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1 Introduction

This document provides a detailed description of the deconvolu-
tion algorithms used in the paper: A. Levin, R. Fergus, F. Durand
and W. T. Freeman,Image and Depth from a Conventional Cam-
era with a Coded Aperture, SIGGRAPH 2007. An implementation
of the methods described below is available online at:http://
groups.csail.mit.edu/graphics/CodedAperture

Given an observed blurry imagey and a filterf the deblurring prob-
lem can be defined as finding a sharp imagex such that:

y = f ∗x (1)

A variety of different methods exist for solving forx, such as the
Richardson-Lucy deconvolution algorithm. However, in this note
we propose alternative strategies that make use of priors onnatural
images.

We start by noting that convolution is a linear operator and thus eq 1
can be written as

y = C f x (2)

whereC f is anN ×N convolution matrix, and the imagesx,y are
written asN×1 element vectors. It will also be useful to express the
convolution in the frequency domain, whereF(ν,ω), the Fourier
transform ofC f is a diagonal matrix:

Y (ν,ω) = F(ν,ω)X(ν,ω) (3)

HereX ,Y are the frequency representation ofx,y andν,ω are co-
ordinates in the frequency domain.

If the matrixC f is a full rank matrix, and no noise is involved in the
imaging process, the simplest approach to deconvolvey is to invert
C f and definex = C−1

f y. Or in the frequency domain,X(ν,ω) =

Y (ν,ω)/F(ν,ω) This, however, is very rarely stable enough. For
example, the inverse is not defined in frequencies(ν,ω) for which
F(ν,ω) = 0. Even in case|F(ν,ω)| is not exactly 0 but small, the
inverse is very sensitive to noise. That is, if theY we are observ-
ing includes some noiseY (ν,ω) = F(ν,ω)X(ν,ω) + n, than the
inverse will produceY (ν,ω)/F(ν,ω) = X(ν,ω)+n/F(ν,ω), so,
when|F(ν,ω)| is small the noise contribution is increased.

To overcome these difficulties it is helpful to introduce prior into
the deconvolution process, and search for anx which will more or
less explain the observed imagey, but will also be a good image
according to a prior model of natural images. That is, we would
like to find the maximum a-posteriori explanation forx giveny:

x = argmaxxP(x|y) ∝ P(y|x)P(x) (4)

Assuming the noise in the measurement process is an i.i.d Gaussian
noise with varianceη we can express the likelihood as:

P(y|x) ∝ e
− 1

2η2 ‖x−C f y‖2

(5)

For the prior onx we use a set of filtersgk and prefer that the image
response for this filter set be small:

P(x) = e−α ∑i,k ρ(gi,k∗x) (6)

wherei sums over image pixels andgi,k denotes thekth filter cen-
tered at pixeli, for some functionρ. The simplest choice of filters
gk is the horizontal and vertical derivative filters:gx = [1 -1] and
gy = [1 -1]T . It can also be useful to include second order deriva-
tives, or the more sophisticated filters learned by [Roth andBlack
2005; Weiss and Freeman 2007]. The functionρ is selected to
be a sparse, or heavy tailed function, and in the provided imple-
mentation we usedρ(z) = |z|0.8 (other popular parameterizations
of a sparse prior are student-t distributions [Roth and Black 2005]
and scale mixtures of Gaussians [Portilla et al. 2003; Weissand
Freeman 2007; Fergus et al. 2006]). However, for computational
reasons, we will start by considering the case of Gaussian priors,
that is, settingρ(z) = |z|2. Intuitively, the above priors suggest that
images are often smooth and their derivatives are close to zero.

Taking the log of equations 4,5,6, the maximum a-posterioriexpla-
nation forx reduces to minimizing:

‖y−C f x‖2 +w∑
i,k

ρ(gi,k ∗x) (7)

wherew = αη2. By minimizing eq 7 we search for thex minimiz-
ing the reconstruction error‖C f x− y‖2, with the prior preferringx
to be as smooth as possible. The following sections describeseveral
approaches for minimizing eq 7.

