
Recognizing Actions using Embodiment & Empathy

by

Robert Louis M
c
Intyre

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Robert Louis M
c
Intyre, MMXIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Author .

Department of Electrical Engineering and Computer Science

May 23, 2014

Certi�ed by .

Patrick H. Winston

Ford Professor of Arti�cial Intelligence and Computer Science

Thesis Supervisor

Accepted by .

Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Recognizing Actions using Embodiment & Empathy
by

Robert Louis M
c
Intyre

Submitted to the Department of Electrical Engineering and Computer Science

on May 23, 2014, in partial ful�llment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract
Here I demonstrate the power of using embodied arti�cial intelligence to attack the action recogni-
tion problem, which is the challenge of recognizing actions performed by a creature given limited

data about the creature’s actions, such as a video recording. I solve this problem in the case of a

worm-like creature performing actions such as curling and wiggling.

To attack the action recognition problem, I developed a computational model of empathy

(EMPATH) which allows me to recognize actions using simple, embodied representations of actions

(which require rich sensory data), even when that sensory data is not actually available. The

missing sense data is imagined by combining previous experiences gained from unsupervised

free play. The worm is a �ve-segment creature equipped with touch, proprioception, and muscle

tension senses. It recognizes actions using only proprioception data.

In order to build this empathic, action-recognizing system, I created a program called CORTEX,

which is a complete platform for embodied AI research. It provides multiple senses for simulated

creatures, including vision, touch, proprioception, muscle tension, and hearing. Each of these

senses provides a wealth of parameters that are biologically inspired. CORTEX is able to simulate

any number of creatures and senses, and provides facilities for easily modeling and creating new

creatures. As a research platform it is more complete than any other system currently available.

Thesis Supervisor: Patrick H. Winston

Title: Ford Professor of Arti�cial Intelligence and Computer Science

Contents

1 Empathy & Embodiment: problem solving strategies 6

1.1 The problem: recognizing actions is hard! 6

1.2 A step forward: the sensorimotor-centered approach 8

1.3 EMPATH recognizes actions using empathy 9

1.4 EMPATH is built on CORTEX, a creature builder. 12

2 Designing CORTEX . 15

2.1 Building in simulation versus reality . 15

2.2 Simulated time enables rapid prototyping & simple programs 16

2.3 All sense organs are two-dimensional surfaces 16

2.4 Video game engines provide ready-made physics and shading 18

2.5 CORTEX is based on jMonkeyEngine3 . 18

2.6 CORTEX uses Blender to create creature models 19

2.7 Bodies are composed of segments connected by joints 20

2.8 Sight reuses standard video game components. 26

2.9 . . . but hearing must be built from scratch 32

2.10 Hundreds of hair-like elements provide a sense of touch 37

2.11 Proprioception provides knowledge of your own body’s position 46

2.12 Muscles contain both sensors and e�ectors 48

2.13 CORTEX brings complex creatures to life! 51

2.14 CORTEX enables many possibilities for further research 54

3 EMPATH: action recognition in a simulated worm 56

3.1 Embodiment factors action recognition into manageable parts 57

3.2 Action recognition is easy with a full gamut of senses 57

3.3 Φ-space describes the worm’s experiences 60

3.4 Empathy is the process of building paths in Φ-space 61

3.5 EMPATH recognizes actions e�ciently . 65

3.6 Digression: Learning touch sensor layout through free play 68

3.7 Recognizing an object using embodied representation 71

4 Contributions . 74

1 Appendix: CORTEX User Guide . 75

1.1 Obtaining CORTEX . 75

1.2 Running CORTEX . 75

1.3 Creating creatures . 75

1.4 CORTEX API . 80

5

1. Empathy & Embodiment: problem solving strategies

1 Empathy & Embodiment: problem solving strategies
By the time you have read this thesis, you will understand a novel approach to representing

and recognizing physical actions using embodiment and empathy. You will also see one way to

e�ciently implement physical empathy for embodied creatures. Finally, you will become familiar

with CORTEX, a system for designing and simulating creatures with rich senses, which I have

designed as a library that you can use in your own research. Note that I do not process video

directly — I start with knowledge of the positions of a creature’s body parts and work from there.

This is the core vision of my thesis: That one of the important ways in which we understand

others is by imagining ourselves in their position and empathically feeling experiences relative to

our own bodies. By understanding events in terms of our own previous corporeal experience, we

greatly constrain the possibilities of what would otherwise be an unwieldy exponential search.

This extra constraint can be the di�erence between easily understanding what is happening in a

video and being completely lost in a sea of incomprehensible color and movement.

1.1 The problem: recognizing actions is hard!
Examine �gure 1. What is happening? As you, and indeed very young children, can easily deter-

mine, this is an image of drinking.

Figure 1: A cat drinking some water. Identifying this action is beyond the capabilities of

existing computer vision systems.

Nevertheless, it is beyond the state of the art for a computer vision program to describe what’s

6

The problem: recognizing actions is hard!

happening in this image. Part of the problem is that many computer vision systems focus on pixel-

level details or comparisons to example images (such as Ke, Sukthankar, and Hebert 2005), but

the 3D world is so variable that it is hard to describe the world in terms of possible images.

In fact, the contents of a scene may have much less to do with pixel probabilities than with

recognizing various a�ordances: things you can move, objects you can grasp, spaces that can be

�lled . For example, what processes might enable you to see the chair in �gure 2?

Figure 2: The chair in this image is quite obvious to humans, but it can’t be found by any

modern computer vision program.

Finally, how is it that you can easily tell the di�erence between how the girl’s muscles are

working in �gure 3?

Figure 3: The mysterious “common sense” appears here as you are able to discern the

di�erence in how the girl’s arm muscles are activated between the two images. When you

compare these two images, do you feel something in your own arm muscles?

Each of these examples tells us something about what might be going on in our minds as we

easily solve these recognition problems:

7

A step forward: the sensorimotor-centered approach

• The hidden chair shows us that we are strongly triggered by cues relating to the position

of human bodies, and that we can determine the overall physical con�guration of a human

body even if much of that body is occluded.

• The picture of the girl pushing against the wall tells us that we have common sense knowl-

edge about the kinetics of our own bodies. We know well how our muscles would have

to work to maintain us in most positions, and we can easily project this self-knowledge to

imagined positions triggered by images of the human body.

• The cat tells us that imagination of some kind plays an important role in understanding

actions. The question is: Can we be more precise about what sort of imagination is required

to understand these actions?

1.2 A step forward: the sensorimotor-centered approach

In this thesis, I explore the idea that our knowledge of our own bodies, combined with our own

rich senses, enables us to recognize the actions of others.

For example, I think humans are able to label the cat video as “drinking” because they imagine

themselves as the cat, and imagine putting their face up against a stream of water and sticking

out their tongue. In that imagined world, they can feel the cool water hitting their tongue, and

feel the water entering their body, and are able to recognize that feeling as drinking. So, the

label of the action is not really in the pixels of the image, but is found clearly in a simulation /

recollection inspired by those pixels. An imaginative system, having been trained on drinking and

non-drinking examples and learning that the most important component of drinking is the feeling

of water �owing down one’s throat, would analyze a video of a cat drinking in the following

manner:

1. Create a physical model of the video by putting a “fuzzy” model of its own body in place

of the cat. Possibly also create a simulation of the stream of water.

2. Play out this simulated scene and generate imagined sensory experience. This will include

relevant muscle contractions, a close up view of the stream from the cat’s perspective, and

most importantly, the imagined feeling of water entering the mouth. The imagined sensory

experience can come from a simulation of the event, but can also be pattern-matched from

previous, similar embodied experience.

3. The action is now easily identi�ed as drinking by the sense of taste alone. The other senses

(such as the tongue moving in and out) help to give plausibility to the simulated action.

Note that the sense of vision, while critical in creating the simulation, is not critical for

identifying the action from the simulation.

For the chair examples, the process is even easier:

1. Align a model of your body to the person in the image.

2. Generate proprioceptive sensory data from this alignment.

8

EMPATH recognizes actions using empathy

3. Use the imagined proprioceptive data as a key to lookup related sensory experience asso-

ciated with that particular proprioceptive feeling.

4. Retrieve the feeling of your bottom resting on a surface, your knees bent, and your leg

muscles relaxed.

5. This sensory information is consistent with your sitting? sensory predicate, so you (and

the entity in the image) must be sitting.

