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Abstract

The human visual system represents a very complex and important part of brain
activity, occupying a very significant portion of the cortex resources. It enables us
to see colors, detect motion, perceive dimensions and distance. It enables us to solve
a very wide range of problems such as image segmentation, object tracking, as well
as object and activity recognition. We perform these tasks so easily that we are not
even aware of their enormous complexity. How do we do that? This question has
motivated decades of research in the field of computer vision.
In this thesis, I make a contribution toward solving the particular problem of vision-
based human-action recognition by exploiting the compositional nature of simple
actions such as running, walking or bending.
Noting that simple actions consist of a series of atomic movements and can be repre-
sented as a structured sequence of poses, I designed and implemented a system that
learns a model of actions based on human-pose classification from a single frame and
from a model of transitions between poses through time.
The system comprises three parts. The first part is the pose classifier that is capable
of inferring a pose from a single frame. Its role is to take as input an image and give
its best estimate of the pose in that image. The second part is a hidden Markov model
of the transitions between poses. I exploit structural constraints in human motion to
build a model that corrects some of the errors made by the independent single-frame
pose classifier. Finally, in the third part, the corrected sequence of poses is used to
recognize action based on the frequency of pose patterns, the transitions between the
poses and hidden Markov models of individual actions.
I demonstrate and test my system on the public KTH dataset, which contains ex-
amples of running, walking, jogging, boxing, handclapping, and handwaving, as well
as on a new dataset, which contains examples of not only running and walking, but
also jumping, crouching, crawling, kicking a ball, passing a basketball, and shooting
a basketball. On these datasets, my system exhibits 91% action recognition recall
rate.
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Chapter 1

Introduction

“In general we are least aware of what our minds do best.” -Marvin Minsky

The human visual system represents a very complex and important part of brain

activity, occupying about 30% of the cortex resources. It enables us to see colors,

detect motion, perceive dimensions and distance. It enables us to solve a very wide

range of problems such as image segmentation, object tracking, as well as object and

activity recognition. We perform these tasks so easily that we are not even aware of

their enormous complexity.

Figure 1-1: Wimbledon 2008 Final between Roger Federer and Rafael Nadal

The human vision system easily distinguishes between different moves in sports. The
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single image in figure 1-1 already carries a lot of information. If we look at the video

with a few frames, we say: “Federer served to Nadal’s backhand, Nadal sliced the

ball short, Federer cut off the shot and played a drop valley.” This demonstrates the

ability to recognize a wide range of very visually similar actions without too much ef-

fort. How do we do that? How can we build a system that can provide a play-by-play

commentary of a sports game? How can we build a system that can detect security

threats in real-time or solve crimes using the surveillance video data in a few min-

utes? These questions have motivated decades of computer vision research. In this

thesis, I explore the problem of vision-based human action recognition by focusing

on the recognition of low complexity actions such as running, walking and jumping.

I implemented a system that can recognize human actions on a public dataset and

a new dataset constructed primarily for this thesis. The system I built achieves an

average of 91% recall rate on the public KTH dataset containing 6 actions(running,

walking, jogging, handwaving, handclapping, boxing) and an average of 91% recall

rate on the SHA dataset containing 8 actions(running, walking, jumping, crouching,

crawling, kicking a ball, passing a basketball, shooting a basketball).

1.1 Problem Statement

The general task of recognizing human activity is very broad. For that reason the

field has been conceptually divided and depending on the complexity of the activity

we typically talk about action primitives, actions, activities, interactions and group

activities [Aggarwal and Ryoo, 2011]. An action primitive is typically defined as

an atomic movement such as “raising a leg” or “stretching an arm”. Actions are

made of action primitives and typically involve the movement of more parts of the

body. Examples include running, walking, jumping etc. Activities could contain a few

actions executed in a particular order, while interactions and group activities include

two or more people. The activities and interactions very often entail a complex visual

scenario including additional objects. Each of these categories requires a different

approach to the problem. For example, in order to recognize an interaction such as
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“two people fighting”, the high level process would have to get an information about

what is happening on the lower level such as action “punching” or even lower than

that such as “extending an arm”.

Problem Formulation

In this thesis, I focus on the level of action primitives and actions. Even at this level,

there exist several categories of approaches, some of which I will discuss in chapter 2.

I decided to formulate this problem as a so called single-layered approach. Single-

layered simply means that a video input is considered one frame at a time. The

motivation for this comes from the fact that the human vision system can very often

infer an action from a single image or a very short sequence of frames.

Figure 1-2: One frame example of a person running

Almost everyone understands that the person from the figure above is running even

though they can see only one frame of the entire action. I hypothesize that this is

because of an ability to infer an appearance of the same person in a set of frames

before and after the given one by exploiting the structural constraints in the space of

transitions between different poses. That is, even though this one frame could poten-

tially be inserted into a set of frames that typically represent some other action (ex.

jumping), we are able to estimate that this scenario is highly unlikely and therefore

we label this as running despite the missing frames.

Furthermore, note that even under a partial occlusion one can infer enough informa-

tion about the pose from the image. This suggests that the vision system has an

ability to infer, with a very high certainty, a particular pose of the human body based
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only on the fragments of the image.

I have mentioned the term pose a few times already, so I think that it would be good

to introduce it in a more formal way.

Definition 1. I define a pose to be a group of single-frame appearances of a human

body where variations in viewpoint and visual appearance between the group members

are minimal.

Figure 1-3: Example of a group of single-frame appearances that can be described
with one pose

This definition allows us to capture a representation of a human body in a particular

configuration of its parts. Because of the fact that some variations within the same

group are allowed, the pose space is discretized.

Definition 2. I define an action to be a single-person activity that can be described

by a small collection of poses arranged in a repetitive sequence.

An action can contain multiple poses in its sequence and a pose can appear in mul-

tiple actions. Therefore, there is no one-to-one mapping from poses to actions or the

other way around. However, in this work I exploit the fact that most actions are

compositional and exhibit structured transitions between poses. This allows actions

to be recognized based on the sequence structure they exhibit.

1.2 Framework

I started my research with an intent to recognize simple human actions from poses

detected in single frames. This single-frame goal proved to be illusive, leading me to
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use single-frame pose classification as an element in a larger system rather than as a

sole determiner of action.

In this section I outline the framework for building a system that has an ability to

infer actions using single frames and the knowledge about the pose transition space.

I wish to explore how the appearance and the transition space associated with an

action, play a joint role in the ability to correctly classify, recognize and imagine the

action being performed.

For that purpose I developed a framework that comprises three stages. (1) First,

I needed a system that is capable of inferring a human pose from a single frame.

The system was developed by employing Ullman’s intermediate features principle

[Ullman et al., 2002] and developing hierarchical group classification tree. (2) Once

the single-frame pose estimation was implemented, I could look at a sequence of the

pose estimates. In particular, the transitions between these estimates are naturally

constrained. I used that fact to develop a system modeled with a hidden Markov

model that corrects some of the errors that the single-frame classifier makes. (3) In

the third stage, after the best possible sequence is estimated, I developed a system

that can recognize the sequence as an action.

Pose Classifier

The Pose Classifier is a system responsible for the classification of single frame images

into one of the possible pose classes. I approach the training of the pose classifier

in two stages. First, I develop a binary classifier for the case of two poses. Then, I

combine the binary classifiers from all the poses into a hierarchical tree of groups of

similar poses.

In developing binary classifier the goal is to understand what kind of features are

present in one pose class and not in the other. For example, in figure 1-4, some

features that are present in the pose on the left, and not in the one on the right, are

shown.

For this purpose, a set of examples representing a pose class is fragmentized such

that fragments at random locations on the image are extracted. The next step is to
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Figure 1-4: Example of a group of discriminative features

recognize which of those fragments are indicative of the pose class. These fragments

are successively picked through a boosting method forming a group of fragments that

best describe the pose class. After the binary classifiers for all the pairs are created,

the poses that are closest to each other are successively joined into new pose groups.

At each iteration, the two closest groups are joined forming a hierarchical group tree.

This step reduces the complexity of the classifier and speeds up the classification

process at run time.

The pose classifier is then represented through a decision tree structure. Given an

image, the classifier looks for different fragments in their respective regions of interest,

goes down the tree and eventually determines the pose class depending on which

fragments it locates in the image.

Modelling Time-sequential Poses

Given a set of time-sequential frames, based on the previously described method,

every frame can be evaluated for the most likely pose. That evaluation is done

independently for each frame. However, the time-sequential nature of these frames

can be very useful. For example, imagine that the sequence of poses as in figure 1-5

has been estimated.

This kind of sequence of estimates is possible simply because the previously described

pose classifier has no knowledge of any constraints between the frames. So can we

somehow understand that the pose classifier made a mistake given all the estimates?
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Figure 1-5: Example of an unlikely sequence in which the transition model can help
correct some mistakes made by a single-frame classifer

We could do that if we understood something about the structure of the transition

space between the poses and how likely any given error is. For example, look at the

poses in the middle of figures 1-6 and 1-5. For a moment, let me refer to them as

pose “run” and pose “bend”. If we know that pose classifier fairly often makes an

error and confuses “run” for “bend”, and if we know that transition from and to the

poses surrounding the middle ones are fairly unlikely for the pose “bend”, we could

say with relatively high certainty that the middle pose estimate was an error and that

it should really be estimated as “run” instead of “bend”. I model the pose transitions

using a hidden Markov model where states are poses.

Figure 1-6: Example of a likely sequence given the single-frame pose estimates as in
figure 1-5

The structural constraints of human motion represent a powerful way to improve

the single-frame pose classification. In the results chapter, I show that modelling

structural constraints can improve the results of the pose classification by an average

of 15%.
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Sequence Recognition

Once the sequence of poses is estimated and corrected in the first two stages, the

system needs to make a final decision on the action label. At this point in the pro-

cess, the problem simplifies to the problem of discovering patterns in the text. That

is, suppose that every pose is equivalent to a letter. Then every sequence is a word

made of letters from the pose alphabet. The meaning of the word depends on the

frequency of the letters, the way they transition from one to another and other letter

patterns.

