
Word Sense Disambiguation Through Lattice

Learning

by

Eli Stickgold

B.S., Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2010)

B.S., Brain and Cognitive Sciences, Massachusetts Institute of
Technology (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2011

c© Eli Stickgold, MMXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

February 1st, 2011

Certified by. .
Patrick H. Winston

Professor
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Word Sense Disambiguation Through Lattice Learning

by

Eli Stickgold

Submitted to the Department of Electrical Engineering and Computer Science
on February 1st, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

The question of how a computer reading a text can go from a word to its meaning is
an open and difficult one. The WordNet[3] lexical database uses a system of nested
supersets to allow programs to be specific as to what meaning of a word they are using,
but a system that picks the correct meaning is still necessary. In an attempt to capture
the human understanding of this problem and produce a system that can achieve this
goal with minimal starting information, I created the Disambiguator program.
Disambiguator uses Lattice Learning to capture the concept of contexts, which
represent common situations that multiple words are found in, and uses Genesis’
system of Things, Sequences, Derivative and Relations to understand some contexts
as being related to others (i.e. that ‘things which can fly to a tree’ and ‘things which
can fly to Spain’ are related in that they are both special cases of the context ‘things
which can fly’). Using this system, Disambiguator can tell us which meaning
of ‘hawk’ we should use if we see it in a sentence like ‘the hawk flew to the tree.’
Disambiguator is implemented in Java as part of the Genesis system, and can
disambiguate short stories of around ten related statements with only a single query
to the user.

Thesis Supervisor: Patrick H. Winston
Title: Professor

3

4

Acknowledgments

Mom, Dad, Emma, Jessie, John, Debbie, Adam and Stephanie, for believing in me,

and always putting up with me no matter how grumpy I got.

Patrick Winston, for always being full of helpful ideas, advice and wisdom.

My gaming groups, for being very tolerant of being targets of venting.

5

6

Contents

1 Introduction 13

1.1 Overview: Going from text to imagination. 13

1.2 Disambiguator simulates human imagination using meaning relations. 15

1.3 Disambiguator uses contexts and statements to track rules. 16

1.4 What does Disambiguator disambiguate? 17

1.5 What to read next: a map. 18

2 Infrastructure: The technology behind Disambiguator 21

2.1 Defining meaning with threads. 21

2.1.1 Threads capture relationships between word meanings. 22

2.1.2 Threads easily handle multiple word meanings. 23

2.1.3 Threads are a plausible analogue of human memory. 23

2.2 Defining structure in Genesis . 24

2.2.1 Things use bundles to capture all possible meanings. 24

2.2.2 Derivatives have structure and can describe places. 25

2.2.3 Relations expand the applications of Derivatives. 25

2.2.4 Sequences allow representation of paths. 27

3 Learning With Maps 31

3.1 Contexts specify situations in which meanings can occur. 31

3.2 Lattice learning creates categories from examples. 34

3.3 Ease of imagination provides a second layer of disambiguation. 37

3.4 Contexts are related in a map structure. 38

7

4 From Text to Meaning 41

4.1 Genesis parses text into Things. 41

4.2 Disambiguator creates contexts and statements from Derivatives. . 42

4.2.1 ‘Assume’ syntax disambiguates words in advance. 42

4.2.2 ‘Know’ syntax forces early evaluation. 43

4.3 Meanings are disambiguated in four phases. 43

4.3.1 Phase one learns from unambiguous words. 43

4.3.2 Phase two uses the rules of lattice learning. 44

4.3.3 Phase three uses ease of imagination. 44

4.3.4 Phase four requires user input. 44

4.4 Disambiguator in action. 45

4.5 First step: ‘Assume’ disambiguations. 45

4.6 Second step: ‘Know’ is processed first. 46

4.7 Third step: Main disambiguation. 46

4.7.1 Phase one: Unambiguous words. 46

4.7.2 Phase two: Lattice learning. 46

4.7.3 Phase three: Ease of imagination. 47

4.7.4 Phase four: user query. 47

5 Contributions 49

5.1 Results . 49

5.2 Contributions . 49

8

List of Figures

1-1 An image of a boat sailing may be superimposed over an image of a

river delta to create a composite hallucination. 14

2-1 Threads store data as a heirarchical list of sets, each related to its

parent by the ‘is-a’ relationship. In this thread, a hawk ‘is-a’ bird. . . 22

2-2 A bundle contains all the threads the terminate with a specified word.

This bundle captures the fact that ‘hawk’ can mean a bird, a person,

or any of a number of actions. 23

2-3 A derivative has a bundle describing the type of derivation and a sub-

ject, which can be a Thing, Relation, Sequence or another Derivative.

In this example, The concept of ‘above the table’ is shown as a pair of

nested Derivatives - ‘above’ the Derivative ‘at the table’. 26

2-4 A Relation can accept an object as well as a subject. This can be used

to represent a sentence like ‘the hawk flew’, as in this example, or to

indicate time relations, such as ‘the flight happened before the landing’. 27

2-5 A bundle can contain ‘features’ that append information about it.