6. There must be a chair-like object since you are sitting.

Empathy o�ers yet another alternative to the age-old AI representation question: “What is a

chair?” — A chair is the feeling of sitting!

One powerful advantage of empathic problem solving is that it factors the action recognition

problem into two easier problems. To use empathy, you need an aligner, which takes the video

and a model of your body, and aligns the model with the video. Then, you need a recognizer, which

uses the aligned model to interpret the action. The power in this method lies in the fact that you

describe all actions from a body-centered viewpoint. You are less tied to the particulars of any

visual representation of the actions. If you teach the system what “running” is, and you have a

good enough aligner, the system will from then on be able to recognize running from any point

of view – even strange points of view like above or underneath the runner. This is in contrast

to action recognition schemes that try to identify actions using a non-embodied approach. If

these systems learn about running as viewed from the side, they will not automatically be able

to recognize running from any other viewpoint.

Another powerful advantage is that using the language of multiple body-centered rich senses

to describe body-centered actions o�ers a massive boost in descriptive capability. Consider how

di�cult it would be to compose a set of HOG (Histogram of Oriented Gradients) �lters to describe

the action of a simple worm-creature “curling” so that its head touches its tail, and then behold

the simplicity of describing thus action in a language designed for the task (listing 1):

Listing 1: Body-centered actions are best expressed in a body-centered language. This code

detects when the worm has curled into a full circle. Imagine how you would replicate this

functionality using low-level pixel features such as HOG �lters!

(defn grand-circle?
"Does the worm form a majestic circle (one end touching the other)?"
[experiences]
(and (curled? experiences)

(let [worm-touch (:touch (peek experiences))
tail-touch (worm-touch 0)
head-touch (worm-touch 4)]

(and (< 0.2 (contact worm-segment-bottom-tip tail-touch))
(< 0.2 (contact worm-segment-top-tip head-touch))))))

1.3 EMPATH recognizes actions using empathy
Exploring these ideas further demands a concrete implementation, so �rst, I built a system for

constructing virtual creatures with physiologically plausible sensorimotor systems and detailed

environments. The result is CORTEX, which I describe in chapter 2.

9

EMPATH recognizes actions using empathy

Next, I wrote routines which enabled a simple worm-like creature to infer the actions of a

second worm-like creature, using only its own prior sensorimotor experiences and knowledge

of the second worm’s joint positions. This program, EMPATH, is described in chapter 3. It’s main

components are:

Embodied Action De�nitions Many otherwise complicated actions are easily described in the

language of a full suite of body-centered, rich senses and experiences. For example, drink-

ing is the feeling of water �owing down your throat, and cooling your insides. It’s often

accompanied by bringing your hand close to your face, or bringing your face close to water.

Sitting down is the feeling of bending your knees, activating your quadriceps, then feeling a

surface with your bottom and relaxing your legs. These body-centered action descriptions

can be either learned or hard coded.

Guided Play The creature moves around and experiences the world through its unique per-

spective. As the creature moves, it gathers experiences that satisfy the embodied action

de�nitions.

Posture Imitation When trying to interpret a video or image, the creature takes a model of

itself and aligns it with whatever it sees. This alignment might even cross species, as when

humans try to align themselves with things like ponies, dogs, or other humans with a

di�erent body type.

Empathy The alignment triggers associations with sensory data from prior experiences. For

example, the alignment itself easily maps to proprioceptive data. Any sounds or obvious

skin contact in the video can to a lesser extent trigger previous experience keyed to hearing

or touch. Segments of previous experiences gained from play are stitched together to form

a coherent and complete sensory portrait of the scene.

Recognition With the scene described in terms of remembered �rst person sensory events, the

creature can now run its action-de�nition programs (such as the one in listing 1) on this

synthesized sensory data, just as it would if it were actually experiencing the scene �rst-

hand. If previous experience has been accurately retrieved, and if it is analogous enough

to the scene, then the creature will correctly identify the action in the scene.

My program EMPATH uses this empathic problem solving technique to interpret the actions of

a simple, worm-like creature.

Main Results

• After one-shot supervised training, EMPATH was able to recognize a wide variety of static

poses and dynamic actions—ranging from curling in a circle to wiggling with a particular

frequency — with 95% accuracy.

• These results were completely independent of viewing angle because the underlying body-

centered language fundamentally is independent; once an action is learned, it can be rec-

ognized equally well from any viewing angle.

10

EMPATH recognizes actions using empathy

Figure 4: The worm performs many actions during free play such as curling, wiggling, and

resting.

• EMPATH is surprisingly short; the sensorimotor-centered language provided by CORTEX re-

sulted in extremely economical recognition routines — about 500 lines in all — suggesting

that such representations are very powerful, and often indispensable for the types of recog-

nition tasks considered here.

• For expediency’s sake, I relied on direct knowledge of joint positions in this proof of con-

cept. However, I believe that the structure of EMPATH and CORTEX will make future work to

enable video analysis much easier than it would otherwise be.

11

EMPATH is built on CORTEX, a creature builder.

Figure 5: EMPATH recognized and classi�ed each of these poses by inferring the complete

sensory experience from proprioceptive data.

1.4 EMPATH is built on CORTEX, a creature builder.
I built CORTEX to be a general AI research platform for doing experiments involving multiple rich

senses and a wide variety and number of creatures. I intend it to be useful as a library for many

more projects than just this thesis. CORTEX was necessary to meet a need among AI researchers at

CSAIL and beyond, which is that people often will invent wonderful ideas that are best expressed

in the language of creatures and senses, but in order to explore those ideas they must �rst build

a platform in which they can create simulated creatures with rich senses! There are many ideas

that would be simple to execute (such as EMPATH or Larson’s self-organizing maps (Larson 2003)),

but attached to them is the multi-month e�ort to make a good creature simulator. Often, that

initial investment of time proves to be too much, and the project must make do with a lesser

environment or be abandoned entirely.

CORTEX is well suited as an environment for embodied AI research for three reasons:

• You can design new creatures using Blender (Blender 2013), a popular, free 3D modeling

program. Each sense can be speci�ed using special Blender nodes with biologically inspired

parameters. You need not write any code to create a creature, and can use a wide library

of pre-existing Blender models as a base for your own creatures.

• CORTEX implements a wide variety of senses: touch, proprioception, vision, hearing, and

muscle tension. Complicated senses like touch and vision involve multiple sensory ele-

ments embedded in a 2D surface. You have complete control over the distribution of these

sensor elements through the use of simple image �les. CORTEX implements more compre-

hensive hearing than any other creature simulation system available.

• CORTEX supports any number of creatures and any number of senses. Time in CORTEX dilates

so that the simulated creatures always perceive a perfectly smooth �ow of time, regardless

of the actual computational load.

CORTEX is built on top of jMonkeyEngine3 (jMonkeyEngine3 2013), which is a video game en-

gine designed to create cross-platform 3D desktop games. CORTEX is mainly written in clojure, a

dialect of LISP that runs on the Java Virtual Machine (JVM). The API for creating and simulating

creatures and senses is entirely expressed in clojure, though many senses are implemented at the

layer of jMonkeyEngine or below. For example, for the sense of hearing I use a layer of clojure

code on top of a layer of java JNI bindings that drive a layer of C++ code which implements a

12

EMPATH is built on CORTEX, a creature builder.

modi�ed version of OpenAL to support multiple listeners. CORTEX is the only simulation environ-

ment that I know of that can support multiple entities that can each hear the world from their

own perspective. Other senses also require a small layer of Java code. CORTEX also uses bullet,

a physics simulator written in C.

Figure 6: Here is the worm from �gure 4 modeled in Blender, a free 3D-modeling program.

Senses and joints are described using special nodes in Blender.

Here are some things I anticipate that CORTEX might be used for:

• exploring new ideas about sensory integration

• distributed communication among swarm creatures

• self-learning using free exploration,

• evolutionary algorithms involving creature construction

• exploration of exotic senses and e�ectors that are not possible in the real world (such as

telekinesis or a semantic sense)

• imagination using subworlds

During one test with CORTEX, I created 3,000 creatures each with its own independent senses

and ran them all at only 1/80 real time. In another test, I created a detailed model of my own

hand, equipped with a realistic distribution of touch (more sensitive at the �ngertips), as well as

eyes and ears, and it ran at around 1/4 real time.

13

EMPATH is built on CORTEX, a creature builder.