Figure 1-7: Example of a pose sequence seen as a letter sequence

The role of the action detection system is to classify these text patterns as one of the

actions. I approach this problem in two ways:

1. Unsupervised hierarchical agglomerative clustering

2. Supervised training of HMM models, one per action class.

In the hierarchical clustering, at each stage, the algorithm joins the two closest clus-

ters based on a certain predefined distance metric. For this purpose two distance

metrics are used, the Levenshtein distance and the bag of features vector distance,

which will be thoroughly examined in chapter 5. In the supervised method, I train

a model for each action class, optimizing the parameters of the model based on the

training sequences. Then I use these models to recognize the new, unseen, sequences.
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The rest of this thesis is organized as follows: In chapter 2, I introduce the most

influential and recent work in the subfields of computer vision related to action recog-

nition. In chapter 3, I describe in detail the classification of poses using independent

single-frame images. In chapter 4, I introduce hidden Markov model and explain how

it is used to model the transitions between poses and improve the single-frame pose

classification. In chapter 5, I describe the sequence recognition process. In chapter 6,

I describe the design and implementation of the entire system. In chapter 7, I present

and discuss my results. Finally, in chapter 8, I present my contributions and outline

some of the steps for future work.
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Chapter 2

Previous Work

Action recognition is an important area of computer vision research. Its applica-

tions include surveillance systems, self-driving vehicles, video search, sports analyt-

ics, medical monitoring systems etc. All of these applications require some level of

understanding of ongoing activities which motivated the research in the area of ac-

tion recognition. In this chapter I describe some of the most influential work in the

domain of action recognition and other related domains of computer vision. It is not

my intention to offer a comprehensive review of the action recognition field, but to

summarize the most important recent results and approaches that influenced my work

in this thesis. Depending on the part of the problem which a particular approach is

attempting to solve as well as the structure of the solution, action recognition work

can be categorized as in diagram 2-1, adapted from [Aggarwal and Ryoo, 2011].

Figure 2-1: The hierarchical approach-based taxonomy adapted from [Aggarwal and
Ryoo, 2011]
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Activities can be categorized based on the complexity of the scene (one person or a

crowd) as well as based on the complexity of the individuals’ motion. For instance,

[Aggarwal and Ryoo, 2011] divide activities into gestures (action primitives), actions,

interactions and group activities. They define gestures to be “elementary move-

ments of a person’s body part such as stretching an arm and raising a leg”. Actions

are defined as “single-person activities that may be composed of multiple gestures.”

Examples include actions such as walking, running and punching. Interactions are

“human activities that involve two or more persons and/or objects” For example,

two people playing throw-catch is an interaction. Finally, group activity is defined

as “activities performed by conceptual groups composed of multiple persons and/or

objects such as marching, a group meeting or two groups fighting”.

In my research, I focused on the actions performed by one person such as running,

walking and jumping. Because of that I will focus on reviewing the literature ap-

proaches attempting to solve this particular problem, but I will also briefly describe

what other approaches entail.

Hierarchical approaches are applied to higher complexity activities that typically ex-

hibit a high level of variation in the visual domain such as following, chasing, fighting.

These types of problems require an approach which builds a high-level model of how

simpler actions make an activity. For example, activity such as “following” may con-

tain multiple people or objects and may involve simpler activities such as running,

walking or stopping. Hierarchical activity recognition systems make a representation

of an activity that could potentially be performed in many visually completely dif-

ferent ways. A high level system typically relies on the low level action recognition

systems to recognize simple actions which can then be used as building blocks.

Single-layered approaches consider a video as a sequence of images and an action as a

particular configuration of the images in the sequence. This category of approaches is

very successful when a particular sequential pattern that describes an action can be

learned. [Aggarwal and Ryoo, 2011] divide this category into space-time and sequen-

tial approaches. Space-time approaches model a video in a 3D space by adding the
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time dimension to 2D frames and are further divided based on the kind of features

that are extracted from the video sequence. Sequential approaches analyze a video

as a sequence of frames and the features that appear in individual frames. They are

further divided based on the image representation that they use.

Action recognition field relies on good image features selection techniques and ways

to classify these images and video representations. In the rest of this chapter, I first

discuss different most popular and influential feature selection techniques and then,

I review how they are used to classify images and video sequences.

2.1 Feature Selection and Image Representations

In this section, I discuss the work that relates to features that are typically extracted

from image sequences. The basic requirement of any image representation is to be able

to generalize over small changes in appearance, background and viewpoint. However,

the representation needs to be rich enough to be able to robustly classify differences

between classes of appearances. Poppe in his review [Poppe, 2010] divides image

representations into global and local ones. With global representations, a region

of interest is typically encoded as a whole through an image descriptor. In local

representations, a region of interest is typically treated as a collection of independent

patches that form a model of the appearance.

Global Image Representations

Global image representations typically encode a region as a whole resulting in a de-

scriptor or a template. In early works on global image representations, people focused

on silhouette extraction and motion information extraction typically encoding it with

optical flow.[Bobick and Davis, 2001] form a binary motion energy image between

any two successive frames in a sequence and compare them using Hu moments. Sil-

houettes can also be matched directly using a distance metric such as Euclidean or

Chamfer distance [Weinland and Boyer, 2008].

The drawback of global image representations approaches is that they are usually sen-
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sitive to changes in viewpoint or partial occlusions. In order to overcome these types

of issues, people have over time developed so called grid-based global representations.

Here, an image is divided into spatial regions that represent local observations.

The work that has highly influenced the research of feature selection in recent years is

the development of histograms of oriented gradients (HOG) [Dalal and Triggs, 2005].

Dalal and Triggs made a significant improvement in the results of human detection

by developing HOG descriptors in which they use fine-scale gradients, orientation

binning, and local normalization.

Figure 2-2: An overview of the feature extraction and people detection process taken
from [Dalal and Triggs, 2005]

Local Image Representations

Local image representations encode a region as a set of local patches or descriptors.

These representations are typically less susceptible to occlusion or partial changes in

viewpoint than the global representations.

The work that has had a great impact on my research in the domain of feature

selection is the Ullman et al. work on the intermediate features principle. They in-

troduce the intermediate features principle in [Ullman et al., 2002] where they show

that features of intermediate complexity and scale are the most optimal for the vi-

sual classification. They show that intermediate features naturally arise as the most

informative ones in the process of face detection. They also show that normalized

cross-correlation performs as well as more complex features such as SIFT [Lowe, 1999].

In later publications ([Epshtein and Uliman, 2005] and [Epshtein and Ullman, 2007]),

based on the principle of intermediate features, they develop a hierarchical represen-

tation of objects, which proves to be very effective for localization of object parts and

subparts.
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Most recently, the work of [Felzenszwalb et al., 2010] has had an important impact

on the field of pose estimation. Their work on pose estimation serves as the starting

point for many action recognition approaches. They develop a representation of an

object using mixtures of deformable part models. This work has been widely adopted

by the research community both because of its state of the art performance and easily

accessible implementation.

2.2 Action Classification

In this section, I describe how image representations are used in the research on action

recognition. I divided the section into two parts. First I describe the most influential

work in the category of space-time approaches and then I introduce the category of

sequential approaches.

Space-time approaches

In space-time approaches, a 3-D representation is used to represent actions. The

volume is constructed by joining consecutive frames and extracting features in XYT

space. Space-time approaches can be divided into three categories based on the kind

of features that they extract.

1. In the space-time volume approaches the consecutive frames are stacked to-

gether and treated as a silhouette in the 3D space.

2. In the trajectories approaches, the trajectories of different body parts or other

points of interest are used to represent actions.

3. In the space-time features approaches, the 3D features are extracted instead of

simple volumes.

[Klaser and Marszalek, 2008] extend the HOG representation to 3D to form a descrip-

tor based on the 3D spatio-temporal gradients. They achieve 91.4% accuracy on the

KTH dataset.
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[Wang et al., 2011] used dense trajectories representation to represent interest points

in each frame and tracked them based on the information from a dense optical flow

field. They achieve 94.2% accuracy rate on the KTH dataset. They also develop a

novel descriptor which is robust to camera motion and can be used in more realistic

environments.

[Bregonzio et al., 2009] represent actions as clouds of space-time interest points. They

develop a technique for extracting interest points by avoiding the extraction in back-

ground and highly textured foreground which allows them to focus on the points that

are the most important in describing the motion.

Figure 2-3: Examples of clouds of space-time interest points, taken from [Bregonzio
et al., 2009]

Sequential approaches

In this section, I summarize the research that uses the sequential approaches, the

analysis of sequence of single-frame observations.

[Liu et al., 2012] present an approach that is based on key-frame selection and pyra-

midal motion feature representation. They use this representation to select the most

informative frames from a large pool of action sequences. They test the approach on

the KTH dataset and obtain 95.5% accuracy.

The time-sequential approach that influenced my research directly is that of Yamato
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et al. in [Yamato et al., 1992] where they use hidden Markov models for learning

action representations from a set of time-sequential images. At each frame a vector

is formed from a set of mesh features extracted from the image. Then, HMM is used

to train one model per action category given the training sequences of vector obser-

vations.

[Lv and Nevatia, 2007] propose a framework called Action Net in which they perform

single-frame silhouette matching using Pyramid Match Kernel algorithm and model

transition between different actions.
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Chapter 3

Pose Classification

The human body can find itself in different poses during its motion. At every frame,

I attempt to classify a particular appearance of a human body into a pose category.

In this chapter I discuss the problem of independent, single-frame pose classification

which means that the pose classifier considers one frame at a time and has no knowl-

edge about the relation between this single-frame and other frames that it sees before

and after. The temporal relationship between the frames will be discussed in chapters

4 and 5.

3.1 Problem Formulation

Given a limited number of poses to choose from and an image, a pose classifier is

required to output a pose that best describes the pose of the human in the image.

The pose classifier is developed through training during which it learns about different

poses in human motion. For that purpose, a set of examples is provided for each

category of poses. The role of training is then to form a model of poses by picking

features that can be used to distinguish different poses.

This is done in two stages. First, the classifier learns how to distinguish between any

two poses. Second, it learns how to make a decision about the pose category based

on the pairwise decisions made in the first stage.

I start by explaining the training in the simple case with only two poses where the
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role of a classifier is to make a binary decision.