Here, this Relation has the feature ‘not’, implying that it represents a

Thing that cannot fly. 28

2-6 A complex path can be represented by a Sequence. Most commonly, a

path will be found as the object of a Relation indicating movement. . 29

3-1 A context consists of a rule for whether or not the context will bind to

a word in text, and then a series of tests for picking a meaning for the

word. 33

9

3-2 A context has a specific place in which a word may bind, and one or

two restrictions on the words or Things that can surround the specified

word. 34

3-3 Lattice learning classifies nodes into unknown, positive or negative. In

this example, the action tree is fully unknown. The node ‘bird’ is pos-

itive because it contains the positive example ‘hawk’ and no negative

examples, but the node ‘animal’ is negative because it contains the

negative example ‘cat’. 36

3-4 Once ostrich has been given as a negative example, by default bird will

never be a positive node no matter how many positive examples we see. 37

3-5 ‘Ease of imagination’ captures how far up the nearest positive example

a context has to look before it finds a set large enough to contain the

meaning in question. 39

3-6 Positive examples propagate upwards through the net of contexts,

while negative examples propagate downwards through the net. . . . 40

10

List of Tables

11

12

Chapter 1

Introduction

• In this section, you will learn what portion of the problem of machine intelligence

Disambiguator is intended to solve. You will see a basic example of the kind

of questions Disambiguator solves, and get a non-technical explanation of the

basic process it uses to arrive at its answers. You will also get an introduction to

the terminology of Disambiguator’s components that will be used throughout

this thesis.

• By the end of this section, you will have enough of an understanding of how

Disambiguator works to explain it to a non-technical audience. You will also

have an outline of the rest of this thesis so that you know which sections to skip

to if you are already familiar with the background material or only need the

summary of my results.

1.1 Overview: Going from text to imagination.

Suppose I told you to think of a ship sailing out of a delta. Consider the thought that

this conjures up in your mind. Most likely, you don’t see the letters of the sentence, or

recreate the sound that it would make, but rather you imagine the situation described.

Maybe you conjure up a picture or a video that you’ve seen before that this

sentence describes, or maybe you’ve combined two memories to get it - you have some

13

memory of a boat sailing along a river, and you’ve seen a picture of the Mississippi

delta, so you superimpose them in your imagination to produce a hallucination of

the ship making the journey out of the Delta. It’s possible you might imagine this in

the form of a movie of sorts, a dynamic image, or maybe it’s just a visual snapshot -

if you have memories very close to the situation described, you may also hallucinate

sounds or smells.

Figure 1-1: An image of a boat sailing may be superimposed over an image of a river
delta to create a composite hallucination.

One thing you’re unlikely to imagine is a boat sailing out of a giant Greek letter.

You could probably imagine that, but it’s a far less sensical interpretation of the

text you’ve been given than your initial imagination. A computer, however, given

just such a text, has no intrinsic way to convert the words it reads in into meanings.

Without such an ability, the computer’s ability to hallucinate from a text is severely

reduced, because even in such a small sentence, there are a large number of possible

combinations of word-meanings, each of which would conjure up a different image in

a human imagination.

I believe that the ability to imagine with facility from nothing but text is a vital

part of achieving true artificial intelligence. The ability to imagine is critical to

human reasoning, as it permits us to manipulate scenarios, consider alternatives,

predict outcomes and more without requiring experience of each possible situation

considered. Our ability to transition from text to imagination provides a compelling

case that it should be possible.

For small texts, such as those Genesis currently works on, it is possible for human

workers to go over every text to be used and manually select a single meaning for

each word from a list of possibilities, obviating the need for a program to do this.

However, in the long run, in order to function, a system like Genesis will want to be

14

able to constantly process new texts from high-throughput sources like news articles,

intelligence reports and blogs.

The amount of manpower it would take to perform manual disambiguation of

this quantity of information would rival the amount necessary to produce it in the

first place, making it infeasible to process by hand in the long run, so a computer-

ized method of disambiguation is a necessity for programs intended to manage large

streams of text-format information - a purpose that cannot be easily discarded, as

most information humans produce for transmission is inevitably in text form, and it

seems unlikely that we will change this fact.

1.2 Disambiguator simulates human imagination

using meaning relations.

In the example of a ship sailing out of a delta, I mentioned that even if you had

no memory of something explicitly detailing this precise occurrence, you might have

some memory of a ship sailing out of some other feature of a landscape, making it

relatively simple for you to replace that feature with another memory of a river delta.

It would be harder, though not impossible, to imagine a ship sailing out of a greek

letter, as that has much less in common with, say, a river or a harbor.

Harder still would be to imagine a ship sailing out of a change in value (another

possible meaning of delta), because this meaning does not denote a tangible object,

but rather an abstract quality. In a different statement, such as ‘the hawk flew’, it

would be similarly difficult to imagine the use of hawk as a verb meaning to hunt, as

it is difficult to picture an action flying.

Disambiguator uses the WordNet[3] dictionary, which provides all the possible

meanings of a word in the form of nested sets defining categories that the word can

fall into depending on which meaning. The Genesis system uses these definitions to

construct a bundle of threads [4] (see 2.1) to provide this measure of similarity. This

similarity can be used to define an ‘ease of imagination’, or how natural it would be

15

for a human to mutate an existing memory into a hallucination of the desired scene.

Using the method of lattice learning, Disambiguator reinforces this measure with

negative examples, allowing it to comprehend that some meanings might emphatically

not make sense in certain contexts. In the example of ‘the hawk flew’, if the only

known example of a thing flying we had was a bat, we might rightly say that the use

of hawk meaning a militaristic politician was closer taxonomically to the use of bat

meaning a mammal, but we know that most people we know of cannot fly, so we can

discard that option in favor of the correct one.

In these ways, Disambiguator makes meaning from unknown words by attempt-

ing to mimic our best understanding of how human minds deal with the same issue -

by making use of existing knowledge both about other things seen in similar contexts

and about how meanings relate to each other.