F
i
g
u

r
e

7
:

I
m

o
d

e
l
e
d

m
y

o
w

n
r
i
g
h

t
h

a
n

d
i
n

B
l
e
n

d
e
r

a
n

d
r
i
g
g
e
d

i
t

w
i
t
h

a
l
l

t
h

e
s
e
n

s
e
s

t
h

a
t

CORTEX
s
u

p
p

o
r
t
s
.

M
y

s
i
m

u
l
a
t
e
d

h
a
n

d
h

a
s

a
b
i
o

l
o

g
i
c
a
l
l
y

i
n

s
p

i
r
e
d

d
i
s
t
r
i
b
u

t
i
o

n
o

f
t
o

u
c
h

s
e
n

-

s
o

r
s
.

T
h

e
s
e
n

s
e
s

a
r
e

d
i
s
p

l
a
y

e
d

o
n

t
h

e
r
i
g
h

t
(
t
h

e
r
e
d

/
b
l
a
c
k

s
q

u
a
r
e
s

a
r
e

r
a
w

s
e
n

s
o

r
y

o
u

t
p

u
t
)
,

a
n

d
t
h

e
s
i
m

u
l
a
t
i
o

n
i
s

d
i
s
p

l
a
y

e
d

o
n

t
h

e
l
e
f
t
.
N

o
t
i
c
e

t
h

a
t

m
y

h
a
n

d
i
s

c
u

r
l
i
n

g
i
t
s

�
n

g
e
r
s
,
t
h

a
t

i
t

c
a
n

s
e
e

i
t
s

o
w

n
�

n
g
e
r

f
r
o

m
t
h

e
e
y

e
i
n

i
t
s

p
a
l
m

,
a
n

d
t
h

a
t

i
t

c
a
n

f
e
e
l
i
t
s

o
w

n
t
h

u
m

b
t
o

u
c
h

i
n

g

i
t
s

p
a
l
m

.

14

2. Designing CORTEX

2 Designing CORTEX

In this chapter, I outline the design decisions that went into making CORTEX, along with some

details about its implementation. (A practical guide to getting started with CORTEX, which skips

over the history and implementation details presented here, is provided in an appendix at the end

of this thesis.)

Throughout this project, I intended for CORTEX to be �exible and extensible enough to be

useful for other researchers who want to test ideas of their own. To this end, wherever I have

had to make architectural choices about CORTEX, I have chosen to give as much freedom to the

user as possible, so that CORTEX may be used for things I have not foreseen.

2.1 Building in simulation versus reality
The most important architectural decision of all is the choice to use a computer-simulated en-

vironment in the �rst place! The world is a vast and rich place, and for now simulations are

a very poor re�ection of its complexity. It may be that there is a signi�cant qualitative di�er-

ence between dealing with senses in the real world and dealing with pale facsimiles of them in a

simulation (Brooks 1991). What are the advantages and disadvantages of a simulation vs. reality?

Simulation

The advantages of virtual reality are that when everything is a simulation, experiments in that

simulation are absolutely reproducible. It’s also easier to change the creature and environment

to explore new situations and di�erent sensory combinations.

If the world is to be simulated on a computer, then not only do you have to worry about

whether the creature’s senses are rich enough to learn from the world, but whether the world

itself is rendered with enough detail and realism to give enough working material to the creature’s

senses. To name just a few di�culties facing modern physics simulators: destructibility of the

environment, simulation of water/other �uids, large areas, nonrigid bodies, lots of objects, smoke.

I don’t know of any computer simulation that would allow a creature to take a rock and grind it

into �ne dust, then use that dust to make a clay sculpture, at least not without spending years

calculating the interactions of every single small grain of dust. Maybe a simulated world with

today’s limitations doesn’t provide enough richness for real intelligence to evolve.

Reality

The other approach for playing with senses is to hook your software up to real cameras, mi-

crophones, robots, etc., and let it loose in the real world. This has the advantage of eliminating

concerns about simulating the world at the expense of increasing the complexity of implementing

the senses. Instead of just grabbing the current rendered frame for processing, you have to use

an actual camera with real lenses and interact with photons to get an image. It is much harder to

change the creature, which is now partly a physical robot of some sort, since doing so involves

changing things around in the real world instead of modifying lines of code. While the real world

is very rich and de�nitely provides enough stimulation for intelligence to develop (as evidenced

by our own existence), it is also uncontrollable in the sense that a particular situation cannot be

recreated perfectly or saved for later use. It is harder to conduct Science because it is harder to

15

Simulated time enables rapid prototyping & simple programs

repeat an experiment. The worst thing about using the real world instead of a simulation is the

matter of time. Instead of simulated time you get the constant and unstoppable �ow of real time.

This severely limits the sorts of software you can use to program an AI, because all sense inputs

must be handled in real time. Complicated ideas may have to be implemented in hardware or

may simply be impossible given the current speed of our processors. Contrast this with a simu-

lation, in which the �ow of time in the simulated world can be slowed down to accommodate the

limitations of the creature’s programming. In terms of cost, doing everything in software is far

cheaper than building custom real-time hardware. All you need is a laptop and some patience.

2.2 Simulated time enables rapid prototyping & simple programs
I envision CORTEX being used to support rapid prototyping and iteration of ideas. Even if I could

put together a well constructed kit for creating robots, it would still not be enough because of

the scourge of real-time processing. Anyone who wants to test their ideas in the real world

must always worry about getting their algorithms to run fast enough to process information in

real time. The need for real time processing only increases if multiple senses are involved. In

the extreme case, even simple algorithms will have to be accelerated by ASIC chips or FPGAs,

turning what would otherwise be a few lines of code and a 10x speed penalty into a multi-month

ordeal. For this reason, CORTEX supports time-dilation, which scales back the framerate of the

simulation in proportion to the amount of processing each frame. From the perspective of the

creatures inside the simulation, time always appears to �ow at a constant rate, regardless of how

complicated the environment becomes or how many creatures are in the simulation. The cost is

that CORTEX can sometimes run slower than real time. Time dilation works both ways, however

— simulations of very simple creatures in CORTEX generally run at 40x real-time on my machine!

2.3 All sense organs are two-dimensional surfaces
If CORTEX is to support a wide variety of senses, it would help to have a better understanding of

what a sense actually is! While vision, touch, and hearing all seem like they are quite di�erent

things, I was surprised to learn during the course of this thesis that they (and all physical senses)

can be expressed as exactly the same mathematical object!

Human beings are three-dimensional objects, and the nerves that transmit data from our

various sense organs to our brain are essentially one-dimensional. This leaves up to two di-

mensions in which our sensory information may �ow. For example, imagine your skin: it is a

two-dimensional surface around a three-dimensional object (your body). It has discrete touch

sensors embedded at various points, and the density of these sensors corresponds to the sensi-

tivity of that region of skin. Each touch sensor connects to a nerve, all of which eventually are

bundled together as they travel up the spinal cord to the brain. Intersect the spinal nerves with a

guillotining plane and you will see all of the sensory data of the skin revealed in a roughly circular

two-dimensional image which is the cross section of the spinal cord. Points on this image that

are close together in this circle represent touch sensors that are probably close together on the

skin, although there is of course some cutting and rearrangement that has to be done to transfer

the complicated surface of the skin onto a two dimensional image.

Most human senses consist of many discrete sensors of various properties distributed along

a surface at various densities. For skin, it is Pacinian corpuscles, Meissner’s corpuscles, Merkel’s

16

All sense organs are two-dimensional surfaces

disks, and Ru�ni’s endings (Bear et al. 2006), which detect pressure and vibration of various

intensities. For ears, it is the stereocilia distributed along the basilar membrane inside the cochlea;

each one is sensitive to a slightly di�erent frequency of sound. For eyes, it is rods and cones

distributed along the surface of the retina. In each case, we can describe the sense with a surface

and a distribution of sensors along that surface.

In fact, almost every human sense can be e�ectively described in terms of a surface containing

embedded sensors. If the sense had any more dimensions, then there wouldn’t be enough room

in the spinal cord to transmit the information!

Therefore, CORTEX must support the ability to create objects and then be able to “paint” points

along their surfaces to describe each sense.

Fortunately this idea is already a well known computer graphics technique calledUV-mapping.

In UV-mapping, the three-dimensional surface of a model is cut and smooshed until it �ts on

a two-dimensional image. You paint whatever you want on that image, and when the three-

dimensional shape is rendered in a game the smooshing and cutting is reversed and the image

appears on the three-dimensional object.

To make a sense, interpret the UV-image as describing the distribution of that senses’ sensors.