3.2 Case with Two Poses

Suppose for a moment that there are only two poses that we want to distinguish

between, as shown in figure 3-1. The first one is very often found as a constituent

element in walking while the second one is usually a constituent element in running.

In the rest of this section, I will refer to them as pose W and pose R.

Figure 3-1: Example of two poses

The first goal is to learn the kind of features that are present in pose R and not in

pose W.

1. First, I take examples of pose R and extract image fragments at many locations

in the examples. An image fragment is a cropped piece of an image.

2. Then, I develop a mechanism to decide whether a particular fragment is present

in an image.

3. Finally, I search for all the fragments in the positive and negative examples.

Using a boosting algorithm, I select the fragments that are most indicative of

pose R.
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Fragment Extraction

For the purpose of fragment extraction, I adopted a framework of intermediate fea-

tures first described by [Ullman et al., 2002] The idea behind intermediate features is

that the features of intermediate scale and resolution are the most descriptive ones.

Ullman et al. in their original paper describe the technique for the purpose of face

detection, and find that features of small size (such as “one eye”) are typically found

in many places in an image, while features of large size (entire faces) are found rarely.

Similarly, in the case of human poses, small size features (such as “top of the elbow”)

are found in many places in the image while entire body poses are rarely matched

well. This result helps inform the process of feature selection. Image fragments are

extracted from the given examples of pose R. This fragment extraction is done at

multiple random locations across the image as well as at multiple scales. I used a

simple sliding window technique with the step of 1/3 of the fragment size. The size

of the fragments ranged between 0.1 and 0.5 of the size of the example. Once the

fragments have been extracted, I compute the match between each fragment and all

the positive (pose R) and negative (pose W) examples.

Measure of Fragment Match

Each of the extracted fragments is first matched against all the positive and negative

examples. That means that the fragment is slid across a certain region of the image

and the fragment match is computed. The maximum value of the match is then

denoted as the match between the fragment and the image.

In the experiments carried out in this thesis, I use and compare two different match-

ing techniques, normalized cross correlation and difference of sum of squares on his-

tograms of oriented gradients [Dalal and Triggs, 2005]. The results obtained using

these metrics will be discussed in chapter 7.

The size of the region of the image across which the fragment is slid and matched

plays a very important role in the results. If the region of interest is too large, the
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fragment loses its compositional meaning and its role in detection of the pose weak-

ens. On the other hand, the region of interest cannot be too small either as the

variations within the pose group would not be properly captured. For example, if you

are looking for a part of an elbow across an entire image, you might find it at many

places (ex. knee) and if you look for it at a very specific location, you might not find

it due to a variation in pose.

Once the matches between the fragment and all the examples are computed, the frag-

ment matching threshold needs to be determined. That is, in order to decide whether

the fragment is present in an image, the matching value needs to be compared with

a threshold. This threshold is found by maximizing the mutual information [Cover

et al., 1994] between the fragment and the given class.

The mutual information between the two binary variables, ϕ(θ) and ζ, is defined as

follows:

MI(ϕi(θi); ζ) ≡
∑

ϕi(θi)={0,1}
ζ={0,1}

p(ϕi(θi); ζ) log
p(ϕi(θi); ζ)

p(ϕi(θi))p(ζ)
(3.1)

Note that the mutual information is a function of two random variables, ϕi(θi) and ζ.

ϕi(θi) is a binary function of the fragment threshold parameter θi indicating whether

the fragment is found in an image:

ϕi(θi) =

1 M(I, fr) ≥ θi

0 otherwise

(3.2)

where M(I, fr) is the best match between a fragment(fr) and an image(I). ζ simply

denotes the example class. If the threshold parameter θi is too low, the mutual infor-

mation between the fragment and the class is going to be low because the fragment

will be found with high frequency in both positive and negative examples. Similarly,

if the threshold is too high, the fragment will rarely be found even in the positive

examples. Therefore, there exists an intermediate point at which mutual information
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reaches a maximum, which is then the point picked for the fragment threshold.

θi = arg max
θi

∑
ϕi(θi)={0,1}
ζ={0,1}

p(ϕi(θi); ζ) log
p(ϕi(θi); ζ)

p(ϕi(θi))p(ζ)
(3.3)

Once the thresholds are determined, a binary decision on whether the fragment is

present in the example image can be made for each fragment-example pair.

Now that the thresholds are computed, the system chooses the best set of fragments.

This is done using a boosting algorithm [Freund and Schapire, 1997].

Boosting

The boosting algorithm comprises the following stages:

1. First, all the examples (positive and negative) are assigned weights. If there are

p positive examples and n negative examples, each positive example is given the

weight = 1
2×p , and each negative example is given the weight = 1

2×n , in order

to account for possible bias in the number of examples on each side.

2. Then, for each fragment we compute the error, which is the sum of weights of all

the positive examples in which fragment is not contained and all the negative

examples in which the fragment is contained. The fragment with the minimum

error is picked. The saved information includes the fragment, its region of

interest, its threshold, and the parameter α = 1
2

ln 1−error
error

.

3. Then, all the example are reweighted such the weight of the examples that were

classified correctly by the previous fragment is decreased, and the weight of the

examples that were classified incorrectly is increased. Finally, the whole process

is repeated with the new weights. The process can be repeated arbitrarily many

times. In the system described in this thesis, I repeat the process ten times. I

found that after ten iterations the error does not decrease significantly.

This process forms a classifier made up of the series of decisions made by individual
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fragments. Each decision has a weight equal to the α parameter of the fragment. Sum

of all the weights represents a number based on which the final decision can be made.

Very often, the way the decision is made is by comparing the sum of weights with 0.

In the system described here, I compute the decision threshold for the classifier by

maximizing the mutual information between the classifier and the pose class. I found

that this last step improves the classification.

At this point, a binary pose classifier is trained to estimate whether the pose looks

more like pose R or pose W. The binary pose classifier consists of image fragments,

their respective thresholds and regions of interest, the boosting weights for each of

the fragments and the boosting decision threshold. An example of some fragments

found when training pose R against pose W classifier is shown in figure 3-2.

Figure 3-2: Example fragments found in training binary poseR-poseW classifier

Figure 3-3 shows the complete process of developing a binary classifier.

In summary, after processing the incoming image, fragments of different scales and

at different positions are extracted. Then, the match between fragments and the

examples is computed in order to determine the threshold for each fragment. Then,

the most informative fragments are picked through a boosting method. Finally, a

binary classifier is formed based on the most informative fragments, the fragments’

thresholds, the regions of interest and the boosting weights as well as an overall

boosting decision threshold.

38



Figure 3-3: Summary Figure for Two Pose Classification

3.3 Case with N Poses

Everything discussed so far in this chapter represents the process of forming a binary

classifier. However, in the case of N poses we need to form a pose classifier that can

label the given image as any of the N poses. This section describes the second stage

in developing a pose classifier.

From Binary Classifiers to Hierarchical Group Tree

In the first stage of the training, a binary classifier is trained for every pair of poses.

This produces N2 classifiers from N poses. Then, I take all the examples and evaluate

them by each binary classifier. Based on that, each posei−examplej pair gets a score

equal to the number of binary classifiers that classified the examplej as posei. The

pose that has the highest score for a given example is picked as an estimate pose for

that example. When all the examples are evaluated, an N × N matrix is computed

where each cell (i, j) represents a number of hidden poses i (each example is an ex-

ample of a particular “hidden” pose) that were estimated to be pose j.

For example, imagine that there are three poses (A, B and C) and twelve examples (4

example of each of the poses). Also, imagine that all examples of pose A were classi-
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Pose A Pose B Pose C
Pose A 4 0 0
Pose B 1 2 1
Pose C 2 1 1

Table 3.1: Example of N ×N matrix where each cell (i, j) represents a percentage of
hidden poses i (each example is an example of a particular “hidden” pose) that were
estimated to be pose j

fied (correctly) as pose A, two examples of pose B were classified (correctly) as pose

B and two were classified (incorrectly) as pose A and C (one of each), one example of

pose C was classified (correctly) as pose C, two were classified (incorrectly) as pose

A and one as pose B. Then, the 3×3 matrix would look like that in table 3.1.

Based on the N × N matrix of results, we can compute a closeness matrix. The

closeness matrix represents the measure of closeness between any two poses or more

specifically how difficult it is for a classifier to distinguish between any two poses.

The element of the closeness matrix is defined as follows:

C[i, j] =
R[i, j]∑
j

R[i, j]
+

R[j, i]∑
i

R[j, i]
(3.4)

where C is the closeness matrix, R the results matrix. The equation is symmetric for

i and j, so C[i, j] ≡ C[j, i].

Once the closeness matrix is computed, I group the two poses i and j that are closest

to each other. Then I consider that group as one pose, leaving me with a total of N−1

poses. The binary classifiers between the other poses and this newly formed grouped

have to be trained. For efficiency reasons they are trained using the fragments left

from binary classifiers corresponding to poses i and j. The process is repeated until

only two groups are left at which point a hierarchical binary group tree is naturally

formed. Every non-leaf node in the tree represents a pose group and has associated

with it a binary classifier that splits the group into two smaller groups. Figure 7-4 in

chapter 7 shows an example of a hierarchical tree obtained during the training stage.

The hierarchical group tree represents an N-pose classifier. When a new image is
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ready for classification, it is passed through the nodes of the tree until it reaches

the final pose. An alternative to this method would be to simply look at the results

matrix and decide on the pose based on that.

However, the advantage of the hierarchical tree step is twofold:

1. First, at run-time, the hierarchical method takes much less computation time.

If we label an average binary classifier computation time as B, In the case

of a balanced hierarchical group tree, the computation time is of the order of

B × logN and in the worst case of the order of B ×N , while the computation

time for the results matrix is of the order of B ×N2.

2. Second, if two poses are close to each other, it is more reasonable to distinguish

between them based on the result of the binary classifier between them and not

based on the results of the classifiers that were trained between one of those

poses and other poses.

Figure 3-4: Stages in N -pose classification
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Summary

In this chapter I showed how to develop a pose classifier in two stages:

1. First, I employed Ullman’s intermediate features principle to develop a binary

classifier for any two poses.