1.3 Disambiguator uses contexts and statements

to track rules.

Disambiguator uses two basic units of information to track its knowledge and use

it to disambiguate words: the context and the statement. Throughout this paper I

will use these terms as I describe Disambiguator’s operation, so I will explain their

basic meaning here.

For my purposes a context defines a set of information describing - partially or

completely - the words and syntactic structure surrounding a word. A context cap-

tures the idea that multiple words may occur in similar constructions, making it likely

that their meanings should be somewhat related. The actual definition of a context

is based on Genesis’ system of representing sentence structure and will be explained

more completely in chapter three, but in essence a context defines an attribute that

a word may have, as simple as ‘things that can fly’ or ‘things a ship can do’, or as

complicated as ‘things that can land in a bush quickly’. Contexts are related in a

heirarchical fashion by a subset/superset relation - so that ‘things that can fly’ is

16

understood to be a parent of ‘things that can fly to a bush’. Over time, a context

may be marked up with positive and negative examples, which will both serve to rule

out some meanings within that context and also provide data for determining what

the ‘easiest to imagine’ meaning of a word is.

A statement is a natural extension of a context, and specifies both a context and

a set of possible meanings that must be considered in that context. A single sentence

may expand into several statements - at least one for each word, possibly more if the

sentence is complex - and a statement serves as the unit of disambiguation, providing

a neatly packaged question that can be answered (or deferred) by Disambiguator

as it works through the story.

It is important to know that several statements can contain the same context, and

that the context will evolve and learn from each of them - this is key to the design of

the Disambiguator program, as it is the root of its generalization capability.

1.4 What does Disambiguator disambiguate?

So what parts of a story will Disambiguator work on? In the simplest explanation,

it will disambiguate any word that falls into a simple subject or verb position in a

sentence. Its actual reach is slightly larger, and is defined by Genesis’ representation

of sentences (see 2.2).

Suppose we give Disambiguator the following input:

• Assume ‘fly’ means ‘move’.

• Know that a guitar cannot fly.

• The osprey flew to the tree.

• The bat flew to the bush.

• The hawk flew.

• The plane flew into the sky.

17

Pulling out only the words that fall into simple subject or verb positions, we can

see that the following words will be disambiguated:

• Osprey

• Bat

• Hawk

• Plane

• Fly

The path descriptors - ‘to the tree’, etc. - on the other hand, will not be disam-

biguated. The reason for this is explained more fully in chapter four, From text to

meaning.

1.5 What to read next: a map.

The rest of this thesis is divided into four sections. Here I give you a map of what to

read next, depending on what you’re looking for:

• Chapter two, Infrastructure, details the technology that Disambiguator builds

upon to achieve its goals, including the WordNet dictionary, thread terminology

and Genesis’ system of Things, Sequences, Relations and Derivatives. Read this

section next if you are unfamiliar with these systems, as they are used heavily

in the following sections of the text.

• Chapter three, Learning with maps, discusses the underlying systems of Dis-

ambiguator and shows with examples how its structure captures the rules of

imagination through positive and negative examples, and gives a demonstra-

tion of what the learning process looks like. You can skip to this section if you

are familiar with the Genesis system and want to understand the underlying

architecture of Disambiguator

18

• Chapter four, From text to meaning, describes the actual implementation of

Disambiguator as part of the Genesis system and the specific rules it uses

to turn the output of the system’s parser into positive and negative examples

from which to learn in the manner described in chapter three. Read this after

chapter two if you are interested in the applications of Disambiguator in the

Genesis system, but it can be skipped if you are interested in Disambiguator

primarily for its basic theories on how to approach disambiguation.

• Chapter Five, Contributions, sums up the contributions I have made through

the Disambiguator code, both to the problem of word-sense disambiguation

as a theoretical issue and to the Genesis project in specific. Skip directly to

this chapter if you only care for a non-technical description of the workings of

Disambiguator.

19

20

Chapter 2

Infrastructure: The technology

behind Disambiguator

• In this chapter, you will learn about the technology underlying the Disam-

biguator program. Specifically, you will be introduced to the concept of lex-

ical Threads as a means of encapsulating a possible meaning of a word and

associated information about that meaning, and to Genesis’ representations of

syntactic structure as Things, Derivatives, Relations and Sequences.

• By the end of this chapter, you will be comfortable that you understand the

base on which Disambiguator is built, and that you know why these particular

representations have been chosen for this program. You will be able to explain

what the advantages of these representations are in a relatively technical fashion.

2.1 Defining meaning with threads.

The purpose of Disambiguator is to make a translation from words in text into

explicit and unique meaning. In order to do this, a method of defining meaning is

required. Fortunately, Genesis has just such a method: Threads[4]. A thread is a

heirarchical list of categories with each link representing an ‘is-a’ relationship from

the child to the parent. In this way, a thread captures a single explicit meaning

21

associated with the last word in the list. Genesis uses the WordNet[3] dictionary to

provide definitions and constructs threads out of them. Beyond the fact that Genesis

already uses threads for tracking meaning, there are several reasons why threads are

a good choice for representing meaning to Disambiguator.

Figure 2-1: Threads store data as a heirarchical list of sets, each related to its parent
by the ‘is-a’ relationship. In this thread, a hawk ‘is-a’ bird.

2.1.1 Threads capture relationships between word meanings.

The structure of threads makes them ideal for representing the concept of similarity

between word meanings. Threads make use of nested, increasingly broad categories

that make it possible to determine how far we must go to find a common relation

between two word meanings by looking how far up each thread’s list of sets we have

to look before we reach a set that contains both meanings. This mimics how the

human mind might search for relationships between two meanings, saying ‘X is like

Y because both X and Y are examples of Z’.

