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Figure 1: Left: Image captured using our coded aperture. Center: Top, closeup of captured image. Bottom, closeup of recovered sharp
image. Right: Recovered depth map with color indicating depth from camera (cm) (in this this case, without user intervention).

Abstract

A conventional camera captures blurred versions of scene informa-
tion away from the plane of focus. Camera systems have been pro-
posed that allow for recording all-focus images, or for extracting
depth, but to record both simultaneously has required more exten-
sive hardware and reduced spatial resolution. We propose a simple
modification to a conventional camera that allows for the simulta-
neous recovery of both (a) high resolution image information and
(b) depth information adequate for semi-automatic extraction of a
layered depth representation of the image.

Our modification is to insert a patterned occluder within the aper-
ture of the camera lens, creating a coded aperture. We introduce a
criterion for depth discriminability which we use to design the pre-
ferred aperture pattern. Using a statistical model of images, we can
recover both depth information and an all-focus image from sin-
gle photographs taken with the modified camera. A layered depth
map is then extracted, requiring user-drawn strokes to clarify layer
assignments in some cases. The resulting sharp image and layered
depth map can be combined for various photographic applications,
including automatic scene segmentation, post-exposure refocusing,
or re-rendering of the scene from an alternate viewpoint.

Keywords: Computational Photography, Coded Imaging, Depth
of field, Range estimation, Image statistics, Deblurring

1 Introduction

Traditional photography captures only a 2-dimensional projection
of our 3-dimensional world. Most modifications to recover depth
require multiple images or active methods with extra apparatus such
as light emitters. In this work, with only minimal change from a
conventional camera system, we seek to retrieve coarse depth in-
formation together with a normal high resolution RGB image. Our
solution uses a single image capture, and a small modification to
a traditional lens – a simple piece of cardboard suffices – together
with occasional user assistance. This system allows photographers
to capture images the same way they always have, but provides
coarse depth information as a bonus, allowing refocusing (or an ex-
tended depth of field) and depth-based image editing.

Our approach is an example of computational photography where
an optical element alters the incident light array so that the im-
age captured by the sensor is not the final desired image but is
coded to facilitate the extraction of information. More precisely, we
build on ideas from coded aperture imaging [Fenimore and Cannon
1978] and wavefront coding [Cathey and Dowski 1995; Dowski
and Cathey 1994] and modify the defocus produced by a lens to
enable both the extraction of depth information and the retrieval of
a standard image. Our contribution contrasts with other approaches
in this regard - they recover either the image or the depth but not
both from a single image. The principle of our approach is to con-
trol the effect of defocus so that we can both estimate the amount
of defocus easily – and hence infer distance information – while at
the same time making it possible to compensate for at least part of
the defocus to create artifact-free images.

Principle To understand how we can control and exploit defocus,
consider Figure 2 which illustrates a simplified thin lens model that
maps light rays from the scene onto the sensor. When an object is
placed at the focus distance D, all the rays from a point in the scene
will converge to a single sensor point and the output image will
appear sharp. Rays from an object at a distance Dk, away from the
focus distance, land on multiple sensor points resulting in a blurred
image. The pattern of this blur is given by the aperture cross section
of the lens and is often called a circle of confusion. The amount of
defocus, characterized by the blur radius, depends on the distance
of the object from the focus plane.
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Figure 2: A 2D thin lens model. At the plane of focus, a distance
D from the lens, light rays (shown in green) emanating from a point
are focused to a point on the camera sensor. Rays from a point at a
distance Dk (shown in red) no longer map to a point but rather to a
region of the sensor, known as the circle of confusion. The pattern
within this circle is determined by the aperture shape.

For a simple planar object at distance Dk, the imaging process can
be modeled as a convolution:

y = fk ∗ x (1)

where y is the observed image, x is the true sharp image and the
blur filter fk is a scaled version of the aperture shape (potentially
convolved with the diffraction pattern). Figure 3(a) shows the pat-
tern of blur from a conventional lens, the pentagonal disk shape
being formed by the intersecting diaphragm blades. The defocus
from such aperture does provide depth cues, e.g. [Pentland 1987],
but they are challenging to exploit because it is difficult to precisely
estimate the amount of blur and it requires multiple images.

In this paper we explore what happens if patterns are deliberately
introduced into the aperture, as illustrated in Figure 3(b). As before,
the captured image will still be blurred as a function of depth with
the blur being a scaled version of the aperture shape, but the aper-
ture filter can be designed to discriminate between different depths.