2. Second, I developed a technique for combining all the binary classifier into a

hierarchical group tree that can be used for N-pose classification

In chapter 7, I present detailed results of the N-pose classification system obtained

on two datasets, noting that I achieve 77% recall rate on my 10-pose dataset and

68% recall rate on the 9-pose KTH public data. I also show that hierarchical group

tree representation is very effective in capturing differences between poses and discuss

how this feature can be used to develop an automated pose selection mechanism.
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Chapter 4

Hidden Markov Model for

Exploitation of Structural

Constraints

In chapter 3, I described the technique for the classification of independent single

frame images. Now I turn to the temporal connection between frames. The tempo-

ral connection between the frames represents a very important aspect that can be

leveraged not only for better action recognition, but also for an improved pose classi-

fication. Human motion is naturally constrained in a temporal domain. For example,

it is highly unlikely that a human body can transition from a crawling pose to a

running pose in one frame time. That kind of structural constraint in time can be

used to make better estimates about the single frame poses. Furthermore, the struc-

tural constraints in human motion can be used to further improve the independent

single-frame classifier by establishing a feedback training mechanism.

A natural way to model the transitions between poses is through a hidden Markov

model. Hidden Markov model represents a stochastic state transit model [Rabiner

and Juang, 1986] in which every state depends directly only on the state before that.
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4.1 Hidden Markov Model

A hidden Markov model comprises a sequence of hidden states and a sequence of noisy

state observables. The transitions between the states are described by a probability

distribution that specifies the probability of transition from a state to any other state.

The likelihood of observations is described by a probability distribution that specifies

the probability of an observation given any hidden state. States in the HMM are not

directly observable and can only be inferred from the sequence of noisy observations.

States

In the context of action sequences, the poses represent the states in the HMM. That

is a very natural way to represent poses because the poses have all the characteristics

of states in this problem. Poses are not directly observable, can be inferred only from

the sequence of observations, and a pose at time t depends directly only on the pose

at time t − 1. Figure 4-1 shows a general structure of an instantiated HMM where

each time point is represented through two random variables, pose[t] and O[t]. Pose[t]

is a hidden state variable at time t and O(t) is observation at time t. The arrows in

the graph represent conditional dependencies.

Figure 4-1: Hidden Markov model represented as a Bayesian net
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Transition and Emission Probability Distributions

The hidden state space is made of N possible different states so the transition and

emission probability distributions have to be described for this model to be instanti-

ated. The emissions probability distribution specifies the likelihood that pose[t] will

generate O[t] for all possible poses and observations.

That means that the pose classifier can, with a certain probability, estimate a hid-

den pose state to be any of the N poses. The emission probability distribution is

estimated through training. After the pose classifier is trained, new single frame ex-

amples of each of the N classes are given to the classifier and the emission probability

distribution is estimated directly in the following way:

P (O = o|Pose = p) =
S(p)

N
+ (1− S(p))

P (o, p)

P (p)
(4.1)

where P (o, p) is the number of observations o when p is the hidden pose, P (p) is the

total number of hidden poses p in the training set, S(p) is a function of the number

of training examples that ensures that probability distribution for any observation o

does not go to 0. It is constructed such that the second term in equation 4.1 becomes

more dominant as the number of training examples grows:

S(p) = a+
b− a
√
p

(4.2)

where a = 0.05 and b = 0.5 are the values used in the training, in the system de-

scribed in this thesis.

The transition probability distribution specifies the likelihood of a transition from

pose[t] to pose[t+ 1] for all possible pairs of poses. Much like the emissions distribu-

tion, the transitions probability distribution is estimated through training. However,

in this case, the training is done simultaneously with the pose classification training.

The transitions for all pairs of poses are counted and similar equations to those in

4.1 and 4.2, substituting observations o for poses p′, are applied. Figure 4-2 shows a
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visualization of the transition probabilities (in black/heavy) and emission probabili-

ties(in red/light) for the case of three poses.

Figure 4-2: Visualization of the transition probabilities (in black/heavy) and emission
probabilities(in red/light) for the example with three poses.

In this thesis, the transition and emission probability distributions are found through

training and are not changed after that; however, it would be valuable to explore how

performance of the system varies if we allow these distributions to be further trained

online (during the run time of the algorithm).

4.2 Inference

Given the parameters of the model, the states, observations and all the probability

distributions, the maximum likelihood sequence of hidden states is computed using

the Viterbi algorithm [Viterbi, 1967].
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Viterbi algorithm

The Viterbi algorithm finds the most likely sequence of hidden states given the se-

quence of observations. The algorithm is run iteratively over the hidden states (S)

in the sequence. The recursive process can be defined formally as a maximization

problem:

Vt,si = P (ot|si)×maxsj∈S(Tsj ,si × Vt−1,sj)

V1,si = P (o1|si)× πsi
(4.3)

where si ∈ S, ot is an observation at time t, Tsj ,si is an entry in the transition matrix

that specifies the likelihood of transitioning from sj to si, P (ot|si) is an entry in the

emission matrix that specifies the likelihood of observing ot when the hidden state

is si, and Vt,si is probability of the most probable state sequence given the first t

observations that has si as its final state.

The Viterbi algorithm at each iteration t examines all the possible states s and for

each of them examines all the possible transitions that could have led from time t−1.

It then determines, for each state s, the most likely transition based on the emission

and transition matrices. Only the most likely transition is then stored (inside the V

matrix) and affects the next step.

Given the complete V matrix, one can easily compute the most likely sequence of

states. The last state is given by:

send = arg max
s∈S

VT,s (4.4)

Given the last state, the most likely path of states can be reconstructed following

the most likely transitions at each stage. This is typically stored in the process of

computing the matrix V so that it can be easily restored.

As discussed in the results chapter later in this thesis, modelling the structural con-

straints significantly improves the results of the pose classification. This result can
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be used in many different ways. First, instead of doing the correction, we can use

prediction so as to reduce the amount of work that needs to be done by the pose

classifier by reducing the pool of poses that can occur at any particular position.

More importantly, this result can be used to further improve the pose classifier by

feeding the missed examples back to the pose classification training stage. The ex-

amples that are classified incorrectly are the most valuable examples for improving

the classifier. They serve as near miss examples, useful to specialize or generalize

the class representation. In his landmark thesis [Winston, 1970], Patrick Winston

noted that becoming an expert requires repair as well as acquisition. He shows that

exploiting situations when the already acquired knowledge makes a mistake, enriches

the model.

In this thesis, I did not implement a framework that would feed near miss examples

back to the training process, but I believe that development of such a framework can

serve as a great starting point to some future work.

Summary

In this chapter I described the process of using a hidden Markov model to develop a

model of transitions between poses in a video sequence. I explained how this model

is used to correct the errors introduced through the pose classifier and showed how it

can be used to further improve the results of the single-frame pose classification. In

chapter 7, I demonstrate that modelling regularities in pose sequences improves the

recall rate for pose classification by an average of 15%. I also discuss the implications

of this result to online training and pose prediction/gap-filling.
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Chapter 5

Sequence Recognition

In this chapter I present the system for action recognition based on the sequence of

poses. After the single-frame pose estimation and sequence correction have been com-

pleted, the problem simplifies to that of recognizing textual patterns in a sequence.

The incoming sequence of poses is first cut into smaller sequences that are then passed

to the action detection component of the system. For this purpose, I adopt a sliding

window technique that classifies all the possible sequences.

5.1 Problem

Once the single frame poses have been estimated and corrected where necessary to

comply with the structural constraints of the human motion, each pose can be consid-

ered as a letter in a letter sequence. It is important to emphasize that there is no one

to one mapping between poses and actions which implies that one pose can appear

in many actions and one action typically contains multiple poses. However, it is the

sequence in which these poses appear that determines the action. The poses can be

thought of as elementary operations (building blocks) that, when combined together,

produce different actions. For example, suppose that there are 3 letters in the pose

alphabet, R, T and W. Then actions such as running and walking could possibly be

built in the following way:

Running −→ RRRTTWWRRRTTTRRR or RRRTTRRRRWWWRR
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Walking−→ TTWWWWWTTRRWWWWW or WWWWWWTTTWWWWW

In the example above the frequency of certain poses can be used to deduce the action

class of the sequence. In running, we see more of R and T poses and in walking more

of W and T poses. Furthermore, the transition between poses are different; while in

one there are mostly transitions between R and T, in the other most of them occur

between W and T. The transitions are important also because of the nature of simple

action pose composition. That is, the speed with which different people go through

the poses can vary significantly, while the structure typically does not vary too much

(a person cannot just skip over a certain pose in running, but they can spend more

or less time in it depending on the style).

This means that, in order to recognize actions, the sequence representation needs to

be capable of capturing the transitions between poses.

5.2 Action Detection

In order to build a representation that can capture transitions between poses in a

pose sequence, I looked at two approaches to action detection:

1. An unsupervised approach based on hierarchical clustering

2. A supervised approach based on learning a model of actions given the training

examples.

5.2.1 Unsupervised Action Learning

In the unsupervised approach, the idea is to cluster incoming sequences based on the

sequence patterns, without prior knowledge of the sequence action labels. In order

to do this, I had to define a set of features that were extracted from the incoming

sequences. The criteria for the feature selection is the ability to capture pose transi-

tions well. In this work, I tested two different methods, the Levenshtein distance and

the bag of features vector distance which will be described later in this section.

Without prior knowledge of the action labels, the system has no information about
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the number of action categories. Because of that, I decided to apply the method of

Agglomerative Hierarchical Clustering which does not assume a prior knowledge of

the number of clusters.

Agglomerative Hierarchical Clustering

Agglomerative Hierarchical clustering is a bottom-up clustering method where each

point starts off as its own cluster and at each iteration the closest two clusters are

combined until only one big cluster is left. In figure 5-1 you can see the result of

clustering a set of numbers [1, 2, 4, 6, 10].

Figure 5-1: Example of levels in hierarchical clustering algorithm

As a result of hierarchical clustering, a binary tree of points is built in which similar

clusters are successively merged, decreasing the number of clusters at each level.