All definitions in WordNet’s database are rooted in two basic nodes ‘thing’ and

‘action’, which together encompass all the word meanings it has available. To con-

struct a thread from a definition in WordNet, Genesis simply lists in order all the

categories that the definition belongs to. Thanks to this, it is possible to view Word-

Net’s collected information on meaning as a pair of trees, one rooted at ‘thing’ and

one rooted at ‘action’, formed by joining threads together wherever they share an

uninterrupted chain of identical nodes starting at the root. It is important, however,

to realize the limitations of this view: nodes within these trees are labeled with En-

glish words, but these labels do not provide a unique identifier for the node - even

in internal nodes. Because of the ambiguity of text in language (the very problem

we are attempting to solve), multiple nodes may share the same name because the

two (distinct) sets they define share a common name. The only unique identifier of a

22

node in this tree-structure is the chain that links it up to the root node of its tree.

2.1.2 Threads easily handle multiple word meanings.

Thanks to WordNet, it’s simple to consider all the possible meanings of a word in

a form that allows easy comparison to a reference or set of rules. From a word,

Genesis can generate a bundle, a set of threads that defines the set of meanings that

could possibly be ascribed to a word, by taking all the possible meanings produced

by WordNet and constructing a thread for each. More formally, the bundle generated

by a word in text is the set of all threads generated from WordNet’s database that

terminate at a leaf marked by that particular word.

Figure 2-2: A bundle contains all the threads the terminate with a specified word.
This bundle captures the fact that ‘hawk’ can mean a bird, a person, or any of a
number of actions.

By creating a bundle (using Genesis’ BundleGenerator class), we are able to re-

trieve every possible meaning for a given word in thread form, which neatly enables us

to use our rules and existing ‘memories’ in a program to prioritize individual threads

as being easier to imagine and rule out other threads as not possible meanings in the

current context based on our understanding of it.

2.1.3 Threads are a plausible analogue of human memory.

The originators of the Thread Memory System, Vaina and Greenblatt[4], showed

that threads are reasonable not only as a computationally useful tool for storing

word information, but also as a model of how human cognition might seek to solve

the same problem, making a thread-based system a good candidate for modeling

human disambiguation. In specific, Vaina and Greenblatt demonstrated that damage

23

to threads caused problems for thread-based systems that were very similar to those

shown in human patients with specific types of aphasia.

2.2 Defining structure in Genesis

Disambiguator uses a stricter definition of context than simply proximity-based

systems for word-sense disambiguation. By making use the parser already available

through Genesis, Disambiguator takes advantage of its system of frames to make

use not only of the proximity of a word to others when considering how to identify its

meaning, but also its syntactic position in the sentence surrounding it - invaluable for

differentiating between, for example, the noun and verb meanings of a given word.

The parser output is rooted in four Java classes that together implement several

useful syntactic frames.

• The Thing class defines a unique object with an associated bundle.

• The Derivative class denotes structure derived from a single subject by a relation

defined by a second bundle. The subject of a Derivative may be any of these

four classes.

• The Relation class also has a subject, and also has an object that can likewise

be an instance of any of these four classes. The bundle of relation describes the

relationship between the subject and object.

• The Sequence class is defined by an ordered list of elements, along with an

identifier to allow the system to distinguish between different syntactic uses of

a Sequence. The elements of a Sequence can be Things, Relations, Derivative,

or even other Sequences.

2.2.1 Things use bundles to capture all possible meanings.

Things are the most basic unit in the parser’s output structure. A Thing is approx-

imately what it sounds like, a single object from a story wrapped up in a package

24

that contains our knowledge about it, but nothing about its position in a story or its

relation to other things. Any object that appears in a story, whether or not it has

tangible form, will be reified into a Thing for storage and further reference.

More technically, a Thing is defined by a unique name and a bundle containing

all the threads that might apply to it. This bundle will include all the possible

meanings that the root word being represented by the thing could take on, but it

will also contain labeled threads denoting any features that the object may have - in

this manner, a ‘red dog’ will be a single thing, with its bundle formed by all possible

meanings of the word dog, plus the information that the dog in question has a feature

‘red’.

2.2.2 Derivatives have structure and can describe places.

A Derivative, as you might expect, represents something derived from another object.

For example, if we wanted to express the concept ‘at the table’, we could do so in

a single Derivative with the bundle ‘at’ and the subject ‘the table’. More generally,

the subject of a Derivative can be a Thing, Relation, Sequence, or even another

Derivative, as in the example shown in the figure below.

In the program, a derivative object is specified by three things: a unique name, a

subject and a bundle defining the way the new concept is derived from the subject.

2.2.3 Relations expand the applications of Derivatives.

A Relation is similar in structure to a Derivative, but has an object as well as a

subject. The bundle of a Relation describes the way in which the subject is related

to the object. A Relation can be used to describe action - the sentence ‘the hawk

flew to the tree’ can be seen as a Relation between ‘hawk’ and the path ‘to the tree’

(a Sequence, as we will see in the next section) defined by the bundle ‘fly’. Relations

can also describe relative moments in time. For example, ‘The flight happened before

the landing’ could be seen as a relation between ‘the flight’ and ‘the landing’ describe

by the bundle ‘before’.

25

Figure 2-3: A derivative has a bundle describing the type of derivation and a subject,
which can be a Thing, Relation, Sequence or another Derivative. In this example,
The concept of ‘above the table’ is shown as a pair of nested Derivatives - ‘above’ the
Derivative ‘at the table’.