2 Deconvolution using a Gaussian Prior

We start with the simpler case, in which the image prior is Gaussian
andρ(z) = |z|2.

By differentiating eq 7 with respect tox and setting the derivative
to zero, we can conclude that the optimal solution can be found by
solving a sparse set of linear equations:Ax = b for

A = CT
f C f +w∑

k

CT
gk

Cgk b = CT
f y (8)

2.1 Deconvolution in the frequency domain

The simplest way to solve eq 8 is in the frequency domain. Since
A is a sum of convolution matrices, its diagonal in the frequency
domain and we get

(|F(ν,ω)|2 +w∑
k

|Gk(ν,ω)|2)X(ν,ω) = F(ν,ω)∗Y (ν,ω) (9)

and as a result

X(ν,ω) =
F(ν,ω)∗Y (ν,ω)

|F(ν,ω)|2 +w∑k |Gk(ν,ω)|2
(10)

If no prior is used (w = 0) eq 10 will reduce to dividingY by F .
Including priors, however, will pull the solution toward zero, espe-
cially in frequencies in which|F(ν,ω)| is small. It should also be
noted that the response of a derivative filter is larger in thehigher
frequencies and small in the lower frequencies. Thus, the prior ef-
fect will be stronger in the higher frequencies. This is a reasonable



thing to do since in those frequencies, the image content is expected
to be small and the noise contribution is stronger.

In the frequency domain, the deconvolution problem can be solved
extremely efficiently (a matter of seconds even for 2M pixel im-
ages) the most expensive part being the Fourier transform. The
price to pay, however, is that expressing convolution in thefre-
quency domain assumes the convolution operation is fully cyclic
and this assumption is wrong along image boundaries. Therefore,
applying deconvolution in the frequency domain usually result in
artifacts at the image edges. For the application describedin [Levin
et al. 2007], having to clip a narrow strip along image boundaries
out of a 2M pixel image is not a huge price to pay.

In the accompanying code, a frequency domain deconvolutionis
implemented in the functiondeconvL2 frequency.m.

2.2 Deconvolution in the spatial domain

To avoid the cyclic convolution assumption we would like to in-
clude in the convolution matricesC f ,Cgk only valid pixels (or in
other words- to omit rows corresponding to boundary pixels)and
thus the convolution matrices will have less rows than columns.
The penalty for doing this is that the convolution operationwill no
longer be diagonal in the frequency domain. We can still solve eq 8
explicitly in the spatial domain. However, if the image is large, or if
the support of the filters is large, explicitly inverting thematrixA in
eq 8 will be impractical. In the accompanying code, we solvedeq 8
numerically using the Conjugate Gradient algorithm (e.g. [Barrett
et al. 1994]). The bottleneck in each iteration of this algorithm is the
multiplication of each residual vector by the matrixA. Luckily the
form of A (Eq 8) enables this to be performed relatively efficiently
as a concatenation of convolution operations.

It should be noted that the usage of a numerical solver means that
while each iteration reduces the error score, the global optimum will
not necessarily be achieved, or at least, won’t be achieved within a
small number of iterations. The default iteration number inthe ac-
companying implementation was adjusted to the convolutionfilter
of our coded aperture. Other filters might result in a completely
different numerical behavior.

An implementation of Conjugate Gradient deconvolution in the
spatial domain is provided in the functiondeconvL2.m.

3 Deconvolution using a Sparse Prior

The advantage of a Gaussian image prior is that the resultingopti-
mization problem is convex and the optimal solution can be derived
in closed form as in eq 8. However, the distribution of derivative
filters in natural images is sparse and not Gaussian. The advantage
of a sparse prior for several image processing applicationshas been
demonstrated by numerous recent papers [Portilla et al. 2003; Weiss
and Freeman 2007; Fergus et al. 2006; Roth and Black 2005; Levin
and Weiss To appear]. While a Gaussian prior prefers to distribute
derivatives equally over the image, a sparse prior opts to concen-
trate derivatives at a small number of pixels, leaving the majority of
image pixels constant. This produces sharper edges, reduces noise
and helps to remove unwanted image artifacts such as ringing. The
drawback of a sparse prior is that the optimization problem is no
longer convex , and cannot be minimized in closed form. To op-
timize this, we use an iterative re-weighted least squares process
(IRLS) (e.g. [Meer 2004; Levin and Weiss To appear]).