To get di�erent types of sensors, you can either use a di�erent color for each type of sensor, or

use multiple UV-maps, each labeled with that sensor type. I generally use a white pixel to mean

the presence of a sensor and a black pixel to mean the absence of a sensor, and use one UV-map

for each sensor-type within a given sense.

Figure 8: The UV-map for an elongated icososphere. The white dots each represent a touch

sensor. They are dense in the regions that describe the tip of the �nger, and less dense along

the dorsal side of the �nger opposite the tip.

17

Video game engines provide ready-made physics and shading

Figure 9: Ventral side of the UV-mapped �nger. Note the density of touch sensors at the

tip.

2.4 Video game engines provide ready-made physics and shading
I did not need to write my own physics simulation code or shader to build CORTEX. Doing so

would lead to a system that is impossible for anyone but myself to use anyway. Instead, I use

a video game engine as a base and modify it to accommodate the additional needs of CORTEX.

Video game engines are an ideal starting point to build CORTEX, because they are not far from

being creature building systems themselves.

First o�, general purpose video game engines come with a physics engine and lighting / sound

system. The physics system provides tools that can be co-opted to serve as touch, proprioception,

and muscles. Because some games support split screen views, a good video game engine will allow

you to e�ciently create multiple cameras in the simulated world that can be used as eyes. Video

game systems o�er integrated asset management for things like textures and creature models,

providing an avenue for de�ning creatures. They also understand UV-mapping, because this

technique is used to apply a texture to a model. Finally, because video game engines support a

large number of developers, as long as CORTEX doesn’t stray too far from the base system, other

researchers can turn to this community for help when doing their research.

2.5 CORTEX is based on jMonkeyEngine3
While preparing to build CORTEX I studied several video game engines to see which would best

serve as a base. The top contenders were:

Quake II/Jake2 The Quake II engine was designed by ID software in 1997. All the source code

was released by ID software into the Public Domain several years ago, and as a result it has

been ported to many di�erent languages. This engine was famous for its advanced use of

realistic shading and it had decent and fast physics simulation. The main advantage of the

Quake II engine is its simplicity, but I ultimately rejected it because the engine is too tied

to the concept of a �rst-person shooter game. One of the problems I had was that there

does not seem to be any easy way to attach multiple cameras to a single character. There

are also several physics clipping issues that are corrected in a way that only applies to the

main character and do not apply to arbitrary objects.

Source Engine The Source Engine evolved from the Quake II and Quake I engines and is used

by Valve in the Half-Life series of games. The physics simulation in the Source Engine is

quite accurate and probably the best out of all the engines I investigated. There is also an

18

http://www.idsoftware.com
http://www.bytonic.de/html/jake2.html
http://source.valvesoftware.com/

CORTEX uses Blender to create creature models

extensive community actively working with the engine. However, applications that use

the Source Engine must be written in C++, the code is not open, it only runs on Windows,

and the tools that come with the SDK to handle models and textures are complicated and

awkward to use.

jMonkeyEngine3 jMonkeyEngine3 is a new library for creating games in Java. It uses OpenGL

to render to the screen and uses screengraphs to avoid drawing things that do not appear

on the screen. It has an active community and several games in the pipeline. The engine

was not built to serve any particular game but is instead meant to be used for any 3D game.

I chose jMonkeyEngine3 because it had the most features out of all the free projects I looked

at, and because I could then write my code in clojure, an implementation of LISP that runs on

the JVM.

2.6 CORTEX uses Blender to create creature models
For the simple worm-like creatures I will use later on in this thesis, I could de�ne a simple API

in CORTEX that would allow one to create boxes, spheres, etc., and leave that API as the sole

way to create creatures. However, for CORTEX to truly be useful for other projects, it needs a

way to construct complicated creatures. If possible, it would be nice to leverage work that has

already been done by the community of 3D modelers, or at least enable people who are talented

at modeling but not programming to design CORTEX creatures.

Therefore I use Blender, a free 3D modeling program, as the main way to create creatures

in CORTEX. However, the creatures modeled in Blender must also be simple to simulate in jMon-

keyEngine3’s game engine, and must also be easy to rig with CORTEX’s senses. I accomplish this

with extensive use of Blender’s “empty nodes.”

Empty nodes have no mass, physical presence, or appearance, but they can hold metadata

and have names. I use a tree structure of empty nodes to specify senses in the following manner:

• Create a single top-level empty node whose name is the name of the sense.

• Add empty nodes which each contain meta-data relevant to the sense, including a UV-map

describing the number/distribution of sensors if applicable.

• Make each empty-node the child of the top-level node.

19

http://jmonkeyengine.com/

Bodies are composed of segments connected by joints

Figure 10: An example of annotating a creature model with empty nodes to describe the

layout of senses. There are multiple empty nodes which each describe the position of

muscles, ears, eyes, or joints.

2.7 Bodies are composed of segments connected by joints

Blender is a general purpose animation tool, which has been used in the past to create high qual-

ity movies such as Sintel (Blender 2013). Though Blender can model and render even complicated

things like water, it is crucial to keep models that are meant to be simulated as creatures sim-

ple. Bullet, which CORTEX uses though jMonkeyEngine3, is a rigid-body physics system. This

o�ers a compromise between the expressiveness of a game level and the speed at which it can be

simulated, and it means that creatures should be naturally expressed as rigid components held

together by joint constraints.

But humans are more like a squishy bag wrapped around some hard bones which de�ne the

overall shape. When we move, our skin bends and stretches to accommodate the new positions

of our bones.

One way to make bodies composed of rigid pieces connected by joints seem more human-like

is to use an armature, (or rigging) system, which de�nes a overall “body mesh” and de�nes how

the mesh deforms as a function of the position of each “bone” which is a standard rigid body.

This technique is used extensively to model humans and create realistic animations. It is not a

good technique for physical simulation because it is a lie – the skin is not a physical part of the

simulation and does not interact with any objects in the world or itself. Objects will pass right

though the skin until they come in contact with the underlying bone, which is a physical object.

Without simulating the skin, the sense of touch has little meaning, and the creature’s own vision

will lie to it about the true extent of its body. Simulating the skin as a physical object requires

some way to continuously update the physical model of the skin along with the movement of the

bones, which is unacceptably slow compared to rigid body simulation.

Therefore, instead of using the human-like “bony meatbag” approach, I decided to base my

body plans on multiple solid objects that are connected by joints, inspired by the robot EVE from

the movie WALL-E.

20

Bodies are composed of segments connected by joints

Figure 11: EVE from the movie WALL-E. This body plan turns out to be much better suited

to my purposes than a more human-like one.

EVE’s body is composed of several rigid components that are held together by invisible joint

constraints. This is what I mean by eve-like. The main reason that I use eve-like bodies is for

simulation e�ciency, and so that there will be correspondence between the AI’s senses and the

physical presence of its body. Each individual section is simulated by a separate rigid body that

corresponds exactly with its visual representation and does not change. Sections are connected by

invisible joints that are well supported in jMonkeyEngine3. Bullet, the physics backend for jMon-

keyEngine3, can e�ciently simulate hundreds of rigid bodies connected by joints. Just because

sections are rigid does not mean they have to stay as one piece forever; they can be dynami-

cally replaced with multiple sections to simulate splitting in two. This could be used to simulate

retractable claws or EVE’s hands, which are able to coalesce into one object in the movie.

Solidifying/Connecting a body

CORTEX creates a creature in two steps: �rst, it traverses the nodes in the Blender �le and creates

physical representations for any of them that have mass de�ned in their Blender meta-data.

Listing 2: Program for iterating through the nodes in a Blender �le and generating physical

jMonkeyEngine3 objects with mass and a matching physics shape.

(defn physical!
"Iterate through the nodes in creature and make them real physical

21

Bodies are composed of segments connected by joints

objects in the simulation."
[#^Node creature]
(dorun
(map
(fn [geom]

(let [physics-control
(RigidBodyControl.
(HullCollisionShape.
(.getMesh geom))

(if-let [mass (meta-data geom "mass")]
(float mass) (float 1)))]

(.addControl geom physics-control)))
(filter #(isa? (class %) Geometry)

(node-seq creature)))))

The next step to making a proper body is to connect those pieces together with joints. jMon-

keyEngine has a large array of joints available via bullet, such as Point2Point, Cone, Hinge, and

a generic Six Degree of Freedom joint, with or without spring restitution.