Since both the subject and object of a relation can be a member of any of the

four classes listed, it is possible to use nested relations, derivatives and sequences

to achieve extremely complex syntactic constructs without needing to resort to new

classes. Due to its natural fit to the structure of an English sentence and its flexibility,

Relations are used as the basis for contexts in Disambiguator (see 4.2).

The bundle of a Relation also contains any features of the described relationship.

This is important to us, as we make use of the fact that the Genesis parser turns a

statement like ‘the bird cannot fly’ into a Relation where the bundle for ‘fly’ has the

feature ‘not’.

This construction is necessary to Disambiguator as it lets the program accept

negative examples in a simple fashion.

26

Figure 2-4: A Relation can accept an object as well as a subject. This can be used
to represent a sentence like ‘the hawk flew’, as in this example, or to indicate time
relations, such as ‘the flight happened before the landing’.

2.2.4 Sequences allow representation of paths.

Finally, a sequence is just what it sounds like, an ordered list of other objects, which

can be Things, Relations, Derivatives or other Sequences freely. Sequences contain

less syntactic information in some ways than relations, as they don’t specify the role

of any element within the sequence, but they are invaluable in that they give the

system a way to represent paths[1].

By using a sequence as the object of a relation we can express a concept such as

‘the ship sailed via the delta into the ocean’, which would otherwise be inexpressable,

as it requires the complex understanding of a path as the object to the ship’s motion,

and a path cannot be easily represented without a construct such as a relation.

27

Figure 2-5: A bundle can contain ‘features’ that append information about it. Here,
this Relation has the feature ‘not’, implying that it represents a Thing that cannot
fly.

28

Figure 2-6: A complex path can be represented by a Sequence. Most commonly, a
path will be found as the object of a Relation indicating movement.

29

30

Chapter 3

Learning With Maps

• In this chapter you will learn how Disambiguator uses lattice learning on

a system of concepts and statements to classify meanings and prioritize the

meaning that makes the most ‘sense’ in the current context.

• By the end of this chapter, you will understand the concept of lattice learning

and its uses for problems such as this, and be comfortable with the underlying

concepts that make Disambiguator work. You will be comfortable explaining

the technical aspects of the Disambiguator program to an informed audience

and explaining the design choices that led to it.

3.1 Contexts specify situations in which meanings

can occur.

As explained in the introduction of the thesis, a context in Disambiguator is a

pattern describing a class of sentences in which a word might be found. In a human

sense, a context describes a type of memory into which we might attempt to insert

a memory matching the meaning in question - in the example of a ship sailing out

of a delta, the context of things which a ship sails out of can be thought of as the

memory of a ship sailing, onto which we might attempt to project a separate memory

of a view of a river delta.

31

Disambiguator’s implementation of contexts draws on the frames passed to it

after the Genesis program has parsed a section of human text, drawing on the fact

that a series of sentences in English will be represented as a list of Relations by the

parser, roughly containing the role of subject and object in their appropriate slots,

with the verb as the bundle assigned to the Derivative itself. Disambiguate takes

on the problem of disambiguating words that appear within Things, Derivatives and

Relations, and so concerns itself with contexts relating to these structures.

A Thing, by its nature, contains no context beyond the word and features con-

tained in its bundle. A Derivative or Relation, on the other hand, gives a structure

and a set of other words surrounding a given word, which can provide insight into its

meaning. As the parser interprets sentences as Relations, we construct contexts out

of Relations.

A context consists of two components: a rule defining when a context can be

matched to a word from the text, and a set of information for choosing which meaning

can be most easily imagined as occurring in that particular context.

The first rule is key to matching contexts to words in order to form statements

in a regular fashion, so that information learned about a context from one word can

be applied to another word later in the text that occurs in the same context. Each

context is identified by two pieces of information. The first identifies which position in

the relation is the one that contains the word that generated the context: ‘SUBJECT’,

‘OBJECT’ or ‘VERB’ (where ‘VERB’ refers to the bundle of a Relation itself). For

example, the context ‘things that can fly’ would have the identifier ‘SUBJECT’,

because it defines a property of the subject of the sentence. The second identifies

a set of restrictions on what sentences can match the context: either or both of

the positions not identified in the first piece of information can contain a Thing,

Derivative, Relation, Sequence or bundle (in the case of the verb position), and the

context will only match with sentences that have the same object in that position. To

continue the example, ‘things that can fly’ is defined by the fact that it is referring to

words in the subject position, and that it can only match sentences whose Relations

have the bundle ‘fly’. The context ‘things that can fly to a tree’ would likewise have

32

Figure 3-1: A context consists of a rule for whether or not the context will bind to a
word in text, and then a series of tests for picking a meaning for the word.

the subject identifier, but it would only match to sentences whose Relations have the

bundle ’fly’ and the object ‘to the tree’ (a Sequence defining a path).

In this way, a single instance of a word in the text may fit into several possible

contexts. For example, in the sentence ‘the hawk flew to the tree’, the word ‘hawk’

fits not only into the context of things that can fly to trees, but also into the context

of things that can fly and things that can take some sort of action to a tree. All three

of these contexts will be related in the graph of contexts formed by Disambiguator

(see 3.4).

33

Figure 3-2: A context has a specific place in which a word may bind, and one or two
restrictions on the words or Things that can surround the specified word.

3.2 Lattice learning creates categories from exam-

ples.