The only parameter needed for the clustering method besides the data points is

the distance metric. Typically, the Euclidean distance between cluster centers is

used for data that can be represented through vectors. However, in the case of

actions represented through a sequence of letters, the Euclidean metric cannot be

used. Instead, I use two alternative measures of distance between the data points:

1. Levenshtein string distance

2. Bag of features vector distance
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Levenshtein distance is a measure of similarity between two strings that represents

the number of single-character edits (insertion, deletion, substitution) required to

change one string into the other. Formally:

LEV (S1, S2) =



|S1| |S2| = 0

|S2| |S1| = 0

min


LEV (S1[: −1], S2)

LEV (S1, S2[: −1])

LEV (S1[: −1], S2[: −1]) + (S1[−1] 6= S2[−1])

otherwise

(5.1)

where |S| is the length of a string S, S[: −1] is the string S without the last char-

acter and S[−1] is the last character. Levenshtein distance represents a measure of

similarity between two string sequences corresponding to two actions. However, in

the case when sequence length varies substantially, Levenshtein distance turns out to

be a very biased measure because it is not normalized in its original form.

Bag of features vector distance is similarly a measure of distance between two

strings based on the strings’ features. The features are simply frequencies of the

patterns in the string. First a collapsed string is made out of the original string. A

collapsed string is a string in which consecutive occurances of the same characters

are replaced with one character. For example, string RRRRUURRNIIINNNG would

be collapsed into RURNING. Now from both of these strings, the original and col-

lapsed, substrings of different lengths (ranging from 1 to the length of the string) are

extracted. I count the frequency of the substrings and that frequency map becomes

the bag of features vector.

bS(si) =
count(si, S)

|S|
+
count(si, c(S))

|c(S)|
(5.2)

where c(S) is S-collapsed string and count(si, S) is the number of time substring si

appears in string S.

Now that I explained how to extract the bag of features vector from a string, I describe
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how to calculate a distance between two strings using their vectors. It is similar

to a simple square distance between the vectors with the two added components

accounting for the elements in a vector that are not present in the other one.

d(S1, S2) =

√√√√ ∑
si|

si∈S1andsi∈S2

(bS1(si)− bS2(si))
2 +

∑
si|

si∈S1andsi /∈S2

bS1(si)
2 +

∑
si|

si∈S2andsi /∈S1

bS2(si)
2

(5.3)

This distance measure has advantage of being normalized and applies equally well

to the case when there are significant variations in the length of the sequences. Fur-

thermore, use of collapsed strings helps emphasize the importance of transitions in

sequence recognition. As mentioned in the introduction to this chapter, transitions

between poses play a key role in understanding the action.

In addition to specifying the distance metric between two sequences, I also need to

specify the distance between two clusters. For that purpose I define a cluster center

to be the point whose sum of distances to other points in the cluster is minimum

across all the points in that cluster.

Cc = arg min
S∗∈C

∑
Sj∈C

d(S∗, Sj) (5.4)

where Cc is the cluster center of cluster C. Then the distance between two clusters

is simply the distance between their center points.

After the distance metric and a way of computing cluster centers are defined, the

agglomerative hierarchical clustering can be applied. The clustering method outputs

a tree that can be used to infer the quality of selected features for the sequence

separation.

In summarry, the incoming sequences are first processed by adding their collapsed

counterparts to the sequence set. Then, the string features are extracted. A feature

is a frequency of a substring in the original string and its collapsed counterpart.

Once the features are extracted, the distance metric between any two string can

be computed. Finally, the clustering produces groups of similar sequences, which
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are used to infer the quality of extracted features. In chapter 7, I show that bag

of features is a representation that can capture most of the variability between the

action sequences and seperate them well (73% accuracy on the set with 8 actions).

However, the amount of captured information seems to be limited which suggests

that supervised learning might be necessary.

Figure 5-2: Summary of the unsupervised action detection method

5.2.2 Supervised Action Learning

In this section, I present the supervised method for sequence classificaton using the

hidden Markov models. I first assume that there is one model for each of the action

categories and show how to determine the most likely one given the new unlabelled

sequence. I show that forward-backward algorithm can be effectively used for this

task. Then, I explain how to train hidden Markov model to produce one model per

action category using the Baum-Welch algorithm.
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Estimating the most likely action model

First, assume that each action category has associated with it a set of parameters that

define a hidden Markov model. Those parameters, as discussed in chapter 4, include

a set of states, a set of observations and the probability distributions describing

transitions between the states, the emissions of observations and the initial states. For

the rest of this chapter I will refer to these parameters collectively as λ = {T,E, π}

where T,E and π represent the transitions, emissions and initial state probability

distributions, respectively.

Given a sequence of observations O, the problem of recognizing an action category

that these observations belong to can be formulated as:

C = arg max
i

P (λi|O) (5.5)

Term P (λi|O) is, following the Bayes rule, proportional to P (O|λi). Knowing the

parameters of the model that best describes a particular set of actions, I need to

estimate how likely a certain sequence is to be part of that model. This can be

achieved by using a forward-backward algorithm which computes the likelihood of all

the hidden states given a sequence of observations. The algorithm comprises three

stages. First, in the forward stage, the probability of any given state is computed given

the observations that preceded it. Then, in the backward stage, the probability of any

given state is computed given all the observation following it. Finally, the smoothed

probabilities are computed combining both forward and backward estimates.

Applying the forward-backward algorithm for a given sequence and all the models,

allows me to estimate the model that best fits the observed sequence.

Baum-Welch algorithm for training action models

Now that I explained how to estimate which model is the most likely given the

observation sequence, in the next paragraph I explain how to train the hidden Markov

models, one for each class of actions.

The problem can be formulated as estimating the parameters most likely to generate

55



the training data. For the purpose of training the hidden Markov models I adopted

the Baum-Welch algorithm [Baum et al., 1970]. The Baum-Welch algorithm is a

special case of a more generalized expectation-maximization algorithm which solves

the problem by finding a locally optimal solution over an infinite space. The Baum-

Welch algorithm is particularly useful for the problem of action sequence recognition

because of the variable nature of the length of the patterns within the same class

of actions. Because the likelihood is calculated from the entire sequence, variations

in length, shifts in sequence and small errors have little effect on the likelihood of a

model given a set of observations.

The Baum-Welch algorithm is the process in which the parameters λ are optimized

such that the quantity p(O|λ) is maximized. For this purpose, two variables are

introduced, ξt(i, j) and γt(i). ξt(i, j) represents the probability of being in state i at

t = t and in state j at t = t+ 1.

ξt(i, j) = p(st = i, st+1 = j|O, λ) =
p(st = i, st+1 = j, O|λ)

p(O|λ)
(5.6)

γt(i) is the probability of being in state i at t = t, given the observation sequence and

the model.

γt(i) = p(st = i|O, λ) =
p(st = i, O|λ)

p(O|λ)
(5.7)

Using these two equations, the parameters λ are improved to λ′ such that:

T ′i,j =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

E ′i(s) =

∑
t∈{t|Ot=s} γt(i)∑T

t=1 γt(i)

π′ = γt(i)

(5.8)

This process is then repeated until the difference between the quantities decreases to a

certain preset value. At that point, we can be sure that we reached a local maximum.

An example of the process that occurs in the iterations of Baum-Welch algorithm is

shown in figure 5-3. The diagram demonstrates the steps in learning action “walk-
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ing” from the training examples in SHA dataset containing 8 actions and 10 different

poses. The strength of arrows is proportional to the probability of particular tran-

sitions. In illustration A, all the transitions are equally likely which represents the

state when the model has not learned anything. As more iterations are performed,

some transitions become less likely and some become more likely. Finally, when the

process is finished, the model parameters are optimized to describe the training se-

quences. In illustration D, we can see the most likely pose and a few other poses that

occur in “walking”. The model that was learned using the Baum-Welch algorithm

suggests that in “walking”, the most time is spent in one pose (the one on top), with

occassional drifts into three other poses. In the periods when the model is not in the

pose on top, there is a strong tendency to come back to it.

Figure 5-3: An example of different stages in the run time of the Baum-Welch algo-
rithm during “walking” learning.
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Figure 5-4 shows an example of learning “jumping” structure using the Baum-Welch

algorithm. In contrast to “walking”, the model of “jumping” is characterized by

strong transitions, which indicate the path through poses. While in “walking” there

is a tendency to come back to a single pose, in “jumping” we see a tendency to come

back to a path.

Figure 5-4: An example of different stages in the run time of the Baum-Welch algo-
rithm during “jumping” learning.

In summary, the supervised action detection comprises the training stage and the

classification stage. In the training stage, a set of sequences is given for each action

category. Using the Baum-Welch algorithm, the system produces HMM models, one

per action category. The parameters of these models are optimized to capture the

representation of the category as described through the training examples. In the

classification stage, a new unlabelled sequence is passed to each of the trained mod-
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els. For each of the models, the forward-backward algorithm is used to compute the

likelihood of the sequence given the model. The model that produces the maximum

likelihood is then picked and its corresponding action category is used to label the

sequence.

Figure 5-5: Summary of the supervised action detection method

Summary

In this chapter I reduced the action recognition problem to the problem of recognizing

a sequence made of the letters from a finite alphabet. I showed how agglomerative

hierarchical clustering can be applied to the problem using two different sequence

distance metrics. I also showed how hidden Markov models can be trained for a

specific class of actions and how such developed models can be applied in inferring

the most likely action of the incoming sequence. In chapter 7, I present the results

of the action recognition on two datasets and achieve 91% recall rate on the sets

containing 6 and 8 actions.
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Chapter 6

System Design and

Implementation

In this chapter, I describe the problem more formally, in terms of system inputs and

outputs and describe each of the components of the system separately. I concentrate

on describing the flow of the system and how different components interface with each

other. The internal algorithm implementations were previously discussed in chapters

3, 4 and 5 and will not be further explained in this chapter.

6.1 Problem Inputs/Outputs

The input to the problem is a sequence of video frames that contains human actions.

The system output is a sequence of action labels together with their start and end

indices. I do not consider the problem of finding a bounding box surrounding a person

and assume that the coordinates of such a box are given as an input to the system.

In my work, I used an open source tool [Vondrick et al.] to label the people in the

sequences.