Revisiting the image formation Eqn. 1 and assuming the aperture
shape is known and fixed, only a single unknown parameter relates
the blurred image y to its sharp version x – the scale of the blur fil-
ter. However in real scenes the depth is rarely constant throughout.
Instead the scale of the blur in the image y, while locally constant,
will vary over its extent. So the challenge is to recover not just a
single blur scale but a map of it over the image. If this can be reli-
ably recovered it would have great practical utility. First, the depth
of the scene can be directly computed. Second, we can decode the
captured image y. That is, invert fk and so recover a fully sharp
image x. Hence our approach promises the recovery of both a depth
map and a sharp image from the single blurry image y. In this paper
we explore how the scale map of the blur may be recovered from
the captured image y, designing aperture filters which are highly
sensitive to depth variations.

The above discussion only takes into account geometric optics. A
more comprehensive treatment must include wave effects, and in
particular diffraction. The diffraction caused by an aperture is the
Fourier power spectrum of its cross section. This means that the
defocus blurring kernel is the convolution of the scaled aperture
shape with its own power spectrum. For objects in focus, diffrac-
tion dominates, but for defocused areas, the shape of the aperture
is most important. Thus, the analysis of defocus usually relies on
geometric optics. While our theoretical derivation is based on geo-
metric optics, in practice we account for diffraction by calibrating
the blur kernel from real data.

1.1 Related work
Depth estimation using optical methods is an active area of research
which can be divided into two main approaches: active and passive.

(a) Conventional (b) Coded

Figure 3: Left: Top, a standard Canon 50mm f /1.8 lens with the
aperture partially closed. Bottom, the resulting blur pattern. The
intersecting aperture blades give the pentagonal shape, while the
small ripples are due to diffraction. Right: Top, the same model
of lens but with our filter inserted into the aperture. Bottom, the
resulting blur pattern, which allows recovery of both image and
depth.

Active methods include laser scanning [Axelsson 1999] and struc-
tured light methods [Nayar et al. 1995; Zhang and Nayar 2006].
While these approaches can produce high quality depth estimates,
they involve additional illumination sources. In contrast, passive
approaches aim to capture the world without such additional in-
tervention, the 3D information being recovered by the analysis of
changes in viewpoint or focus.

Multiple viewpoints may be obtained by capturing multiple im-
ages, as in stereo [Scharstein and Szeliski 2002]. Multiple view-
points can also be collected in a single image using a plenoptic
camera [Adelson and Wang 1992; Ng et al. 2005; Georgiev et al.
2006; Levoy et al. 2006] but at the price of a significant loss in
the spatial resolution of the image. The second class of passive
depth acquisition techniques are depth from focus and depth from
defocus techniques [Pentland 1987; Grossmann 1987; Hasinoff and
Kutulakos 2006; Favaro et al. 2003; Chaudhuri and Rajagopalan
1999], which involve capturing multiple images of the world from
a single viewpoint using multiple focus settings. Depth is inferred
from the analysis of changes in defocus. Some approaches to depth
from defocus also make usage of optical masks to improve depth
discrimination [Hiura and Matsuyama 1998; Farid and Simoncelli
1998; Greengard et al. 2006], although these approaches still re-
quire multiple images. Many of these depth from defocus methods
have only been tested on highly textured images, unlike the con-
ventional real photographs considered in this paper. Additionally,
many of these methods have difficulty in accurately locating occlu-
sion boundaries.

While depth acquisition techniques utilizing multiple images can
potentially produce better depth estimates than our approach, they



are complicated by the need to capture multiple images, making
them impractical in most personal photography settings. In this
work our goal is to infer depth and an image from a single shot,
without additional user requirements and without loss of image
quality. There have been some previous attempts to use optical
masks to recover depth from a single image, but none of these ap-
proaches demonstrated the reconstruction of a high quality image as
well. Dowski and Cathey [1994] use a phase plate designed to be
highly sensitive to depth variations but the image cannot be recov-
ered. Other approaches like [Lai et al. 1992] demonstrate results
only on synthetic bar images, and [Jones and Lamb 1993] presents
only 1D plots of image rows.

The goal of the methods described above is to produce a depth im-
age. Another approach, related to the other goal of our system, is to
create an all-focus image, independent of depth. Wavefront coding
[Cathey and Dowski 1995], deliberately defocuses the light rays us-
ing phase plates so that the defocus is the same at all depths, which
then allows a single deconvolution to output an image with large
depth of focus, but without allowing the simultaneous estimates of
depth.

Coded aperture methods have been employed previously, notably
in astronomy and medical imaging for X or gamma rays as a way
of collecting more light, because traditional lenses cannot be used
at these wavelengths. In most of these cases, all incoming light rays
are parallel and hence blur scale estimation is not an issue, as the
blur obtained is uniform over the image. These include general-
izations of the pinhole camera called coded aperture imaging [Fen-
imore and Cannon 1978]. Similarly, Raskar et al [2006] applied
coded exposure in the temporal domain for motion deblurring.