When a context is matched with a word in a statement, its second piece comes into

play with the purpose of determining which meaning for the word should be selected.

This takes the form of two different methods, which are applied in turn. First, the

context determines which, if any, of the possible meanings can be imagined at all in

the context specified - that is to say, which meanings are not ruled out by previous

negative examples. Second, if there is ambiguity remaining, the context determines

how far removed from the closest positive example each possible meaning is, which

provides a basic metric of how ‘hard to imagine’ that meaning is.

34

In order to learn at some basic level what meanings make sense in what context,

a computer program wants to be able to associate a context with a boolean function

that specifies whether it is able to ‘imagine’ a specific meaning withing a certain

concept. For example, within the context of ‘things that can fly’, we would like a

boolean function fly, such that

fly(bird) = True

fly(person) = False

fly(action) = False

In order to create this function, Disambiguator uses a system of classification called

lattice learning to create decisive functions from relatively little information. The

lattice learning algorithm[2], updated slightly for this thesis to provide the ability to

recognize the concept of exceptions to a rule. The concept of Lattice Learning is very

simple. Treating the theoretical assembly of all possible threads as a pair of trees, it

classifies nodes into three possible categories: nodes about which nothing is known

yet, nodes that contain among their eventual leaves a negative example, and nodes

that contain among their eventual leaves only positive examples.

Thanks to the fact that there are only two possible trees in WordNet, Lattice

Learning requires very few examples before it can classify any given thread into either

a positive or negative category.

Lattice Learning is also valuable in that it makes very good use of carefully chosen

examples, magnifying the effectiveness of any knowledge laid down by a human before

the story through use of the concept of near-miss learning[5]. For example, when

trying to nail down the concept that birds are a category of creatures that can fly,

lattice learning requires only two examples to narrow down to the proper node.

One primary weakness of the lattice learning algorithm is that because it gives

a negative status to a node that contains any negative leaves, it proves vulnerable

to error when dealing with categories that are not strictly nodes in WordNet. For

35

Figure 3-3: Lattice learning classifies nodes into unknown, positive or negative. In
this example, the action tree is fully unknown. The node ‘bird’ is positive because it
contains the positive example ‘hawk’ and no negative examples, but the node ‘animal’
is negative because it contains the negative example ‘cat’.

example, when trying to isolate things that can fly, if the algorithm receives ‘ostrich’

as a negative example, it will immediately rule out ‘bird’ as a possible generic category

of things that can fly. Once ostrich is given as an example, the algorithm will reject

any birds it is asked about except those that have specifically been labeled as positive

examples.

Fortunately, it is possible to correct this issue relatively simply. Rather than

strictly ruling out any node that contains a negative weight, nodes are assigned an

integer value, rating how much the algorithm believes that it does or does not match

the required quality. Negative examples apply a negative modifier to the scores of

36

Figure 3-4: Once ostrich has been given as a negative example, by default bird will
never be a positive node no matter how many positive examples we see.

all nodes that contain them (found by simply walking ‘up’ the thread), and positive

examples apply a positive modifier. In order to maintain an algorithm that mostly

functions in the same fashion as lattice learning, negative values are assigned a higher

weight, meaning that a node that contains negative leaves will only have a non-

negative score if it has a much higher preponderance of positive leaves.

3.3 Ease of imagination provides a second layer of

disambiguation.

As a context receives positive and negative examples, it generates a lattice learning

network from them, which it then uses to classify further meanings as either possible

(positive scores) or not (negative scores). However, this distinction is not always

37

sufficient to narrow down a bundle of possible meanings to one possible one. Likewise,

in the human mind, it is not always the case that it will prove impossible to imagine

any of a number of possible meanings for a word, but it will likely prove more easy

to imagine one meaning than another.

To provide a second layer of determination, a context also keeps track of all positive

examples it receives over the course of Disambiguator’s operation. If Disambigua-

tor is unable to make progress using only the strict boolean functions contained in

its contexts, it will fall back on a means of approximating this measure of ‘ease of

imagination’ by determining how far up the nearest positive example we have to go

to find a set big enough to contain the meaning being tested. While this method may

not be as strict in selecting the correct meaning as the lattice learning rules, it helps

enable Disambiguator to better mimic human behavior in swiftly selecting a given

meaning to imagine even in ambiguous surroundings.

3.4 Contexts are related in a map structure.

Although each context maintains its own set of examples and its own function derived

from the lattice learning algorithm, an individual context does not exist in a vacuum.

Just as part of the strength of the context system is that it makes use of our knowledge

of how words are related, we improve the breadth of knowledge available to individual

contexts by making use of knowledge as to how contexts are related to each other.

By their nature, contexts are formed from bundles, rather than meanings, so we

cannot directly exploit the thread system to relate similar contexts to each other,

but we can make use of the structure available from the parser to related contexts

that define subsets or supersets of each other. To do this, we consider the set of all

contexts as nodes in a directed graph. We define a parent-child relationship on the

map of contexts as follows: an edge goes from one context to another if the second

context can be considered a direct subcase of the first context. In our Relation-based

implementation of contexts, we define the parent-child relationship by looking at the

rules that determine what words can bind to the given contexts. In formal definition,

38

Figure 3-5: ‘Ease of imagination’ captures how far up the nearest positive example
a context has to look before it finds a set large enough to contain the meaning in
question.

if any word that can bind to context A can also bind to context B, then A is considered

a child of B and B is likewise considered a parent of A. This is implemented by the

simple expedient that a context is considered a child of another context if its binding

rule can be reached by taking the other context’s binding rule and filling it one of its

placeholders with a specific Thing.