In figure 6-1, the top level system takes a video sequence as input and outputs a set

of action labels with start and end times associated with every single label. In order

to achieve this functionality, I split the problem into three smaller subsystems that
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Figure 6-1: High level system design with inputs and outputs for each component

each have their own clearly defined inputs and outputs:

1. The Pose Classifier is a system that takes as input a single frame image and

outputs the pose label that best describes a pose of a human in the given image.

This system has two layers, the training layer and the classifier layer. Training

layer produces a pose classifier based on a set of training inputs, as described

in chapter 3. Classifier layer then uses the classifier to select the appropriate

pose categories for the incoming images.

2. The Model of Transitions system is one whose role is to modify the sequence of

pose labels such that it corresponds to the expected transitions between differ-

ent poses. This component takes as input a sequence of pose labels and outputs

a modified sequence of pose labels. This modified sequence contains the correc-

tions of possible errors in pose estimates that were made by the independent,

single-frame pose classifier.

3. The Sequence Classifier is a system required to output a single action label given

the sequence of letters from the pose alphabet. The role of this component is

to observe the sequence as a whole and find the action label that best describes

the given sequence. The system is made of the training layer and the classifier
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layer, as described in chapter 5. The training layer produces models of action

categories that are then used by the classifier layer to select the most appropriate

action label.

The three subsystems described above represent implementations of the work done

in chapters 3, 4 and 5. The reason for such a division is to achieve high level of

modularity that would allow the improvement of the individual components of the

system without affecting the others. In the following sections, I first present the

top level Action Recognition system and describe how it interacts with the three

subsystems. Then I present the system design for each of the three subsystems

separately.

6.2 Action Recognition

The Action Recognition component acts as a controller system for the entire project.

It accepts video sequence and coordinates of people in the video sequence as inputs

and produces action labels together with their start and end indices for all the actions

in the given video. The dependency diagram for the Action Recognition system is

shown in figure 6-2.

Figure 6-2: The dependency diagram for the Action Recognition system

63



The diagram shows major classes as they are implemented in the project. OpenCV

[Bradski, 2000] is an open-source computer vision library that includes many useful

image processing techniques and algorithms. It implements a custom image represen-

tation and many useful functions that significantly simplify image processing. Frame

Extractor is a class that reads a video and provides frames on demand by frame

number. Similarly, Coordinate Extractor is a class that reads a coordinates file and

provides functions to get number of people as well as their coordinates in any frame of

the video. Motion Extractor provides a motion map between any two frames. Finally,

the Sequence Selector class selects sequence of frames to analyze for action. Currently,

this class is implemented such that it simply returns all the frame sequences up to a

certain prespecified length. Controller then analyzes the given sequences and outputs

actions based on the output that it gets from the sequence classifier. All the sequences

are analyzed simply because some actions can be contained in the others.

6.3 Pose Classifier

The Pose Classifier system consist of two layers, the classifier layer and the train-

ing layer. The dependency diagram for the classifier layer is shown in figure 6-3.

The Classification Controller takes as input an image and instantiates an Edge/HOG

Extractor in order to extract the proper features from the image. It then uses an

instance of the N-pose Classifier, a class that stores the Hierarchical Group Tree rep-

resentation of the classifier, to classify the input image. That is done by passing the

image through a series of nodes in the tree, each of which contains a binary classifier,

until a leaf-node is reached. The non-leaf nodes in the tree are represented by a group

of poses and a binary classifier that splits the group into two smaller groups. Even-

tually, the image reaches a leaf node in the decision process. Each leaf node in the

tree stores one pose category and the leaf node that is reached in the decision process

becomes a designated classification pose label for the input image. An example of a

hierarchical group tree is shown in figure 7-4 in chapter 7. The entire classification

process is explained in more detail in chapter 3.
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Figure 6-3: Dependency Diagram for the Pose Classifier Classification Layer

The training part of the system works offline and has a role of producing the N-pose

Classifier for a set of N poses. The dependency diagram for the training system im-

plementation is shown in figure 6-4.

Figure 6-4: Dependency Diagram for the Pose Classifier Training System
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Components such as Frame, Coordinate, Motion and Edge/HOG Extractors have

already been explained in the previous sections. Their role is mostly to do the initial

input reading and image processing.

N-pose Classifier Training Controller is a component which instantiates a Binary Clas-

sifier Training Controller for all N2 pairs of poses. The Binary Classifier Controller

forms an instance of a Binary Pose Classifier for each pair and passes it back to the

N-pose Classifier Controller, which then forms a Hierarchical Group Tree representa-

tion and instantiates the N-pose Classifier as the final output.

Once the Binary Classifier Training Controller has read the input and processed the

image, it forms fragments using an instance of Fragment Extractor and matches the

fragments with the examples using the Fragment Correlator. Finally, the Fragment

Picker is instantiated with all the fragments and the corresponding matches with all

the examples. It then determines the appropriate fragment threshold and picks the

fragments that are most indicative of a class of poses through a boosting method. Fi-

nally, an instance of Binary Pose Classifier is instantiated with the picked fragments.

Such instance is then passed back to the N-pose Classifier Training Controller. As

mentioned before, the internal details of different components in the Pose Classifier

system are discussed in chapter 3.

6.4 Model of Pose Transitions

In this section I explain the system design of the Model of Pose Transitions. In the

system described in this thesis, the model is trained offline. This implies that the

emission and transition probability distributions are not changed after the training

period (during the run time of the system). However, I designed the system such that

it can be easily adapted to the online training in which case every new frame would

potentially change the parameters of the model.

I use a hidden Markov model to model the pose transitions in the temporal domain.

The HMM has two modes, the training mode and the classifier mode. In the training
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Figure 6-5: Dependency Diagram for the model of pose transitions

mode, it takes as input a set of pairs (latent pose, pose estimation) and uses those to

train the Transition and Emission Mappers as described in chapter 4. In the classifier

mode, it reads a sequence of pose estimates and relies on the pretrained mappers

to get the necessary probability distribution parameters. Using these parameters,

it instantiates an inference algorithm (the Viterbi algorithm) to produce a modified

pose sequence that complies with the structural constraints of the domain.

6.5 Sequence Classifier

The Sequence Classifier comprises two separate methods for action inference, an un-

supervised method based on clustering and a supervised method based on the pre-

trained HMMs. The Sequence Classifier, much like the other components consists

of two modes, the training and the classification mode. In the training mode, the

Controller is instantiated with a set of pairs (pose sequence, action label). Those

pairs are then used to instantiate a Sequence object, which is further passed to the

HMM module. The HMM module then uses the Inference Engine (the Baum-Welch

algorithm) to form a model of actions. The Model simply stores a map between an

action label and a set of HMM parameters. This process is shown in the dependency

diagram in figure 6-6.

At run time, the Controller is instantiated with a pose sequence. It then forms a
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Figure 6-6: Dependency Diagram for the sequence classifier

Sequence instance and uses an HMM module to instantiate an Inference Engine. The

Inference Engine uses the forward-backward algorithm to associate a given sequence

with an action label whose model parameters best describe the given sequence. The

other part of the sequence classifier is the unsupervised clustering module. The con-

troller forms a Sequence and instantiates a Metric class. This class defines a distance

measure that is used during clustering. Then, an instance of Clusterer is made with

a set of sequences and a metric. The Clusterer then makes the hierarchy of clusters

using the agglomerative hierarchical clustering algorithm. This hierarchy is then used

to compute the accuracy which represents the amount of variability that can be cap-

tured with a set of features used in clustering.

Summary

In this chapter, I explained the system design. In particular, the system design

comprises four different subsystems which are developed separately. I explained the

interfaces between the subsystems and separately described each of them. In the next

chapter I demonstrate the results that the system achieved on several recognition

tasks.
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Chapter 7

Results

In this chapter I present the results of my work. First I introduce the datasets that

were used for system testing. Then, I show the results of the independent, single-frame

pose classification. Next, I demonstrate that modelling the constraints of the human

motion improves the results of single-frame pose classification. Finally, I present the

results of action recognition. I present and discuss the results obtained on a public

dataset and introduce a new dataset created primarily for the purpose of this thesis.

7.1 Datasets

In this thesis, two datasets are used:

1. KTH Dataset, introduced by [Schuldt et al., 2004], contains six different

human actions (walking, jogging, running, boxing, hand-waving and hand-

clapping) performed in four different scenarios (outdoors, outdoors with scale

variation, outdoors with different clothes and indoors) by 25 subjects. All se-

quences were taken over homogeneous backgrounds with a static camera with

25fps frame rate. The sequences were downsampled to the spatial resolution of

160x120 pixels and have an average length of four seconds. Figure 7-1 shows an

example of the different actions and scenarios in KTH dataset. Typically, the

dataset is divided into three components, the training component(8 people), the

validation component(8 people) and the testing component(9 people). In this
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thesis, I use a sample training, validation and testing data (3 people in each

part).

Figure 7-1: Examples of the different actions and the different scenarios in the KTH
dataset. This image is taken from [Schuldt et al., 2004]

2. SHA dataset (Simple Human Actions dataset) - This is a new dataset

that was recorded primarily for the purpose of this thesis. This dataset includes

8 different actions performed by 9 different people. The actions in this dataset

are: running, walking, jumping, kicking a ball, passing a basketball, shooting a

basketball, crouching and crawling. All sequences were taken over a relatively

homogenous background with a static camera with a 30fps frame rate. The

resolution at which the data has been recorded is 720x405 pixels. The dataset

has been divided into training, validation and testing parts.

In the rest of this chapter I present the results for each of the major components of

my work, namely the pose classifier, the model of transitions between poses and the

sequence recognition. For each component I present and discuss the results separately

for the two datasets.

70



7.2 Pose Classifier Results

In this section, I summarize the results of the independent, single-frame pose classifi-

cation. The pose classifier is trained on a certain number of poses from each dataset

using a method described in chapter 3.

First, I present the results of pose classification on the SHA dataset. As mentioned

above, this dataset has been divided into training, validation and testing parts. The

pose classifier was trained on 10 distinct poses (see figure 7-2) extracted from 8 ac-

tions.

Figure 7-2: Examples of 10 poses in the SHA dataset

For this dataset, three different image processing techniques and the corresponding

fragment-example matching measures are grouped into three approaches:

Approach 1: The system extracts a motion silhouette from each frame. Then

an edge map is extracted from the silhouette. A normalized cross-correlation is

applied as a matching measure between the fragments and the examples.