The IRLS approach minimizes costs of the form:

∑
j

ρ
(

A j→x−b j
)

(11)

(The deblurring problem can be written in this form, by setting the
row vectorsA j→ as the rows of the convolution matricesCgk ,C f ).
The IRLS approach poses the problem as a sequence of standard
least square problems, each least square problem re-weighted by
solution at the previous step. The minimization of each least square
problem is equivalent to solving a sparse set of linear equations.

The IRLS algorithm proceeds as follows:

• Initialization: setψ0
j = 1

• Repeat till convergence:

– Let Ā = ∑ j AT
j→ψt−1

j A j→ andb̄ = ∑ j AT
j→ψt−1

j b j.

xt is the solution forĀx = b̄.

– Setu j = A j→xt −b j and

ψt
j(u j) =

1
u j

dρ(u j)

du

In the provided deblurring implementation we used a prior ofthe
form ρ(u j) = |u j|

0.8. Thus, the re-weighting term reduces to

ψ(u j) = max
(

|u j|,ε
)0.8−2

where|u j|was replaced with max
(

|u j|,ε
)

to avoid division by zero.
We note that initializing the IRLS usingψ0

j = 1 is equivalent to ini-
tializing with the Gaussian prior solution. The re-weighting weights
ψ(u j) will come out higher for image locations in which the deriva-
tive of the current guess is too small, and lower when the current
guess is too high. Thus, the effect of the re-weighting process is to
pull toward zero derivatives in image locations in which thecurrent
guess is smooth, and to pay the derivative penalty along the edges
in the current guess.

Since in this process the derivative in each pixel is re-weighted in
a different way, the re-weighting means that eq 8 is not a convo-
lution and cannot be solved in the frequency domain (regardless
of the boundaries modeling), so we are forced to work in the spa-
tial domain using the Conjugate Gradient algorithm. Our observa-
tion was that the re-weighting step usually makes the systemless
homogeneous, and slows down the convergence of the numerical
solver. For our coded aperture kernel, solving the re-weighted least
square system required more Conjugate Gradient than solving the
non-reweighted system of section 2.2. Experimentally, we found
that the quality of the results obtained was dependent on thenum-
ber of conjugate gradient iterations used.

An implementation of sparse deconvolution using the IRLS ap-
proach is provided in the functiondeconvSps.m.

4 Comparison

Figure 1 demonstrates the difference between the reconstructions
obtained with a Gaussian prior and a sparse prior. While the sparse
prior produces a sharper image, both approaches produce better re-
sults than the classical Richardson-Lucy deconvolution scheme.



(a) Captured image (b) Richardson-Lucy

(c) Gaussian prior (d) Sparsity prior

Figure 1: Comparison of deblurring algorithms applied to an im-
age captured using our coded aperture. Note the ringing artifacts
in the Richardson-Lucy output. The sparsity prior output shows less
noise than the other two approaches.

5 Implementation

The accompanying code provides an implementation of the 3 de-
convolution strategies described above. To get started, the user
should check the filedemo.m. Deconvolution subroutines are im-
plemented in the following files:

1. deconvL2 frequency.m: Deconvolution in the fre-
quency domain, assuming a Gaussian derivative prior.

2. deconvL2.m: Deconvolution assuming a Gaussian deriva-
tive prior in the spatial domain, using the Conjugate Gradient
algorithm.

3. deconvSps.m: Deconvolution assuming a sparse derivative
prior in the spatial domain, using the iterative reweightedleast
squares algorithm.

The user should note that all of the above functions assume the
convolution filter has an odd number of pixels in both dimen-
sions. Finally, a small tip from other users- if you arent happy
with the deconvolution output, you might need to flip your filter:
filt=fliplr(flipud(filt)).
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