Our method exploits a statistical characterization of images to find
the combination of depth-dependent blur and unblurred image that
best explains the observed image. This is closely related to the blind
deconvolution problem [Kundur and Hatzinakos 1996]. Despite re-
cent progress in blind deconvolution using machine learning tech-
niques, the problem is still highly challenging. Recent approaches
assume the entire image is blurred uniformly [Fergus et al. 2006].
In [Levin 2006] the uniform blur assumption was somewhat re-
laxed, but restricting the discussion to a small family of 1D blurs.

1.2 Overview

The structure of the paper is as follows: Section 2 explains the de-
sign process for the coded filter and strategies for identifying the
correct blur scale. In Section 3 we detail how the observed image
may be deblurred to give a sharp image. Section 4 then explains
how a depth map for the image can be recovered. We present our
experimental results in Section 5, showing a calibrated lens captur-
ing real scenes. Finally, we discuss the limitations of our approach
and possible extensions.

Throughout the paper we will use lower case symbols to denote
spatial domain signals with upper case corresponding to their fre-
quency domain representations. Also, for a filter f , we define C f
to be the corresponding convolution matrix (i.e. C f x ≡ f ∗x). Simi-
larly, CF will denote a convolution in the frequency domain (in this
case, a diagonal matrix).

2 Aperture Filter Design
The two key requirements for an aperture filter are: (i) it is possible
to reliably discriminate between the blurs that result from different
scalings of the filter and (ii) the filter can be easily inverted so that
the sharp image may be recovered. Given the huge space of possible
filters, selecting the optimal filter under these two criteria is not
a straightforward task. Before formally presenting our statistical

approach, it will be useful to consider a simple example to build an
intuition about the problem.

Scale 1

Scale 3

Scale 2

f1

f2

f3

−ω1
ω1

−ω2 ω2

Spatial domain Frequency domain

Figure 4: A simple 1D example illustrating how the structure of
zeros in the frequency domain shifts as a toy filter is scaled in the
spatial domain.

Figure 4 shows a 1D coded filter at 3 different scales, along with
the corresponding Fourier transforms. The idea is to consider the
structure of frequencies at which the Fourier transform of the filter
is zero [Premaratne and Ko 1999]. For example, the filter f1 (at
scale 1) has a zero at ω1. This means that if the image y was indeed
blurred by f1 then Y (ω1) = 0. Hence the zeros frequencies in the
observed image can reveal the scale of the filter and hence its depth.

This argument can also be made in the spatial domain. If Y (ω1) = 0
it means that y can no longer be an arbitrary N dimensional vector
(N being the number of image pixels) as there are linear constraints
it must satisfy. As the filter is scaled, the location of the zero fre-
quencies shifts (e.g. moving from scale 1 to 2, the first zero moves
from ω1 to ω2, see Figure 4). Hence each different scale defines
a different linear subspace of possible blurry images. Given an
N dimensional input image, identifying the scale by which it was
blurred (and thus identifying the object depth) reduces to identify-
ing the subspace in which it lies.

While in theory identifying the zero frequencies or equivalently
finding the correct subspace sounds straightforward, in practice the
situation is more complex. First, noise in the imaging process
means that no frequency will be exactly zeroed (thus the image y
will not exactly lie on any subspace). Second, zero frequencies in
the observed image y may just result from a zero frequency content
in the original image signal x. This point is especially important
since in order to account for depth variations, one would like to be
able to make decisions based on small local image windows. These
issues suggest that some aperture filters are better than others. For
example, filters with zeros at low frequencies are likely to be more
robust to noise than those with zeros at high frequencies, since a
typical image has most of its energy at low frequencies. Also, if ω1
is a zero frequency of f1, we want the filter at other scales f2, f3
etc. to have significant frequency content at ω1, so that we do not
confuse the frequency responses.

Note that while a distinct pattern of zeros at each scale makes the
depth identification easy, it makes inverting the filter hard since the
deblurring procedure will be very sensitive to noise at these fre-
quencies. To be able to retrieve depth information we must sacri-
fice some of the image content. However, if only a modest number
of frequencies is sacrificed, the usage of image priors can reduce
the noise sensitivity making it possible to reliably deblur kernels of
moderate size (≤ 15 pixels). In this work, we mainly concentrate
on optimizing the depth discrimination of the filter. This is the op-
posite focus of previous work such as [Raskar et al. 2006] where the
coded filters were designed to have a very flat spectrum, eliminating
zeros to make the deblurring as easy as possible.

To guide the design of the aperture filter, we introduce a statistical



model of real world images. Using this model we can compute the
statistics of images blurred by a specific filter kernel. The model
leads to a principled criterion for measuring the scale selectivity of
a filter which we use as part of a random search over possible filters
to pick a good one.