By our definition of contexts, the result of these connections between contexts is

that any positive example given to a context propagates ‘upwards’ through the map

of contexts, going against edge direction (such that any node which has a path to the

affected context will be affected) and any negative example will propagate ‘down’ the

map, such that any node that can be reached from the starting context is affected.

This structure mimics our human understanding of what a context means. If

something falls into a specific category defined by a context, then it definitely falls

39

Figure 3-6: Positive examples propagate upwards through the net of contexts, while
negative examples propagate downwards through the net.

into any general category that surrounds that context, so if a bird-hawk is a thing

that can fly to a tree, it is definitely also a thing that can fly. Similarly, if something

does not fit into a general category, it will not fit into any sub-category that can be

derived from it, so if a person cannot fly, then a person cannot fly to a tree.

40

Chapter 4

From Text to Meaning

• In this chapter, you will learn how Disambiguator makes the transition from

human-readable text to assignments of meaning. You will see how Disam-

biguator constructs the contexts described in 3.1 from the output of Genesis’

parser.

• By the end of this chapter, you will understand the full path taken from human-

readable story to disambiguation key. You will be able to explain the full

workings of Disambiguator to a technical audience.

4.1 Genesis parses text into Things.

The first step in the process of disambiguation is not performed by Disambiguator

at all, but rather by the Genesis program and its parser. Genesis operates on a

modular system, and so when a story is loaded into it, it is first ‘read’ by the parser,

which translates the entire story into an instance of the Sequence class, containing

all the information contained from the statement ‘begin story’ to the statement ‘the

end’. The parser itself has no ability to disambiguate words into meanings, so all

words in the text are stored as bundles rather than unique threads, containing all

possible meanings.

The interface between Genesis and Disambiguator takes the Sequence produced

41

by the story and converts it to a list of Derivatives (some of which may be Relations).

It is this list of Derivatives that is passed to Disambiguator itself.

4.2 Disambiguator creates contexts and statements

from Derivatives.

Disambiguator recieves the list of Derivatives and uses it to exhaustively construct

a set of all possible non-trivial contexts (which is to say, all contexts that are not

entirely made of placeholders) which can match any word in the text. This set of

contexts is matched up with the words in the text to produce an exhaustive list of

statements consisting of all possible word/context bindings. This list of statements

is the list upon which Disambiguator operates.

Each statement is also tagged with a piece of information derived from the features

of the verb associated with it - specifically, it tracks whether the statement represents

positive or negative information about the relation of the word in question to the

context. In this way, the statement system is able to track a sentence like ‘a person

cannot fly’ while realizing that it pertains to the same context as the sentence ‘a hawk

flew’.

4.2.1 ‘Assume’ syntax disambiguates words in advance.

The Genesis parser accepts a specific syntax of the form ‘Assume X means Y’ that

informs the parser of how to interpret the meaning of the word ‘X’ throughout the

story. ‘Y’ must be a word that uniquely occurs in only one of the threads that make

up all the possible meanings of ‘X’, and the result is that the parser restricts the

bundles associate with ‘X’ to only the thread specified by ‘Y’. For example, if a story

began with ‘Assume ‘Hawk’ means ‘Bird’,’ then throughout the story, the Things

produced based on ‘Hawk’ would have only the bird-specific thread in their bundle.

42

4.2.2 ‘Know’ syntax forces early evaluation.

In order to allow Disambiguator to accept prior knowledge about contexts, should

we wish to give it such, the program accepts a special sort of syntax which is recognized

after the parser has functioned, rather than before. Specifically, any sentence of the

form ‘Know that X’, where X will be a Derivative itself, is treated as a piece of

information to be acted on before the bulk of disambiguation commences. As such,

before any of the rest of the story is processed into contexts and statements, sentences

of this format will be removed, processed into contexts, and turned into positive and

negative examples to seed the appropriate contexts with information.

4.3 Meanings are disambiguated in four phases.

Once Disambiguator has its list of statements, it proceeds in cycles through the

list. In each cycle, it looks over the full story and teststests for four possible ways to

disambiguate words in order of surety. Lower-priority methods will not be used until

no higher-priority methods produce any progress at any point in the story, so as to

ensure the most accurate possible disambiguation.

4.3.1 Phase one learns from unambiguous words.

Phase one is the simplest of the possible steps, and contains two rules, either of which

may be applied without favor. The first is simply the check to see if a statement

has only one possible meaning - not all words produce more than one thread, so

disambiguating them is trivial, but not unimportant, as they then provide examples

for all contexts they appear in. Similarly, the second checks in the log of already

disambiguated words to see if the word already has been assigned a meaning - this

makes the implicit assumption that in a given story, each word will have only one

possible meaning. Either of these rules can be applied without making a choice and

without ambiguity, so they are the first rules to be applied.

43

4.3.2 Phase two uses the rules of lattice learning.

Phase two uses the boolean function created for each context by the lattice learning

algorithm (see 3.2). For this phase, each statement checks all its possible meanings

with the function associated with its context. If only one possible meaning is not

considered non-sensical, then the sole sensical meaning is picked as the correct dis-

ambiguation for that word, recorded, and added to the appropriate context as an

example. If more than one meaning in a statement is sensical, or if none are, phase

two passes over it and move on to the next phase.

4.3.3 Phase three uses ease of imagination.

Phase three serves to disambiguate cases that passed by phase two by having more

than one possible sensical meaning. When multiple meanings could be possible, phase

three uses the metric of ‘ease of imagination’ (see 1.2) to choose between the possible

meanings and select the one closest to a known positive example. That meaning is

then recorded as the proper meaning to associate with the word and added as an

example to the associated context.