Joints are treated a lot like proper senses, in that there is a top-level empty node named “joints”

whose children each represent a joint.

Figure 12: View of the hand model in Blender showing the main “joints” node (highlighted

in yellow) and its children which each represent a joint in the hand. Each joint node has

metadata specifying what sort of joint it is.

CORTEX’s procedure for binding the creature together with joints is as follows:

• Find the children of the “joints” node.

• Determine the two spatials the joint is meant to connect.

• Create the joint based on the meta-data of the empty node.

22

Bodies are composed of segments connected by joints

The higher order function sense-nodes from cortex.sense simpli�es �nding the joints

based on their parent “joints” node.

Listing 3: Retrieving the children empty nodes from a single named empty node is a com-

mon pattern in CORTEX. Further instances of this technique for the senses will be omitted

(defn sense-nodes
"For some senses there is a special empty Blender node whose
children are considered markers for an instance of that sense. This
function generates functions to find those children, given the name
of the special parent node."
[parent-name]
(fn [#^Node creature]
(if-let [sense-node (.getChild creature parent-name)]
(seq (.getChildren sense-node)) [])))

(def
^{:doc "Return the children of the creature’s \"joints\" node."
:arglists ’([creature])}

joints
(sense-nodes "joints"))

To �nd a joint’s targets, CORTEX creates a small cube, centered around the empty-node, and

grows the cube exponentially until it intersects two physical objects. The objects are ordered

according to the joint’s rotation, with the �rst one being the object that has more negative co-

ordinates in the joint’s reference frame. Because the objects must be physical, the empty-node

itself escapes detection. Because the objects must be physical, joint-targets must be called

after physical! is called.

Listing 4: Program to �nd the targets of a joint node by exponentially growth of a search

cube.

(defn joint-targets
"Return the two closest two objects to the joint object, ordered
from bottom to top according to the joint’s rotation."
[#^Node parts #^Node joint]
(loop [radius (float 0.01)]
(let [results (CollisionResults.)]

(.collideWith
parts
(BoundingBox. (.getWorldTranslation joint)

radius radius radius) results)
(let [targets

(distinct
(map #(.getGeometry %) results))]

(if (>= (count targets) 2)
(sort-by
#(let [joint-ref-frame-position

(jme-to-blender
(.mult
(.inverse (.getWorldRotation joint))
(.subtract (.getWorldTranslation %)

(.getWorldTranslation joint))))]

23

Bodies are composed of segments connected by joints

(.dot (Vector3f. 1 1 1) joint-ref-frame-position))
(take 2 targets))
(recur (float (* radius 2))))))))

Once CORTEX �nds all joints and targets, it creates them using a dispatch on the metadata of

each joint node.

Listing 5: Program to dispatch on Blender metadata and create joints suitable for physical

simulation.

(defmulti joint-dispatch
"Translate Blender pseudo-joints into real JME joints."
(fn [constraints & _]
(:type constraints)))

(defmethod joint-dispatch :point
[constraints control-a control-b pivot-a pivot-b rotation]
(doto (SixDofJoint. control-a control-b pivot-a pivot-b false)
(.setLinearLowerLimit Vector3f/ZERO)
(.setLinearUpperLimit Vector3f/ZERO)))

(defmethod joint-dispatch :hinge
[constraints control-a control-b pivot-a pivot-b rotation]
(let [axis (if-let [axis (:axis constraints)] axis Vector3f/UNIT_X)

[limit-1 limit-2] (:limit constraints)
hinge-axis (.mult rotation (blender-to-jme axis))]

(doto (HingeJoint. control-a control-b pivot-a pivot-b
hinge-axis hinge-axis)

(.setLimit limit-1 limit-2))))

(defmethod joint-dispatch :cone
[constraints control-a control-b pivot-a pivot-b rotation]
(let [limit-xz (:limit-xz constraints)

limit-xy (:limit-xy constraints)
twist (:twist constraints)]

(doto (ConeJoint. control-a control-b pivot-a pivot-b
rotation rotation)

(.setLimit (float limit-xz) (float limit-xy)
(float twist)))))

All that is left for joints is to combine the above pieces into something that can operate on

the collection of nodes that a Blender �le represents.

Listing 6: Program to completely create a joint given information from a Blender �le.

(defn connect
"Create a joint between ’obj-a and ’obj-b at the location of
’joint. The type of joint is determined by the metadata on ’joint.

Here are some examples:
{:type :point}
{:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
(:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)

24

Bodies are composed of segments connected by joints

{:type :cone :limit-xz 0]
:limit-xy 0]
:twist 0]} (use XZY rotation mode in Blender!)"

[#^Node obj-a #^Node obj-b #^Node joint]
(let [control-a (.getControl obj-a RigidBodyControl)

control-b (.getControl obj-b RigidBodyControl)
joint-center (.getWorldTranslation joint)
joint-rotation (.toRotationMatrix (.getWorldRotation joint))
pivot-a (world-to-local obj-a joint-center)
pivot-b (world-to-local obj-b joint-center)]

(if-let
[constraints (map-vals eval (read-string (meta-data joint "joint")))]

;; A side-effect of creating a joint registers
;; it with both physics objects which in turn
;; will register the joint with the physics system
;; when the simulation is started.
(joint-dispatch constraints

control-a control-b
pivot-a pivot-b
joint-rotation))))

In general, whenever CORTEX exposes a sense (or in this case physicality), it provides a function

of the type sense!, which takes in a collection of nodes and augments it to support that sense. The

function returns any controls necessary to use that sense. In this case body! creates a physical

body and returns no control functions.

Listing 7: Program to give joints to a creature.

(defn joints!
"Connect the solid parts of the creature with physical joints. The
joints are taken from the \"joints\" node in the creature."
[#^Node creature]
(dorun
(map
(fn [joint]

(let [[obj-a obj-b] (joint-targets creature joint)]
(connect obj-a obj-b joint)))

(joints creature))))
(defn body!
"Endow the creature with a physical body connected with joints. The
particulars of the joints and the masses of each body part are
determined in Blender."
[#^Node creature]
(physical! creature)
(joints! creature))

All of the code you have just seen amounts to only 130 lines, yet because it builds on top of

Blender and jMonkeyEngine3, those few lines pack quite a punch!

The hand from �gure 12, which was modeled after my own right hand, can now be given

joints and simulated as a creature.

25

Sight reuses standard video game components. . .

Figure 13: With the ability to create physical creatures from Blender, CORTEX gets one step

closer to becoming a full creature simulation environment.

2.8 Sight reuses standard video game components. . .

Vision is one of the most important senses for humans, so I need to build a simulated sense of

vision for my AI. I will do this with simulated eyes. Each eye can be independently moved and

should see its own version of the world depending on where it is.

Making these simulated eyes a reality is simple because jMonkeyEngine already contains

extensive support for multiple views of the same 3D simulated world. The reason jMonkeyEngine

has this support is because the support is necessary to create games with split-screen views.

Multiple views are also used to create e�cient pseudo-re�ections by rendering the scene from a

certain perspective and then projecting it back onto a surface in the 3D world.

A Brief Description of jMonkeyEngine’s Rendering Pipeline

jMonkeyEngine allows you to create a ViewPort, which represents a view of the simulated world.

You can create as many of these as you want. Every frame, the RenderManager iterates through

each ViewPort, rendering the scene in the GPU. For each ViewPort there is a FrameBufferwhich

represents the rendered image in the GPU.

Each ViewPort can have any number of attached SceneProcessor objects, which are called

every time a new frame is rendered. A SceneProcessor receives its ViewPort’s FrameBuffer
and can do whatever it wants to the data. Often this consists of invoking GPU speci�c operations

on the rendered image. The SceneProcessor can also copy the GPU image data to RAM and

process it with the CPU.

Appropriating Views for Vision

Each eye in the simulated creature needs its own ViewPort so that it can see the world from its

own perspective. To this ViewPort, I add a SceneProcessor that feeds the visual data to any

26

Sight reuses standard video game components. . .

Figure 14: jMonkeyEngine supports multiple views to enable split-screen games, like Gold-

enEye, which was one of the �rst games to use split-screen views.

arbitrary continuation function for further processing. That continuation function may perform

both CPU and GPU operations on the data. To make this easy for the continuation function, the

SceneProcessor maintains appropriately sized bu�ers in RAM to hold the data. It does not do

any copying from the GPU to the CPU itself because it is a slow operation.

Listing 8: Function to make the rendered scene in jMonkeyEngine available for further

processing.