2.1 Statistical Model of Images

Real world images have statistics quite different from random ma-
trices of white noise. One well known statistical property of images
is that they have a sparse derivative distribution [Olshausen and
Field 1996]. We impose this constraint during image reconstruc-
tion. However, in the filter design stage, to make our optimization
tractable we assume that the distribution is Gaussian instead of the
conventional heavy-tailed density. That is, our prior assumes the
derivatives in the unobserved sharp image x follow a Gaussian dis-
tribution with zero mean.

P(x) ∝ ∏
i, j

e−
1
2 α((x(i, j)−x(i+1, j))2+(x(i, j)−x(i, j+1))2) = N(0,Ψ) (2)

where i, j are the pixel indices. Ψ−1 = α(CT
gx

Cgx +CT
gy

Cgy), where
Cgx ,Cgy are the convolution matrices corresponding to the derivative
filters gx = [1 -1] and gy = [1 -1]T . Finally, the scalar α is set so
the variance of the distribution matches the variance of derivatives
in natural images (α = 250 in our implementation). This image
prior implies that the signal x is smooth and its derivatives are often
close to zero. The above prior can also be expressed in the fre-
quency domain and, since derivatives are convolutions, the prior is
diagonal in the frequency domain (if boundary effects are ignored):

P(X) ∝ e−
1
2 αXT Ψ̄−1X where Ψ̄−1 = α diag(|Gx(ν ,ω)|2 +|Gy(ν ,ω)|2)

(3)
where ν ,ω are coordinates in the frequency domain. We observe a
noisy blurred image which, assuming constant scene depth, is mod-
eled as y = fk ∗ x + n. The noise in neighboring pixels is assumed
to be independent, following a Gaussian model n ∼ N(0,η 2I) (η =
0.005 in our implementation). We denote Pk(y) as the distribution
of observed signals under a blur fk (that is, the distribution of im-
ages coming from objects at depth Dk). The blur fk linearly trans-
forms the distribution of sharp images from Eqn. 2, so that Pk(y) is
also a Gaussian1: Pk(y) ∼ N(0,Σk). The covariance matrix Σk is a
transformed version of the prior covariance, plus noise.

Σk = C fk ΨCT
fk

+η2I Fourier
−→

transform
Σ̄k = CFk Ψ̄CT

Fk
+η2I (4)

where transforming into the frequency domain makes the prior di-
agonal2. In the diagonal version, the distribution of the blurry im-
age in the Fourier domain becomes:

Pk(Y ) ∝ exp(−
1
2

Ek(Y )) = exp(−
1
2 ∑

ν ,ω
|Y (ν ,ω)|2/σ(ν ,ω)) (5)

where σ(ν ,ω) are the diagonal entries of Σ̄k:

σ(ν ,ω) = |Fk(ν ,ω)|2(α|Gx(ν ,ω)|2 +α|Gy(ν ,ω)|2)−1 +η2 (6)
Eqn. 6 represents a soft version of the zero frequencies test men-
tioned above. If the filter fk has a zero at frequency (ν ,ω) then
σ(ν ,ω)= η2, typically a very small number. Thus, if the frequency
content of the observed signal Y (ν ,ω) is significantly bigger than 0,
the probability of Y coming from the distribution Pk is very low. In
other words, if we find frequency content where the filter has a zero,
it is unlikely that we have the correct scale of blur. We also note that
the covariance at each frequency depends not only on F(ν ,ω) but
also on our prior distribution, thus giving a smaller weight to higher
frequencies which are less common in natural images.1If X ,Y are random variables and A a linear transformation with X Gaus-
sian and Y = AX , then Cov(Y ) = ACov(X)AT .

2This follows from (i) the Fourier transform of a convolution matrix is a
diagonal matrix and (ii) all the matrices making up Σk are either diagonal or
convolution matrices.
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Figure 5: A theoretical and practical comparison of conventional
and coded apertures using the criterion of Eqn. 8. On the left side
of the graph we plot the theoretical performance (KL distance –
larger is better) for a conventional aperture (red), random symmet-
ric coded filters (green error bar) and random asymmetric coded
filters (blue error bar). On the right side of the graph we show
the performance of the actual filters obtained in calibration, both
of a conventional lens and a coded lens (see Figure 9). While the
performance of the actual filters is lower than the theoretical pre-
diction (probably due to high frequencies being lost in the imaging
process), the coded filter still performs better than the conventional
aperture.