Approach 2: The edge map is extracted directly from the image. The normal-

ized cross-correlation is applied as a matching measure between the fragments

and the examples.

Approach 3: The original frame image is not modified. HOG descriptor [Dalal

and Triggs, 2005] is extracted for each fragment and the normalized square
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distance between descriptors is used as a matching measure.

The pose classifier was separately trained for all the approaches listed above. By

applying approach 1, I achieved an average of 69% recall rate across 10 poses with an

average false positive rate of 2.7%. By applying approach 2, I achieved an average of

77% recall rate with an average false positive rate of 2.0%. Finally, using approach 3,

I achieved an average of 61% recall rate with an average false positive rate of 3.9%.

The complete results, for all the poses and all the approaches, are presented in ap-

pendix in table A.1.

KTH dataset is similarly divided into the training, validation and testing components.

From the pool consisting of 6 actions, 9 different poses have been extracted. In the

case of KTH dataset, two of the approaches listed above have been tested (Approach

2 and Approach 3). With approach 2, I achieved an average of 54% recall rate with

an average false positive rate of 5.2%. Using approach 3, I achieved an average of

68% with an average false positive rate of 3.4%. The complete results, for all the

poses and both approaches, are presented in appendix in table A.2.

Table 7.1 summarizes the average results of the pose classification system on the two

datasets.

Approach 1 Approach 2 Approach 3

TP* FP** TP FP TP FP
SHA 69% 2.7% 77% 2.0% 61% 3.9%
KTH N/A N/A 54% 5.2% 68% 3.4%

Table 7.1: This table shows the summary of the results in independent, single-frame
pose classification for SHA and KTH datasets and three different approaches; Note:
TP*-true positives and FP**-false positives

In the pose classification, I tested three different approaches. There are two features

that distinguish these approaches:

1. The matching function: In approaches 1 and 2 the matching function is the

normalized cross correlation, while in the approach 3, the matching function
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is the normalized square distance between the HOG descriptors. The normal-

ized cross correlation is a very efficient operation, while the HOG descriptor

extraction is a very slow. For this reason, the training using HOG descriptor

is modified. The number of examples used in training was reduced, fewer frag-

ments were extracted and the match was performed with 1/5 width of the sliding

window. The results show that performance of these two approaches is similar

and extracting HOG descriptors does not improve the results. I hypothesize

that this is because differences between the poses come mostly from the outside

shape of the body in which case edges adequately capture the representation.

2. The image processing preparation: In approach 1, I extract the motion

silhouette of the person and then extract the edges. This means that mostly

outside edges are present in the image that is further treated as an example. In

approach 2, the edges are extracted directly from the image. This allows more

internal edges to appear relative to the approach 1. The results show slight

evidence that a better representation involves a combination of internal edges

and outside ones.

The importance of hierarchical group tree representation

The pose classification results on the SHA dataset appear better than the results on

the KTH dataset. In particular, slightly lower results on the KTH dataset may be

attributed to pose selection. Some of the 9 pose categories that I selected were very

similar, while this was not the case to a such degree in the SHA dataset. For example,

four different pose categories, shown in figure 7-3, exhibit minimal variation between

them. Thus, they are very hard to distinguish.

That simply suggests that the initial pose selection was too broad - 9 poses were

selected out of 6 actions in the KTH dataset. However, this broad pose selection can

be effectively discovered with the hierarchical group tree representation described in

chapter 3.
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Figure 7-3: Example of very similar pose categories in the KTH dataset

To illustrate my point, I consider the hierarchical group tree generated in the training

stage of pose classification on the KTH dataset using the approach 2 (see figure 7-4)

Figure 7-4: Hierarchical group tree generated in the training stage of pose classifica-
tion on the KTH dataset using the approach 2

For this particular tree, the recall rate improves from 54% to 59% after the first

grouping, and then to 67% after the second grouping. These groupings correspond

to the reduction in number of poses from 9 to 7 poses. By reducing the pose set to

5 poses, the recall rate improves to 82%. This result demonstrates the hierarchical

group tree representation’s ability to guide the process of pose selection by selecting
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the appropriate number of poses. It also introduces the possibility of building an

automated pose selection mechanism which could be a very valuable extension of the

work done in this thesis.

The reason that this broad pose selection occurs is because the poses were selected

manually. What if a system could select the poses automatically? How would the sys-

tem know which poses to select? I think that this problem requires a system in which

a decision process flows both ways, top-down and bottom-up. The pose selection

inherently depends on the problem that the system is trying to solve. For exam-

ple, imagine that there are two sets of actions: {“running”, “swimming”, “diving”}

and {“running”, “jogging”, “walking”}. In the first set, it is sufficient to define only

three poses to achieve a near perfect action recognition rate because the actions in

the set are very visually distinct. Moreover, the three poses can be defined with a

substantial amount of variation within a pose category. However, in the second set,

more poses have to be defined and they have to be defined with less variation within

a pose category because the actions are visually similar. Addition of the automatic

pose selection to the system would make it more flexible by enabling the top-down

communication during the discovery stage.

7.3 Model of Transitions between Poses Results

In this section, I present the improvements to the pose classification results made

by the application of hidden Markov model to the original pose sequence. The same

frames that were used to generate the results for pose classification were used again,

after the HMM has been applied to the sequence. The results, similar to the previous

section, are presented separately for the two datasets in appendix in tables A.3 and

A.4.

In the SHA dataset, the average recall rate improved from 69% to 89%, from 77% to

89% and from 61% to 80% for approaches 1, 2 and 3, respectively, while improving

the false positive rate from 2.7% to 1.0%, from 2.0% to 1.1% and from 3.9% to

2.4%. That represents an average improvement of 17% in the recall rate across the
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three approaches. The comparison of the complete results for the SHA dataset,

obtained through independent pose classification and pose classification after the

HMM correction is applied, is shown on the graphs in figure 7-5.

For the KTH dataset the average recall rate improved from 54% to 69% and from 68%

to 82% for approaches 2 and 3, respectively, while improving the false positive rate

from 5.2% to 3.6% and from 3.4% to 1.9%. That represents an average improvement

of 14.5% in the recall rate across the two approaches. The comparison of the complete

results for the KTH dataset, obtained through independent pose classification and

pose classification after the HMM correction is applied, is shown on the graphs in

figure 7-6.

In the figures above we can see that some poses’ recall rates improve more than the

others. For example, if we look at poses 2 and 9 in approach 2 in figure 7-5, we see that

pose 2 recall rate was improved much more than pose 9 recall rate. The independent,

single-frame pose classification recall rate is similar for the two poses. However, the

effectiveness of temporal constraints model on them is very different. While pose 2

recall rate improves by more than 40%, the recall rate for pose 9 improves just over

5%. Why is that so? I think that in order to answer this question we need to look at

the kind of mistakes that the independent single-frame classifier makes on both pose

categories. In the case of pose 2, the classifier confuses it dominantly with pose 1 and

sometimes with pose 5. In the case of pose 9, the classifier confuses it very often with

pose 7, pose 5 and pose 1, and it sometimes makes mistakes and estimates it as a few

other poses. The distribution of mistakes on the validation set directly influences the

emissions probability distribution. This means that emissions probability distribution

for pose 2 is very narrow (most probability is concentrated around poses 1 and 5),

and for pose 9 it is spread out across many different poses. When a misclassification

happens, it is much easier for the inference algorithm to infer the proper correction

in the case when the mistake is common.

In this section, I have demonstrated that results of independent single-frame pose

classification are significantly improved when the transitions between poses in the

human motions are modelled with a hidden Markov model. As discussed in the end
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Figure 7-5: Comparison of independent single-frame pose classification and pose clas-
sification after HMM correction is applied for the SHA dataset

of chapter 4, this result has multiple implications. First, it directly affects action

recognition by improving the pose sequence. Second, based on this result, I have
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Figure 7-6: Comparison of independent single-frame pose classification and pose clas-
sification after HMM correction is applied for the KTH dataset

confirmed that structural constraints can be used as a powerful feedback mechanism

to the pose classifier. The examples that are corrected are the ones that are currently

present in the model of a pose and should not be there. Therefore, these examples

can be used to prune the pose models and improve them online, during the runtime

of the system.
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7.4 Sequence Recognition Results

In this section I present the results of the action recognition based on a sequence

of poses. I approached the problem of sequence recognition using two methods, an

unsupervised method based on hierarchical agglomerative clustering and a supervised

method based on training of HMM models for different action categories.

Unsupervised learning

In the unsupervised method, I apply agglomerative hierarchical clustering to the

sequences of letters in the pose alphabet. At every level of the hierarchy, I measure

the accuracy of the clustering method as the percentage number of actions that were

put into a cluster where they are a majority.

accuracy =

∑
a∈A 1c(a)=a

|A|
(7.1)

where A is a set of all actions, and c(a) is the cluster action label into which action

label a was put.

I measured the accuracy of the clustering algorithm for the sequences produced by

three different methods and two different datasets. The graphs showing the accuracy

obtained on the SHA dataset are shown in figure 7-7.

Similarly, the graphs showing the accuracy obtained on the KTH dataset are shown

in figure 7-8.

The results of the unsupervised clustering prove that most of the sequence structure

can be captured by a simple bag of words model. At number of clusters equal to the

number of action categories (8 for SHA and 6 for KTH), the accuracy is 72% and 74%

for SHA and KTH datasets, respectively. However, these figures also show that there

is a limit to the amount of variability in the pose sequence that can be captured using

the unsupervised learning. As the number of clusters grows, the accuracy increases,

but seems to approach an asymptote.
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Figure 7-7: Clustering Accuracy for the SHA dataset
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Figure 7-8: Clustering Accuracy for the KTH dataset

Supervised learning

In the supervised method, I model action sequences with a hidden Markov model,

one per action category, using the Baum-Welch algorithm. Each model parameters

are optimized such that they best describe the training sequences from the associ-

ated action category. I then test these models on the unseen sequences of actions by

feeding the sequences and outputting the model that is most likely to produce such

a sequence.