(defn vision-pipeline
"Create a SceneProcessor object which wraps a vision processing
continuation function. The continuation is a function that takes
[#^Renderer r #^FrameBuffer fb #^ByteBuffer b #^BufferedImage bi],
each of which has already been appropriately sized."
[continuation]
(let [byte-buffer (atom nil)

renderer (atom nil)
image (atom nil)]

(proxy [SceneProcessor] []
(initialize
[renderManager viewPort]
(let [cam (.getCamera viewPort)

width (.getWidth cam)
height (.getHeight cam)]

(reset! renderer (.getRenderer renderManager))
(reset! byte-buffer

(BufferUtils/createByteBuffer
(* width height 4)))

(reset! image (BufferedImage.
width height
BufferedImage/TYPE_4BYTE_ABGR))))

(isInitialized [] (not (nil? @byte-buffer)))

27

Sight reuses standard video game components. . .

Figure 15: ViewPorts are cameras in the world. During each frame, the RenderManager
records a snapshot of what each view is currently seeing; these snapshots are FrameBuffer
objects.

(reshape [_ _ _])
(preFrame [_])
(postQueue [_])
(postFrame
[#^FrameBuffer fb]
(.clear @byte-buffer)
(continuation @renderer fb @byte-buffer @image))

(cleanup []))))

The continuation function given to vision-pipeline above will be given a Renderer and

three containers for image data. The FrameBuffer references the GPU image data, but the pixel

data can not be used directly on the CPU. The ByteBuffer and BufferedImage are initially

"empty" but are sized to hold the data in the FrameBuffer. I call transferring the GPU image data

to the CPU structures "mixing" the image data.

Optical sensor arrays are described with images and referenced with metadata

The vision pipeline described above handles the �ow of rendered images. Now, CORTEX needs

simulated eyes to serve as the source of these images.

An eye is described in Blender in the same way as a joint. They are zero dimensional empty

objects with no geometry whose local coordinate system determines the orientation of the re-

sulting eye. All eyes are children of a parent node named "eyes" just as all joints have a parent

named "joints". An eye binds to the nearest physical object with bind-sense.

Listing 9: Here, the camera is created based on metadata on the eye-node and attached to

the nearest physical object with bind-sense

(defn add-eye!
"Create a Camera centered on the current position of ’eye which
follows the closest physical node in ’creature. The camera will

28

Sight reuses standard video game components. . .

point in the X direction and use the Z vector as up as determined
by the rotation of these vectors in Blender coordinate space. Use
XZY rotation for the node in Blender."
[#^Node creature #^Spatial eye]
(let [target (closest-node creature eye)

[cam-width cam-height]
;;[640 480] ;; graphics card on laptop doesn’t support

;; arbitrary dimensions.
(eye-dimensions eye)
cam (Camera. cam-width cam-height)
rot (.getWorldRotation eye)]

(.setLocation cam (.getWorldTranslation eye))
(.lookAtDirection
cam ; this part is not a mistake and
(.mult rot Vector3f/UNIT_X) ; is consistent with using Z in
(.mult rot Vector3f/UNIT_Y)) ; Blender as the UP vector.

(.setFrustumPerspective
cam (float 45)
(float (/ (.getWidth cam) (.getHeight cam)))
(float 1)
(float 1000))

(bind-sense target cam) cam))

Simulated Retina

An eye is a surface (the retina) which contains many discrete sensors to detect light. These sensors

can have di�erent light-sensing properties. In humans, each discrete sensor is sensitive to red,

blue, green, or gray. These di�erent types of sensors can have di�erent spatial distributions along

the retina. In humans, there is a fovea in the center of the retina which has a very high density of

color sensors, and a blind spot which has no sensors at all. Sensor density decreases in proportion

to distance from the fovea.

I want to be able to model any retinal con�guration, so my eye-nodes in Blender contain meta-

data pointing to images that describe the precise position of the individual sensors using white

pixels. The meta-data also describes the precise sensitivity to light that the sensors described in

the image have. An eye can contain any number of these images. For example, the metadata for

an eye might look like this:

{0xFF0000 "Models/test-creature/retina-small.png"}

Together, the number 0xFF0000 and the image above describe the placement of red-sensitive

sensory elements.

Meta-data to very crudely approximate a human eye might be something like this:

(let [retinal-profile "Models/test-creature/retina-small.png"]
{0xFF0000 retinal-profile
0x00FF00 retinal-profile
0x0000FF retinal-profile
0xFFFFFF retinal-profile})

The numbers that serve as keys in the map determine a sensor’s relative sensitivity to the

channels red, green, and blue. These sensitivity values are packed into an integer in the order

29

Sight reuses standard video game components. . .

Figure 16: An example retinal pro�le image. White pixels are photo-sensitive elements.

The distribution of white pixels is denser in the middle and falls o� at the edges and is

inspired by the human retina.

|_|R|G|B| in 8-bit �elds. The RGB values of a pixel in the image are added together with these

sensitivities as linear weights. Therefore, 0xFF0000 means sensitive to red only while 0xFFFFFF

means sensitive to all colors equally (gray).

Listing 10: This is the core of vision in CORTEX. A given eye node is converted into a

function that returns visual information from the simulation.

(defn vision-kernel
"Returns a list of functions, each of which will return a color
channel’s worth of visual information when called inside a running
simulation."
[#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
(let [retinal-map (retina-sensor-profile eye)

camera (add-eye! creature eye)
vision-image
(atom
(BufferedImage. (.getWidth camera)

(.getHeight camera)
BufferedImage/TYPE_BYTE_BINARY))

register-eye!
(runonce
(fn [world]
(add-camera!
world camera
(let [counter (atom 0)]
(fn [r fb bb bi]
(if (zero? (rem (swap! counter inc) (inc skip)))
(reset! vision-image

(BufferedImage! r fb bb bi))))))))]
(vec
(map

30

Sight reuses standard video game components. . .

(fn [[key image]]
(let [whites (white-coordinates image)

topology (vec (collapse whites))
sensitivity (sensitivity-presets key key)]

(attached-viewport.
(fn [world]
(register-eye! world)
(vector
topology
(vec
(for [[x y] whites]
(pixel-sense
sensitivity
(.getRGB @vision-image x y))))))

register-eye!)))
retinal-map))))

Note that because each of the functions generated by vision-kernel shares the same register-eye!
function, the eye will be registered only once the �rst time any of the functions from the list re-

turned by vision-kernel is called. Each of the functions returned by vision-kernel also allows

access to the Viewport through which it receives images.

All the hard work has been done; all that remains is to apply vision-kernel to each eye in

the creature and gather the results into one list of functions.

Listing 11: With vision!, CORTEX is already a �ne simulation environment for experi-

menting with di�erent types of eyes.

(defn vision!
"Returns a list of functions, each of which returns visual sensory
data when called inside a running simulation."
[#^Node creature & {skip :skip :or {skip 0}}]
(reduce
concat
(for [eye (eyes creature)]
(vision-kernel creature eye))))

The vision code is not much more complicated than the body code, and enables multiple

further paths for simulated vision. For example, it is quite easy to create bifocal vision – you

just make two eyes next to each other in Blender! It is also possible to encode vision transforms

in the retinal �les. For example, the human like retina �le in �gure 35 approximates a log-polar

transform.

This vision code has already been absorbed by the jMonkeyEngine community and is now (in

modi�ed form) part of a system for capturing in-game video to a �le.

31

. . . but hearing must be built from scratch

Figure 17: Simulated vision with a test creature and the human-like eye approximation.

Notice how each channel of the eye responds di�erently to the di�erently colored balls.

2.9 . . . but hearing must be built from scratch

At the end of this chapter I will have simulated ears that work the same way as the simulated

eyes in the last chapter. I will be able to place any number of ear-nodes in a Blender �le, and they

will bind to the closest physical object and follow it as it moves around. Each ear will provide

access to the sound data it picks up between every frame.

Hearing is one of the more di�cult senses to simulate, because there is less support for ob-

taining the actual sound data that is processed by jMonkeyEngine3. There is no "split-screen"

support for rendering sound from di�erent points of view, and there is no way to directly access

the rendered sound data.

CORTEX’s hearing is unique because it does not have any limitations compared to other simu-

lation environments. As far as I know, there is no other system that supports multiple listeners,

and the sound demo at the end of this chapter is the �rst time it’s been done in a video game

environment.