2.2 Filter Selection Criterion

The proposed model gives the likelihood of a blurry input image
y for a filter f at a scale k. We now show how this may be used
to measure the robustness of a particular aperture filter at identify-
ing the true blur scale. Intuitively, if the blurry image distributions
Pk1(y) and Pk2(y) at depths k1 and k2 are similar it will be hard to
tell the depths apart. A classical measure of the distance between
distributions is the Kullback–Leibler (KL) divergence:

DKL(Pk1(y),Pk2(y)) =
∫

y
Pk1(y)(logPk1(y)− logPk2(y)) dy (7)

A filter that maximizes this distance will have a typical blurry image
at depth k1 with a high likelihood under model Pk1(y) but a low
likelihood under the model Pk2(y) for depth k2. Using the frequency
domain representation of our model (Eqns. 5 & 6) in Eqn. 7, the KL
divergence reduces (up to a constant) to 3

DKL(Pk1 ,Pk2) = ∑
ν ,ω

(

σk1(ν ,ω)

σk2(ν ,ω)
− log

(

σk1(ν ,ω)

σk2(ν ,ω)

))

(8)

Eqn. 8 implies that the distance between the distributions of two dif-
ferent scales will be large when the ratio of their expected frequen-
cies is high. This ratio may be maximized by having frequencies
ν ,ω for which Fk2(ν ,ω) = 0 and Fk1(ν ,ω) is large. This reflects
the intuitions discussed earlier, that the zeros of the filter are use-
ful for discriminating between different scales. For a zero in one
scale to be particularly discriminative, other scales should maintain
significant signal content in the same frequency. Also, the fact that
σk(ν ,ω) weights the filter frequency content by the image prior
(see Eqn. 6), indicates that zeros are more discriminative in lower
frequencies, in which the original image is expected to have signif-
icant content.

2.3 Filter Search

Having introduced a principled criterion for evaluating a particu-
lar filter, we address the problem of searching for the optimal filter

3Since the probabilities are Gaussians, their log is quadratic, and hence
the averaged log is the variance.
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Figure 6: The Fourier transforms of a 1D slide through the blur
pattern from conventional and coded lenses at 3 different scales

shape. When selecting a filter, a number of practical constraints
should to be taken into account. First, the filter should be binary
since non-binary filters are hard to construct accurately. Second,
we should be able to cut the filter from a single piece of material,
without having floating particles in the center. Third, to avoid ex-
cessive radial distortion (as explained in section 5), we avoid using
the full aperture. Finally, diffraction imposes a minimum size on
the holes in the filter.

Balancing these considerations, we confined our search to binary
13× 13 patterns with 1mm2 holes. We randomly sampled a large
number of 13×13 patterns. For each pattern, 8 different scales were
considered, varying between 5 and 15 pixels in width. The random
pattern was scored according to the minimum KL-divergence be-
tween the distributions of any two scales.

Figure 5 plots KL-divergence scores for the randomly generated
filters, distinguishing between two classes of patterns – symmet-
ric and asymmetric. Our observation was that symmetric patterns
produce higher KL-divergence scores compared to asymmetric pat-
terns. Examining the frequency structure of asymmetric filters we
observed that such filters have few zero frequencies. By contrast,
symmetric filters tend to produce a richer zeros structure. The sym-
metric pattern with the best score is shown in Figure 3(b). For com-
parison we also plotted the KL-divergence score for a conventional
aperture. Also plotted in Figure 5 are the KL scores for actual filters
obtained by calibrating a coded aperture lens and a conventional
lens.

In Figure 6 we plot a 1D slices of the Fourier transform of both the
best performing pattern and a conventional aperture at three differ-
ent scales. In the case of the coded pattern each scale has a quite
different frequency response, in particular their zeros occur at dis-
tinct frequencies. On the other hand, for the conventional aperture
the zeros in different scales overlap heavily, making it hard to dis-
tinguish between them.

3 Deblurring
Having identified the correct blur scale of an observed image y,
the next objective is to remove the blur, reconstructing the original
sharp image x. This task is known as deblurring or deconvolution.
Under our probabilistic model

Pk(x|y) ∝ exp(−(
1

η2 |C fk x− y|2 +α|Cgx x|2 +α|Cgy x|2)) (9)

The deblurring problem can thus be posed as finding the maximum
likelihood explanation for y, x∗ = argmax Pk(x|y). For a Gaussian
distribution, this reduces to a least squares optimization problem

x∗ = argmin
1

η2 |C fk x− y|2 +α|Cgx x|2 +α|Cgy x|2 (10)

By minimizing Eqn. 10 we search for the x minimizing the re-
construction error |C fk x− y|2, with the prior preferring x to be as
smooth as possible.

We note that the optimal solution to Eqn. 10 can be found by solving
a sparse set of linear equations: Ax = b for

A =
1

η2 CT
fk

C fk +αCT
gx

Cgx +αCT
gy

Cgy b =
1

η2 CT
fk

y (11)

Eqn. 11 can be solved in the frequency domain in a few seconds
for megapixel sized image. While this approach does produce
wrap-around artifacts along the image boundaries, these are usu-
ally unimportant in large images.