The sequences in the SHA dataset were tested in three different scenarios and se-

quences in the KTH dataset were tested in two different scenarios, corresponding to

the previously described approaches in pose estimation. Table 7.2 summarizes the

average results of the action recognition system on the KTH and SHA datasets.
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Approach 1 Approach 2 Approach 3

TP* FP** TP FP TP FP
SHA 86% 0.9% 91% 0.6% 88% 0.8%
KTH N/A N/A 86% 1.1% 91% 0.9%

Table 7.2: This table shows the summary of the results in action recognition for
SHA and KTH datasets and three different approaches; Note: TP*-true positives
and FP**-false positives

Using approach 2 for pose classification, the system achieved 91% average recall rate

on the SHA dataset containing 8 actions. It is interesting to notice that the system

achieved a slightly higher action recognition recall rate when approach 3 was used

(88%) for the pose classification instead of approach 1 (86%). This is interesting be-

cause independent single-frame pose classification with approach 1 achieved a higher

recall rate (69%) compared to that with approach 3 (61%). The data on the pose

classification suggests that this is simply because approach 3 was more successful

in recognizing poses that turned out to be crucial in the action recognition stage.

For example, one of the reasons that approach 3 pose classification recall rate was

slightly lower is that the recall rate for a bending pose found in “crouching” was very

often confused with the bending pose found in “jumping”. However, when it comes

to action recognition, the distinction between these two is not so important. This

represents another example of a grouping effect that I mentioned earlier in the pose

classifier section of the results. As mentioned before, hierarchical group tree repre-

sentation can be a very useful mechanism for deciding which poses are key poses for

action recognition.

Results for all the actions in the SHA dataset are summarized in figure 7-9.

In figure 7-9, we can see that actions running, walking and jumping have a consistently

lower recall rate than others. The reason for this is that the poses in these actions

are very often confused. That sometimes leads to model selecting a wrong action,

for example walking instead of running. Sometimes the training sequences contain a

mix of the poses that participate in all three actions which leads to a weak separa-

tion between the models. In that case, even sequences which can be clearly classified
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Figure 7-9: Action Recognition Recall Rate for the SHA dataset

correctly are misclassified. This suggests that there is a room for improvement in the

detection rate that can be achieved with a more careful selection of training sequences.
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Using approach 3 for pose classification, the system achieved 91% average recall rate

on the KTH dataset containing 6 actions. This result is competitive with the state

of the art approaches described in chapter 2, which achieve between 90% and 96%

recall rate.

Results for all the actions in the KTH dataset are summarized in figure 7-10.

Figure 7-10: Action Recognition Recall Rate for the KTH dataset
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Summary

In this chapter I presented results for three major components of my work, the single-

frame pose classification system, the system for modelling the transitions between the

poses and the action recognition system. I tested the systems on two datasets, the

SHA dataset and the public KTH dataset.

The action recognition system as a whole achieves results that are competitive with

the state of the art systems. I also showed that modelling transitions between poses

based on the constraints in human motion significantly improves the results of single-

frame pose classification. Finally, I showed that treating actions as a sequence of

poses is an effective method in action recognition.
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Chapter 8

Conclusion

In this final chapter I review the goals of this thesis. I state what has been done

toward achieving these goals and outline some steps for the future work.

The goal of action recognition is to achieve a state where everyday activities can

easily be described by an automated process. In order to build systems that can

give you a live, play-by-play commentary of a sports game or detect security threats,

we first need to understand how to recognize actions performed by humans on an

everyday basis. In this thesis, I took a step toward achieving this goal by focusing

on the problem of recognizing simple human actions. I approached this problem in

three stages: single-frame pose classification, modelling of structural constraints in

human motion and action recognition from the sequence of letters in pose alphabet. I

demonstrated high-reliability action recognition results on two datasets. The results

that I obtained are competitive with the results in other, state of the art approaches

presented in chapter 2.

Furthermore, my approach is unique in the following key aspects:

1. I develop a 3-tier structure that combines the constraints of single-frame ap-

pearance on one level and the temporal constraints imposed by physics, human

body physics in particular, on two higher levels. My approach enables rela-

tive strength on one level to compensate for relative weakness on another and

provides a foundation for cooperative learning in future work.
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2. I model actions as sequences of tentatively identified poses, and I think of pose

sequences as having a story like quality, with one such sequence telling a walking

story and another, a jumping story. This point of view encouraged unusual

emphasis on single-frame processing in my work and provides a foundation for

dealing with more complex actions and actions achieved in multiple ways, such

as drinking, in future work.

8.1 Future work

Online training of the pose classifier system can gradually improve the results.

One of the most challenging tasks in training a pose classification system is feature

selection. This is typically done offline: a set of positive and negative examples is

created and features that are the most descriptive are picked. However, very often

we end up picking examples that do not allow the training process to capture the

essential features of a certain class. This is because very often we do not know what

kind of examples are good to pick. So it would be ideal if we can build a system that

can automatically pick these examples and grow our training set. This is possible

only in the case when there are two independent decision processes that can make an

inference about a class. This is the case with the pose class estimation. On one side,

there is a model of a pose built in the pose classifier. On the other side, there is a

model of transitions between those poses. As I demonstrated in the results section,

the model of transitions corrects a significant number of errors. However, those errors

are still part of the pose classifier model. Now this error example can be used as a

near miss example in order to prune the pose classifier model. Eventually when the

model is pruned and the classifier runs into a similar example again, it will classify it

correctly. Then the accuracy of the classifier will gradually improve which will lead

to more robust action recognition.

Automated pose selection would be a great extension to the system presented

in this thesis because it would allow top-down expansion to many other actions.
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Currently, the pose selection is done manually which often leads to selecting pose cat-

egories that are too similar or not selecting an important pose category. Hierarchical

group tree system represents a good starting ground for development of the system

that would automatically select poses because the tree provides a similarity metric

between different groups of poses. The next step would be to feed the system with

many different actions and optimize the parameters of the system based on the group

tree such that it picks the poses that best describe actions in the system.

8.2 Contributions

In this thesis, I make four distinct contributions:

1. First, I successfully integrated Ullman’s Intermediate Features principle into

the pose classification system. On top of it I developed a hierarchical group

tree structure which serves as a representation of similarity between different

pose groups.

2. I introduced the model of regularities in pose sequences. I showed that it sig-

nificantly improves the results of single-frame pose classification and enables

reliable pose correction. On the dataset with 10 poses, the model improved the

results by an average of 17% and on the dataset containing 9 poses, it improved

the results by 14.5%.

3. I developed a model of actions that learns simple human actions based on the

sequences of poses. Using the Baum-Welch algorithm, the model learns the

parameters of a hidden Markov model for a specific action category. The model

is then used for action recognition.

4. I demonstrated the strength of the overall system by successfully learning and

recognizing actions in the 6-action public KTH dataset and the 8-action newly

introduced dataset. On both datasets, the system achieved 91% action recogni-

tion recall rate. These results demonstrate that simple actions can be effectively

represented using sequence of poses.
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Appendix A

Tables

Approach 1 Approach 2 Approach 3

TP* FP** TP FP TP FP
Pose1 0.64 0.019 0.93 0.052 0.27 0.020
Pose2 0.33 0.008 0.42 0.003 0.84 0.054
Pose3 0.83 0.019 0.73 0.012 0.32 0.003
Pose4 0.46 0.002 0.87 0.004 0.79 0.047
Pose5 1.00 0.072 0.99 0.077 0.54 0.094
Pose6 0.75 0.002 0.77 0.002 0.87 0.020
Pose7 0.49 0.000 0.81 0.024 0.29 0.027
Pose8 1.00 0.065 1.00 0.003 1.00 0.028
Pose9 0.60 0.077 0.38 0.023 0.62 0.080
Pose10 0.76 0.009 0.73 0.007 0.51 0.023

Table A.1: This table shows complete results of the independent single-frame pose
classification on the SHA dataset; Note TP*-true positives and FP**-false positives
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Approach 2 Approach 3

TP* FP** TP FP
Pose1 0.90 0.111 0.47 0.016
Pose2 0.16 0.038 0.50 0.025
Pose3 0.12 0.007 0.80 0.006
Pose4 0.54 0.134 0.85 0.066
Pose5 1.00 0.041 0.81 0.046
Pose6 0.31 0.083 0.82 0.081
Pose7 0.22 0.004 0.56 0.028
Pose8 0.86 0.019 0.68 0.035
Pose9 0.65 0.037 0.63 0.002

Table A.2: This table shows complete results of the independent single-frame pose
classification on the KTH dataset; Note TP*-true positives and FP**-false positives

Approach 1 Approach 2 Approach 3

TP* FP** TP FP TP FP
Pose1 1.00 0.009 0.93 0.029 0.77 0.008
Pose2 0.83 0.003 0.83 0.012 0.94 0.036
Pose3 0.90 0.011 0.95 0.008 0.46 0.000
Pose4 0.62 0.000 0.89 0.003 0.91 0.050
Pose5 1.00 0.030 1.00 0.028 0.69 0.036
Pose6 0.80 0.001 0.94 0.002 0.94 0.014
Pose7 1.00 0.000 0.99 0.026 0.37 0.000
Pose8 1.00 0.046 1.00 0.000 1.00 0.026
Pose9 0.79 0.000 0.43 0.002 0.97 0.069
Pose10 1.00 0.007 0.97 0.005 1.00 0.003

Table A.3: This table shows complete results of the pose classification, on the SHA
dataset, after the regularities in pose sequences have been modelled by an HMM.;
Note TP*-true positives and FP**-false positives

92



Approach 2 Approach 3

TP* FP** TP FP
Pose1 0.94 0.069 0.70 0.005
Pose2 0.56 0.058 0.71 0.012
Pose3 0.16 0.001 0.87 0.002
Pose4 0.66 0.040 0.89 0.040
Pose5 1.00 0.023 0.91 0.029
Pose6 0.73 0.089 0.93 0.048
Pose7 0.52 0.009 0.67 0.015
Pose8 0.93 0.010 0.91 0.021
Pose9 0.74 0.026 0.81 0.000

Table A.4: This table shows complete results of the pose classification, on the KTH
dataset, after the regularities in pose sequences have been modelled by an HMM.;
Note TP*-true positives and FP**-false positives
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