Brief Description of jMonkeyEngine’s Sound System

jMonkeyEngine’s sound system works as follows:

• jMonkeyEngine uses the AppSettings for the particular application to determine what sort

of AudioRenderer should be used.

• Although some support is provided for multiple AudioRenderer backends, jMonkeyEngine

at the time of this writing will either pick no AudioRenderer at all, or the LwjglAudioRenderer.

• jMonkeyEngine tries to �gure out what sort of system you’re running and extracts the

appropriate native libraries.

32

. . . but hearing must be built from scratch

• The LwjglAudioRenderer uses the LWJGL (LightWeight Java Game Library) bindings to

interface with a C library called OpenAL

• OpenAL renders the 3D sound and feeds the rendered sound directly to any of various sound

output devices with which it knows how to communicate.

A consequence of this is that there’s no way to access the actual sound data produced by

OpenAL. Even worse, OpenAL only supports one listener (it renders sound data from only one

perspective), which normally isn’t a problem for games, but becomes a problem when trying to

make multiple AI creatures that can each hear the world from a di�erent perspective.

To make many AI creatures in jMonkeyEngine that can each hear the world from their own

perspective, or to make a single creature with many ears, it is necessary to go all the way back

to OpenAL and implement support for simulated hearing there.

Extending OpenAl

Extending OpenAL to support multiple listeners requires 500 lines of C code and is too complicated

to mention here. Instead, I will show a small amount of extension code and go over the high level

strategy. Full source is of course available with the CORTEX distribution if you’re interested.

OpenAL goes to great lengths to support many di�erent systems, all with di�erent sound ca-

pabilities and interfaces. It accomplishes this di�cult task by providing code for many di�erent

sound backends in pseudo-objects called Devices. There’s a device for the Linux Open Sound Sys-

tem and the Advanced Linux Sound Architecture, there’s one for Direct Sound on Windows, and

there’s even one for Solaris. OpenAL solves the problem of platform independence by providing

all these Devices.

Wrapper libraries such as LWJGL are free to examine the system on which they are running

and then select an appropriate device for that system.

There are also a few "special" devices that don’t interface with any particular system. These

include the Null Device, which doesn’t do anything, and the Wave Device, which writes whatever

sound it receives to a �le, if everything has been set up correctly when con�guring OpenAL.

Actual mixing (Doppler shift and distance.environment-based attenuation) of the sound data

happens in the Devices, and they are the only point in the sound rendering process where this

data is available.

Therefore, in order to support multiple listeners, and get the sound data in a form that the

AIs can use, it is necessary to create a new Device which supports this feature.

Adding a device to OpenAL is rather tricky – there are �ve separate �les in the OpenAL source

tree that must be modi�ed to do so. I named my device the "Multiple Audio Send" Device, or Send
Device for short, since it sends audio data back to the calling application like an Aux-Send cable

on a mixing board.

The main idea behind the Send device is to take advantage of the fact that LWJGL only man-

ages one context when using OpenAL. A context is like a container that holds samples and keeps

track of where the listener is. In order to support multiple listeners, the Send device identi�es

the LWJGL context as the master context, and creates any number of slave contexts to represent

additional listeners. Every time the device renders sound, it synchronizes every source from the

master LWJGL context to the slave contexts. Then, it renders each context separately, using a

di�erent listener for each one. The rendered sound is made available via JNI to jMonkeyEngine.

33

http://lwjgl.org/
http://kcat.strangesoft.net/openal.html

. . . but hearing must be built from scratch

Switching between contexts is not the normal operation of a Device, and one of the prob-

lems with doing so is that a Device normally keeps around a few pieces of state such as the

ClickRemoval array above which will become corrupted if the contexts are not rendered in par-

allel. The solution is to create a copy of this normally global device state for each context, and

copy it back and forth into and out of the actual device state whenever a context is rendered.

The core of the Send device is the syncSources function, which does the job of copying all

relevant data from one context to another.

Listing 12: Program for extending OpenAL to support multiple listeners via context copy-

ing/switching.

void syncSources(ALsource *masterSource, ALsource *slaveSource,
ALCcontext *masterCtx, ALCcontext *slaveCtx){

ALuint master = masterSource->source;
ALuint slave = slaveSource->source;
ALCcontext *current = alcGetCurrentContext();

syncSourcef(master,slave,masterCtx,slaveCtx,AL_PITCH);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_MAX_DISTANCE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_ROLLOFF_FACTOR);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_REFERENCE_DISTANCE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_MIN_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_MAX_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_OUTER_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_INNER_ANGLE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_OUTER_ANGLE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_SEC_OFFSET);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_SAMPLE_OFFSET);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_BYTE_OFFSET);

syncSource3f(master,slave,masterCtx,slaveCtx,AL_POSITION);
syncSource3f(master,slave,masterCtx,slaveCtx,AL_VELOCITY);
syncSource3f(master,slave,masterCtx,slaveCtx,AL_DIRECTION);

syncSourcei(master,slave,masterCtx,slaveCtx,AL_SOURCE_RELATIVE);
syncSourcei(master,slave,masterCtx,slaveCtx,AL_LOOPING);

alcMakeContextCurrent(masterCtx);
ALint source_type;
alGetSourcei(master, AL_SOURCE_TYPE, &source_type);

// Only static sources are currently synchronized!
if (AL_STATIC == source_type){
ALint master_buffer;
ALint slave_buffer;
alGetSourcei(master, AL_BUFFER, &master_buffer);
alcMakeContextCurrent(slaveCtx);
alGetSourcei(slave, AL_BUFFER, &slave_buffer);
if (master_buffer != slave_buffer){

alSourcei(slave, AL_BUFFER, master_buffer);
}

}

34

. . . but hearing must be built from scratch

// Synchronize the state of the two sources.
alcMakeContextCurrent(masterCtx);
ALint masterState;
ALint slaveState;

alGetSourcei(master, AL_SOURCE_STATE, &masterState);
alcMakeContextCurrent(slaveCtx);
alGetSourcei(slave, AL_SOURCE_STATE, &slaveState);

if (masterState != slaveState){
switch (masterState){
case AL_INITIAL : alSourceRewind(slave); break;
case AL_PLAYING : alSourcePlay(slave); break;
case AL_PAUSED : alSourcePause(slave); break;
case AL_STOPPED : alSourceStop(slave); break;
}

}
// Restore whatever context was previously active.
alcMakeContextCurrent(current);

}

With this special context-switching device, and some ugly JNI bindings that are not worth

mentioning, CORTEX gains the ability to access multiple sound streams from OpenAL.

Listing 13: Program to create an ear from a Blender empty node. The ear follows around

the nearest physical object and passes all sensory data to a continuation function.

(defn add-ear!
"Create a Listener centered on the current position of ’ear
which follows the closest physical node in ’creature and
sends sound data to ’continuation."
[#^Application world #^Node creature #^Spatial ear continuation]
(let [target (closest-node creature ear)

lis (Listener.)
audio-renderer (.getAudioRenderer world)
sp (hearing-pipeline continuation)]

(.setLocation lis (.getWorldTranslation ear))
(.setRotation lis (.getWorldRotation ear))
(bind-sense target lis)
(update-listener-velocity! target lis)
(.addListener audio-renderer lis)
(.registerSoundProcessor audio-renderer lis sp)))

The Send device, unlike most of the other devices in OpenAL, does not render sound unless

asked. This enables the system to slow down or speed up depending on the needs of the AIs who

are using it to listen. If the device tried to render samples in real-time, a complicated AI whose

mind takes 100 seconds of computer time to simulate 1 second of AI-time would miss almost all

of the sound in its environment!

Listing 14: Program to enable arbitrary hearing in CORTEX

(defn hearing-kernel
"Returns a function which returns auditory sensory data when called

35

. . . but hearing must be built from scratch

inside a running simulation."
[#^Node creature #^Spatial ear]
(let [hearing-data (atom [])

register-listener!
(runonce
(fn [#^Application world]

(add-ear!
world creature ear
(comp #(reset! hearing-data %)

byteBuffer->pulse-vector))))]
(fn [#^Application world]

(register-listener! world)
(let [data @hearing-data

topology
(vec (map #(vector % 0) (range 0 (count data))))]

[topology data]))))

(defn hearing!
"Endow the creature in a particular world with the sense of
hearing. Will return a sequence of functions, one for each ear,
which when called will return the auditory data from that ear."
[#^Node creature]
(for [ear (ears creature)]
(hearing-kernel creature ear)))

Armed with these functions, CORTEX is able to test possibly the �rst ever instance of multiple

listeners in a video game engine based simulation!