Deblurring with a Gaussian prior on image derivatives is simple and
efficient, but tends to over-smooth the result. To produce sharper
decoded images, a stronger natural image prior is required, and a
sparse derivatives prior was used. Thus, to solve for x we minimize

|C fk x−y|+∑
i j

ρ(x(i, j)−x(i+1, j))+ρ(x(i, j)−x(i, j+1)) (12)

where ρ is a heavy-tailed function, in our implementation ρ(z) =
|z|0.8. While a Gaussian prior prefers to distribute derivatives
equally over the image, a sparse prior opts to concentrate deriva-
tives at a small number of pixels, leaving the majority of image pix-
els constant. This produces sharper edges, reduces noise and helps
to remove unwanted image artifacts such as ringing. The drawback
of a sparse prior is that the optimization problem is no longer a
simple least squares one, and cannot be minimized in closed form
(in fact, the optimization is no longer convex). To optimize this,
we use an iterative reweighted least squares process e.g. [Levin and
Weiss To appear] which poses the optimization as a sequence of
least squares problems while the weight of each derivative is up-
dated based on the previous iteration solution. The re-weighting
means that Eqn. 11 cannot be solved in the frequency domain, so
we are forced to work in the spatial domain using the Conjugate
Gradient algorithm e.g. [Barrett et al. 1994]. The bottleneck in each
iteration of this algorithm is the multiplication of each residual vec-
tor by the matrix A. Luckily the form of A (Eqn. 11) enables this
to be performed efficiently as a concatenation of convolution op-
erations. However, this procedure still takes around 1 hour on a
2.4Ghz CPU for a 2 megapixel image. Our sparse deblurring code
is available on the project webpage: http://groups.csail.
mit.edu/graphics/CodedAperture.

Figure 7 demonstrates the difference between the reconstructions
obtained with a Gaussian prior and a sparse prior. While the sparse
prior produces a sharper image, both approaches produce better re-
sults than the classical Richardson-Lucy deconvolution scheme.

3.1 Blur Scale Identification

The probability model introduced in Section 2.1 allows us to detect
the correct blur scale within an observed image window y. The cor-
rect scale should, in theory, be given by the model suggesting the
most likely explanation: k∗ = argmaxk Pk(y). However, a variety
of practical issues such as the high-frequency noise in the filter es-
timates mean that this proved to be unreliable. A more robust alter-
native is to use the unnormalized energy term Ek(y) = yT Σ−1

k y from
the model, in conjunction with a set of weightings for each scale:
k∗ = argmink λkEk(y). The weights λk were learnt to minimize the
scale misclassification error on a set of training images having a
known depth profile. Since evaluating yT Σ−1y is very slow, we ap-
proximate the energy term by the reconstruction error achieved by
the ML solution:

yT Σ−1
k y ≈

1
η2 |C fk x∗− y|2 (13)

where x∗ is the deblurred image, obtained by solving Eqn. 11.

4 Handling Depth Variations
If the captured image were filled by a planar object at a constant
distance from the camera, the blur kernel would be uniform over



(a) Captured image (b) Richardson-Lucy

(c) Gaussian prior (d) Sparsity prior

Figure 7: Comparison of deblurring algorithms applied to an im-
age captured using our coded aperture. Note the ringing artifacts
in the Richardson-Lucy output. The sparsity prior output shows less
noise than the other two approaches.

the image. In this case, recovering the sharp image would involve
the estimation of a single blur scale for the entire image. However,
interesting real world scenes include depth variations and so a sepa-
rate blur scale should be inferred for every image pixel. A practical
compromise is to use small local windows, within which the depth
is assumed to be constant. However, if the windows are small the
depth classification may be unreliable, particularly when the win-
dow contains little texture. This issue is common to most passive
illumination depth reconstruction algorithms.

We start by deblurring the entire image with each of the scaled ker-
nels (according to Eqn. 10), providing K possible decoded images
x1, ..,xK . For each scale, the reconstruction error ek = y− fk ∗ xk
is computed. A decoded image xk will usually provide a smooth
plausible reconstruction for parts of the image where k is the true
scale. The reconstruction in other areas, whose depths differ from
k, will contain serious ringing artifacts since those areas cannot be
plausibly explained by the kth scale (see Figures 11 & 12 for exam-
ples of such artifacts). These artifacts ensure that the reconstruction
error for such areas will be high. Using Eqn. 13 we compute a local
approximation for the energy Ek(y(i)) around the ith image pixel,
by averaging the reconstruction error over a small local window:

Êk(y(i)) ≈ ∑
j∈Wi

ek( j)2 (14)

The local energy estimate is then used to locally select the depth
d(i) in the ith pixel

d(i) = argmink λkÊk(y(i)) (15)

A local depth map is shown in Figure 8(b). While this local ap-
proach captures a surprising amount of information, it is quite
noisy, especially for uniform texture-less regions. In order to pro-
duce a visually plausible deconvolved image, the local depth map
is often sufficient, since the texture-less regions will not produce
ringing when deconvolved with the wrong scale of filter. Hence we
can produce a high quality sharp image by picking each pixel in-
dependently from the layer with smallest reconstruction error. That
is, we construct the deblurred image as x(i) = xd(i)(i), using the lo-
cal depth estimates d(i) defined in Eqn. 15. Examples of deblurred
images are shown in Figure 10.

