small number of iterations. The default iteration numbethia ac-
companying implementation was adjusted to the convoluilter

of our coded aperture. Other filters might result in a conghyet
different numerical behavior.

An implementation of Conjugate Gradient deconvolution fie t
spatial domain is provided in the functioleconvL2. m

3 Deconvolution using a Sparse Prior

The advantage of a Gaussian image prior is that the resuptig
mization problem is convex and the optimal solution can bede

in closed form as in eq 8. However, the distribution of deiea
filters in natural images is sparse and not Gaussian. Thent@&

of a sparse prior for several image processing applicatiasdeen
demonstrated by numerous recent papers [Portilla et aB;208iss
and Freeman 2007; Fergus et al. 2006; Roth and Black 200t Lev
and Weiss To appear]. While a Gaussian prior prefers toiloligée
derivatives equally over the image, a sparse prior opts hecew-
trate derivatives at a small number of pixels, leaving th@nitst of
image pixels constant. This produces sharper edges, redocse
and helps to remove unwanted image artifacts such as ringjimg
drawback of a sparse prior is that the optimization problemad
longer convex , and cannot be minimized in closed form. To op-
timize this, we use an iterative re-weighted least squaresegs
(IRLS) (e.g. [Meer 2004; Levin and Weiss To appeatr]).

The IRLS approach minimizes costs of the form:

zp(Aj%bej) (1))
J

(The deblurring problem can be written in this form, by segtihe
row vectorsAj_. as the rows of the convolution matric€g,,Cs).

The IRLS approach poses the problem as a sequence of standard

least square problems, each least square problem re-weidlyt
solution at the previous step. The minimization of eachtleqsare
problem is equivalent to solving a sparse set of linear éopsit

The IRLS algorithm proceeds as follows:
e Initialization: sety® = 1
e Repeat till convergence:
- LetA=3 AT _y!"*A; andb=y AT ¢! tb;.
X is the solution forAx = b.
- Setuj = Aj_x' —bj and

1 dp(u;j)
uj du

Wi (uj) =

In the provided deblurring implementation we used a priothef
form p(u;) = |uj|®8. Thus, the re-weighting term reduces to

Y(u)) = maX(‘U“,E)OB?Z

where|uj| was replaced with ma{u;|, £) to avoid division by zero.
We note that initializing the IRLS usirmyjQ =1is equivalent to ini-
tializing with the Gaussian prior solution. The re-weigigtiveights
@(uj) willcome out higher for image locations in which the deriva-
tive of the current guess is too small, and lower when theeciirr
guess is too high. Thus, the effect of the re-weighting pgsde to
pull toward zero derivatives in image locations in which toerent
guess is smooth, and to pay the derivative penalty alongdpese
in the current guess.

Since in this process the derivative in each pixel is re-iveid in

a different way, the re-weighting means that eq 8 is not a @onv
lution and cannot be solved in the frequency domain (regasdl
of the boundaries modeling), so we are forced to work in ttee sp
tial domain using the Conjugate Gradient algorithm. Oureobe-
tion was that the re-weighting step usually makes the system
homogeneous, and slows down the convergence of the nuinerica
solver. For our coded aperture kernel, solving the re-weidjfeast
square system required more Conjugate Gradient than golkién
non-reweighted system of section 2.2. Experimentally, atné
that the quality of the results obtained was dependent onuhe
ber of conjugate gradient iterations used.

An implementation of sparse deconvolution using the IRLS ap
proach is provided in the functiasleconvSps. m

4 Comparison

Figure 1 demonstrates the difference between the recatising
obtained with a Gaussian prior and a sparse prior. Whilepghese
prior produces a sharper image, both approaches produee teet
sults than the classical Richardson-Lucy deconvolutidreste.
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Figure 1. Comparison of deblurring algorithms applied to an im-
age captured using our coded aperture. Note the ringing artifacts
in the Richardson-Lucy output. The sparsity prior output shows less
noise than the other two approaches.

5 Implementation

The accompanying code provides an implementation of the-3 de
convolution strategies described above. To get startes usier
should check the filedenp. m Deconvolution subroutines are im-
plemented in the following files:

1. deconvL2_frequency. m Deconvolution in the fre-
guency domain, assuming a Gaussian derivative prior.

2. deconvL2. m Deconvolution assuming a Gaussian deriva-
tive prior in the spatial domain, using the Conjugate Gnadie
algorithm.

3. deconvSps. m Deconvolution assuming a sparse derivative
prior in the spatial domain, using the iterative reweighescst
squares algorithm.

The user should note that all of the above functions assume th
convolution filter has an odd number of pixels in both dimen-
sions. Finally, a small tip from other users- if you arent fhap
with the deconvolution output, you might need to flip yourefilt
filt=fliplr(flipud(filt)).
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