Phase three will fail to disambiguate a statement if it has multiple meanings each

the same distance from a positive example, or if it has no sensical meanings (distance

is not considered if the meaning is rejected by the lattice learning function from phase

2).

4.3.4 Phase four requires user input.

Phase four is only activated if no statements can be disambiguated by any of the

previous three phases - which is to say, when Disambiguator is stuck. In phase

four, the system prompts the use to select a meaning from a dropdown menu of all

possible meanings for a word in a provided context. If phase four is disabled, then

Disambiguator will simply return only a partial mapping of words to meanings.

So long as it is left active, however, Disambiguator will always eventually return a

full disambiguation of the story in question.

44

4.4 Disambiguator in action.

Putting all the pieces together, I show here a full example of how the Disambiguator

program functions when given a small story - taken from a children’s book about flying

things and modified slightly so that it is forced to use all the phases described above.

Suppose we give Disambiguator the following input:

• Assume ‘fly’ means ‘move’.

• Know that a guitar cannot fly.

• The osprey flew to the tree.

• The bat flew to the bush.

• The hawk flew.

• The plane flew into the sky.

Pulling out words that fall into Derivatives and Relations, want to disambiguate

the following words:

• Osprey

• Bat

• Hawk

• Plane

• Fly

4.5 First step: ‘Assume’ disambiguations.

We have already given Disambiguator one disambiguation to start it on its way -

we have told it that it should assume that we want the meaning of ‘fly’ that contains

‘move’ (rather than, say, the bug). The parser processes this before Disambiguator

ever even sees the story, so the word ‘fly’ will already be unambiguous.

45

4.6 Second step: ‘Know’ is processed first.

Because we have a sentence with the ‘know that’ key phrase at the start, it is processed

first. Guitar is an unambiguous word, so the program accepts it as a negative example

for the context ‘things that can fly’. It also accepts ‘fly’ as a negative example of

‘things a guitar can do’, but as the word guitar never shows up again, this context is

never used.

4.7 Third step: Main disambiguation.

Now the program enters its main disambiguation loop. Because of the careful design

of this example, all four possible rubrics for choosing a meaning are used over the

course of the run.

4.7.1 Phase one: Unambiguous words.

Both ‘osprey’ and ‘fly’ have only one meaning in their bundle (‘osprey’ is naturally

unambiguous and ‘fly’ has been already disambiguated by the parser thanks to our

‘assume’ command), so in the first two passes, these words are assigned the only pos-

sible meanings and contexts surrounding them are updated. The important context

that is updated that we will use later is, once again, ‘things that can fly’, which now

has one positive and one negative example.

4.7.2 Phase two: Lattice learning.

Next up is ‘bat’. ‘Bat’ has several possible meanings (the action in baseball, the

club, or the flying mammal), but only one of them is judged possible by the lattice

learning function attached to the context ‘things that can fly’. The negative example

of ‘guitar’ rules out the option containing the node ‘artifact’ (the club), and we have

no information about actions, so we select the option containing the node ‘animal’.

46

4.7.3 Phase three: Ease of imagination.

After ‘bat’, ‘hawk’ is disambiguated. Two meanings of ‘hawk’ make it past the lattice

learning filter: the bird, and the militarist. However, since we have the positive

examples of ‘osprey’ and ‘bat’ now, the program rules that the bird meaning is more

likely, as the node ‘bird-of-prey’, where ‘osprey’ and ‘hawk’ intersect, is lower than

the node ‘living-thing’, where ‘osprey’, ‘bat’ and ‘hawk’ intersect under the other

definition.

4.7.4 Phase four: user query.

This leaves only one word remaining: ‘plane’. But unfortunately, our lattice learning

program has by now ruled out all man-made artifacts as not capable of flight. With no

answer available, the program uses its last recourse, and prompts the user to provide

the proper selection from a list.

47

48

Chapter 5

Contributions

5.1 Results

In a final test, I demonstrated that Disambiguator could take a short story designed

to require every section to function properly and would disambiguate all target words.

The full text of this example can be found in the first appendix of this thesis, with a

step-by-step analysis of Disambiguator’s operation.

More typical (but less exhaustive) testing has shown that Disambiguator can

disambiguate a short story of 5-10 sentences on a coherent topic entirely with only a

single query to the user.

5.2 Contributions

In this section I list the contributions made in my thesis:

• Expanded the Lattice Learning algorithm to be more robust in handling nega-

tive exceptions to positive rules.

• Proposed the effectiveness of Lattice Learning as a technique for word sense

disambiguation with low initial information.

• Implemented Disambiguator as a component to Genesis in Java.

49

• Demonstrated the effectiveness of Disambiguator at disambiguating words

in a story with a coherent theme.

50

Bibliography

[1] Ray Jackendoff. Semantics and Cognition, chapter 9. MIT Press, 1983.

[2] Michael T. Klein Jr. Understanding english with lattice learning. Master’s thesis,
Massachusetts Institute of Technology, 2008.

[3] George A. Miller. Wordnet 3.0. www.wordnet.princeton.edu, 2006.

[4] Lucia Vaina and Richard Greenblatt. The use of thread memory in amnesic
aphasia and concept learning. MIT Artificial Intelligence Laboratory, 1979.

[5] Patrick H. Winston. Learning Structural Descriptions From Examples. PhD thesis,
Massachusetts Institute of Technology, 1970.

51