However, to produce a depth estimate which could be useful for
tasks like object extraction and scene re-rendering, the depth map

has to be smoothed. We seek a regularized depth labeling d̄ which
will be close to the local estimate in Eqn. 15, but will also be
smooth. Additionally, we prefer the depth discontinuities to align
with the image edges. We formulate this as an energy minimiza-
tion, using a Markov random field over the image, in the manner
of classic stereo and image segmentation approaches (e.g. [Boykov
et al. 2001])

E(d̄) = ∑
i

E1(d̄i)+ν ∑
i, j

E2(d̄i, d̄ j) (16)

where the local energy term is set to

E1(d̄i) =

{

0 d̄i = di
1 d̄i 6= di

There is also a pairwise energy term between neighboring pixels
making depth discontinuities cheaper when they align with the im-
age edges:

E2(d̄i, d̄ j) =

{

0 d̄i = d̄ j

e−(yi−y j)
2/σ 2

d̄i 6= d̄ j

We then search for the minimal energy labeling as a min-cut in
a graph. The resulting smoothed depth map is presented in Fig-
ure 8(c). Occasionally, the depth labeling misses the exact layer
boundaries due to insufficient image contrast. To correct this, a user
can apply brush strokes to the image with the required depth as-
signment. The strokes are treated as hard constraints in the Markov
random field and result in an improved depth map, as illustrated in
Figure 8(d).
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(a) Captured image (plus user scribbles) (b) Raw depth map
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(c) Graph cuts (d) After user correction

Figure 8: Regularizing depth estimation

5 Results

We first detail the physical construction and calibration of our cho-
sen aperture pattern. Then we show a variety of real scenes, re-
covering both the depth map and fully sharp image. As a baseline
experiment, we then compare the performances of conventional and
coded apertures, using the same deblurring and depth estimation al-
gorithms. Finally, we show some applications made possible by the
additional depth information for each image, such as refocusing and
scene re-rendering.

5.1 Calibration

The best performing filter under the criterion of Eqn. 8 was cut from
gray card and inserted into an off-the-shelf Canon 50mm f /1.8 lens
(shown in Figure3(b)) mounted on a Canon 20D DSLR. To calibrate



the lens the focus was locked at D = 2m and the camera was moved
back until Dk = 3m in 10cm increments. At each interval, a planar
pattern of random curves was captured. After aligning the focused
calibration image with each of the blurry versions the blur kernel
was deduced in a least-squares fashion, using a small amount of
regularization to constrain the high-frequencies within the kernel.
When Dk is close to D the blur is very small (< 4 pixels) making
depth discrimination impossible due to lack of structure in the blur,
although the image remains relatively sharp. For our setup, this
“dead-zone” extends up to 35cm from the focal plane.

Since the lens does not perfectly obey the thin lens model, the
kernel varies slightly across the image, the distortion being more
pronounced in the horizontal plane. Consequently, kernels were
inferred at 7 different horizontal locations within the image. The
computed kernels at a number of depths are shown in Figure 9. To
enable a direct comparison between a conventional and coded aper-
tures, we also calibrated an unmodified Canon 50mm f /1.8 lens in
the same fashion.

35 cm 45 cm 55 cm 65 cm

75 cm 85 cm 95 cm 105 cm

Left - 105 cm

Right - 105 cm

Figure 9: Left: Calibrated kernels at a variety of depths from the
focus plane. All are taken from the center of the frame. Right:
Kernels from the far left and right of the frame at 1.05m from the
focal place, showing significant radial distortion.

5.2 Test Scenes

To evaluate our system we capture a number of 2 megapixel im-
ages of scenes whose depth varies over the same range used in
calibration (between 2 and 3.05m from the camera). All the re-
covered images, unless otherwise indicated, utilized a sparse prior
in deblurring. Owing to the high resolution of many of the results,
we include full-sized versions in the supplementary material on the
project webpage.

The table scene shown in Figure 1 contains objects spread at a va-
riety of depths. The close-ups show the successful removal of the
coded blur from the bottles on the right side of scene. The depth
map (obtained without user assistance) gives a fairly accurate re-
construction of distance from the camera. For example, the central
two beer bottles are placed only 5−10 cm in front of the peripheral
two, yet depth map still captures this difference.

Figure 10 shows two women sitting on a sofa. The depth map (pro-
duced without manual stroke hints) reveals that one is sitting back
while the other is sitting forward. The tilted pose of the woman
on the right results in the depth map splitting across her body. The
depth errors in the background on the left are due to specularities
which, aside from being saturated, originate from a different dis-
tance to the rest of the scene. The arms of the woman on the left
have been merged into the background due to lack of distinctive
high-frequency texture on them.

Note that the recovery of the all-focus image directly uses the local
depth maps (as in Figure 8(b)) without regularization and without
user corrections. Any ambiguities in the local depth map mean that
that more than one blur scale gives a ringing free explanation (this is

especially true for uniform image areas). Hence such errors in depth
estimation will not result in visual artifacts. However, regularized
depth maps were used for refocusing and novel view synthesis.

All-focus image
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Figure 10: The recovered sharp image of a sofa scene with two
women and associated depth map. The close-up images show the
extended depth of focus offered by our method.

5.3 Comparison with a Conventional Aperture

To assess the importance of the coded aperture in our system, in
Figure 12 we make a practical comparison between coded and con-
ventional apertures. The same scene was captured with conven-
tional and coded lenses and an all-focus image recovered using the
appropriate set of filters obtained in calibration. The coded aperture
result is mostly sharp whereas the conventional lens result shows
significant artifacts in the foreground where the depth estimate is
drastically wrong.

We also performed a quantitative comparison between the two aper-
ture types using images of planar scenes of known depth, giving a
evaluation of the robustness of our entire system. When consider-
ing local evidence alone, the coded aperture accurately classified
the depth in 80% of the images while the conventional aperture ac-
curately classified the depth only 40% of the time. These results



larger scale correct scale smaller scale

Figure 11: Deblurring with varying blur scale. Top: coded aper-
ture, Bottom: conventional aperture.

validate the theoretical prediction from Figure 5 and justifies the
use of a coded aperture over an unmodified lens.

To further illustrate the difference, Figure 11 presents image win-
dows captured using conventional and coded lenses. Those win-
dows were deblurred with the correct blur scale, too large a scale
and too small a scale. With a coded lens shifting the scale in both
directions generates ringing, however with a conventional kernel
ringing occurs only in one direction. It should be noted that ringing
indicates that the observed image can not be well explained by the
proposed kernel. Thus with a conventional lens a smaller scale is
also a legal explanation, leaving a larger uncertainty on the depth
estimation. A coded lens, on the other hand, is better in nailing
down the correct scale.

5.4 Applications

In Figure 13 we show how an all-focus image can be syntheti-
cally refocused to selectively pick out any of the individuals, in
the style of Ng et al [2005]. The depth information can also be
used to translate the camera location post-capture in a realistic man-
ner, shifting each depth plane according to its distance from the
camera. The new parts of the scene revealed by the motion are
in-painted from neighboring regions using Photoshop’s “Healing
Brush” tool. A video demonstrating viewpoint translation as well
as additional refocusing results can be found in the supplemen-
tary file and on the project webpage (http://groups.csail.
mit.edu/graphics/CodedAperture).

6 Discussion
In this work we have shown how a simple modification of a con-
ventional lens – the insertion of a patterned disc of cardboard into
the aperture – permits the recovery of both an all-focus image and
depth from a single image. The pattern produces a characteristic
distribution of image frequencies that is very sensitive to the exact
scale of defocus blur.

Like most classical stereo vision algorithms, the approach relies on
the presence of a sufficient amount of texture in the scene. Robust
segmentation of depth layers requires distinctive color boundaries
between occlusion edges. In the absence of those, user assistance
may be required.

While the ability to refocus post-exposure may lessen the need to
vary the aperture size to control the depth of field, different aper-
ture areas could be obtained using a fixed set of different aperture
patterns. The insertion of the filter into the lens also reduces the
amount of light that reaches the sensor. For the filter used in our
experiments, around 50% of the light is blocked (i.e. one stop of
exposure). We argue that this is an acceptable loss, given the extra
depth information that is obtainable.

Coded aperture

Conventional aperture

Figure 12: Showing the need for a coded aperture. Recovered im-
ages using our coded aperture and the result of the same calibration
and processing steps applied to a conventional aperture image. The
unreliable depth estimates of the conventional aperture image lead
to ringing artifacts in the deblurred image.

Our approach requires an exact calibration of the blur filter over
depth values. Currently, we have only calibrated our filter for a
fixed focus setting over a relatively narrow range of depth values
(2−3m from the camera). At extreme defocus values, the blur can-
not be robustly inverted. A more general implementation will re-
quire calibration over a range of focus settings, and storing the focus
setting with each exposure (a capability of many existing cameras).
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