Listing 15: Here a simple creature responds to sound by changing its color from gray to

green when the total volume goes over a threshold.

/**
* Respond to sound! This is the brain of an AI entity that
* hears its surroundings and reacts to them.
*/
public void process(ByteBuffer audioSamples,

int numSamples, AudioFormat format) {
audioSamples.clear();
byte[] data = new byte[numSamples];
float[] out = new float[numSamples];
audioSamples.get(data);
FloatSampleTools.

byte2floatInterleaved
(data, 0, out, 0, numSamples/format.getFrameSize(), format);

float max = Float.NEGATIVE_INFINITY;
for (float f : out){if (f > max) max = f;}
audioSamples.clear();

if (max > 0.1){
entity.getMaterial().setColor("Color", ColorRGBA.Green);

}
else {

36

Hundreds of hair-like elements provide a sense of touch

entity.getMaterial().setColor("Color", ColorRGBA.Gray);
}

Figure 18: First ever simulation of multiple listeners in CORTEX. Each cube is a creature

which processes sound data with the process function from listing 15. the ball is con-

stantly emitting a pure tone of constant volume. As it approaches the cubes, they each

change color in response to the sound.

This system of hearing has also been co-opted by the jMonkeyEngine3 community and is

used to record audio for demo videos.

2.10 Hundreds of hair-like elements provide a sense of touch
Touch is critical to navigation and spatial reasoning and as such I need a simulated version of it

to give to my AI creatures.

Human skin has a wide array of touch sensors, each of which specialize in detecting di�erent

vibrational modes and pressures. These sensors can integrate a vast expanse of skin (i.e. your

entire palm), or a tiny patch of skin at the tip of your �nger. The hairs of the skin help detect

objects before they even come into contact with the skin proper.

However, touch in my simulated world can not exactly correspond to human touch because

my creatures are made out of completely rigid segments that don’t deform like human skin.

Instead of measuring deformation or vibration, I surround each rigid part with a plenitude of

hair-like objects (feelers) which do not interact with the physical world. Physical objects can pass

through them with no e�ect. The feelers are able to tell when other objects pass through them,

and they constantly report how much of their extent is covered. So even though the creature’s

body parts do not deform, the feelers create a margin around those body parts which achieves a

sense of touch which is a hybrid between a human’s sense of deformation and sense from hairs.

Implementing touch in jMonkeyEngine follows a di�erent technical route than vision and

hearing. Those two senses piggybacked o� jMonkeyEngine’s 3D audio and video rendering sub-

37

Hundreds of hair-like elements provide a sense of touch

systems. To simulate touch, I use jMonkeyEngine’s physics system to execute many small colli-

sion detections, one for each feeler. The placement of the feelers is determined by a UV-mapped

image which shows where each feeler should be on the 3D surface of the body.

De�ning Touch Meta-Data in Blender

Each geometry can have a single UV map which describes the position of the feelers which will

constitute its sense of touch. This image path is stored under the “touch” key. The image itself is

black and white, with black meaning a feeler length of 0 (no feeler is present) and white meaning

a feeler length of scale, which is a �oat stored under the key "scale".

Listing 16: Touch does not use empty nodes, to store metadata, because the metadata of

each solid part of a creature’s body is su�cient.

(defn tactile-sensor-profile
"Return the touch-sensor distribution image in BufferedImage format,
or nil if it does not exist."
[#^Geometry obj]
(if-let [image-path (meta-data obj "touch")]
(load-image image-path)))

(defn tactile-scale
"Return the length of each feeler. Default scale is 0.01
jMonkeyEngine units."
[#^Geometry obj]
(if-let [scale (meta-data obj "scale")]
scale 0.1))

Here is an example of a UV-map which speci�es the position of touch sensors along the surface

of the upper segment of a �ngertip.

Implementation Summary

To simulate touch there are three conceptual steps. For each solid object in the creature, you �rst

have to get UV image and scale parameter which de�ne the position and length of the feelers.

Then, you use the triangles which comprise the mesh and the UV data stored in the mesh to

determine the world-space position and orientation of each feeler. Then once every frame, update

these positions and orientations to match the current position and orientation of the object, and

use physics collision detection to gather tactile data.

Extracting the meta-data has already been described. The third step, physics collision detec-

tion, is handled in touch-kernel. Translating the positions and orientations of the feelers from

the UV-map to world-space is itself a three-step process.

• Find the triangles which make up the mesh in pixel-space and in world-space.

(triangles, pixel-triangles).

• Find the coordinates of each feeler in world-space. These are the origins of the feelers.

(feeler-origins).

• Calculate the normals of the triangles in world space, and add them to each of the origins of

the feelers. These are the normalized coordinates of the tips of the feelers. (feeler-tips).

38

Hundreds of hair-like elements provide a sense of touch

Figure 19: This is the tactile-sensor-pro�le for the upper segment of a �ngertip. It de�nes

regions of high touch sensitivity (where there are many white pixels) and regions of low

sensitivity (where white pixels are sparse).

Triangle Math

The rigid objects which make up a creature have an underlying Geometry, which is a Mesh plus

a Material and other important data involved with displaying the object.

A Mesh is composed of Triangles, and each Triangle has three vertices which have coordi-

nates in world space and UV space.

Here, triangles gets all the world-space triangles which comprise a mesh, while pixel-triangles
gets those same triangles expressed in pixel coordinates (which are UV coordinates scaled to �t

the height and width of the UV image).

Listing 17: Programs to extract triangles from a geometry and get their vertices in both

world and UV-coordinates.

(defn triangle
"Get the triangle specified by triangle-index from the mesh."
[#^Geometry geo triangle-index]
(triangle-seq
(let [scratch (Triangle.)]

(.getTriangle (.getMesh geo) triangle-index scratch) scratch)))

(defn triangles
"Return a sequence of all the Triangles which comprise a given

39

Hundreds of hair-like elements provide a sense of touch

Geometry."
[#^Geometry geo]
(map (partial triangle geo) (range (.getTriangleCount (.getMesh geo)))))

(defn triangle-vertex-indices
"Get the triangle vertex indices of a given triangle from a given
mesh."
[#^Mesh mesh triangle-index]
(let [indices (int-array 3)]
(.getTriangle mesh triangle-index indices)
(vec indices)))

(defn vertex-UV-coord
"Get the UV-coordinates of the vertex named by vertex-index"
[#^Mesh mesh vertex-index]
(let [UV-buffer

(.getData
(.getBuffer
mesh
VertexBuffer$Type/TexCoord))]

[(.get UV-buffer (* vertex-index 2))
(.get UV-buffer (+ 1 (* vertex-index 2)))]))

(defn pixel-triangle [#^Geometry geo image index]
(let [mesh (.getMesh geo)

width (.getWidth image)
height (.getHeight image)]

(vec (map (fn [[u v]] (vector (* width u) (* height v)))
(map (partial vertex-UV-coord mesh)

(triangle-vertex-indices mesh index))))))

(defn pixel-triangles
"The pixel-space triangles of the Geometry, in the same order as
(triangles geo)"
[#^Geometry geo image]
(let [height (.getHeight image)

width (.getWidth image)]
(map (partial pixel-triangle geo image)

(range (.getTriangleCount (.getMesh geo))))))

The A�ne Transform from one Triangle to Another

pixel-triangles gives us the mesh triangles expressed in pixel coordinates and triangles
gives us the mesh triangles expressed in world coordinates. The tactile-sensor-pro�le gives the

position of each feeler in pixel-space. In order to convert pixel-space coordinates into world-

space coordinates we need something that takes coordinates on the surface of one triangle and

gives the corresponding coordinates on the surface of another triangle.

Triangles are a�ne, which means any triangle can be transformed into any other by a combi-

nation of translation, scaling, and rotation. The a�ne transformation from one triangle to another

is readily computable if the triangle is expressed in terms of a 4x4 matrix.

40

http://mathworld.wolfram.com/AffineTransformation.html

Hundreds of hair-like elements provide a sense of touch

x1 x2 x3 nx

y1 y2 y3 ny

z1 z2 z3 nz

1 1 1 1

Here, the �rst three columns of the matrix are the vertices of the triangle. The last column is

the right-handed unit normal of the triangle.

With two triangles T1 and T2 each expressed as a matrix like above, the a�ne transform from

T1 to T2 is T2T
−1
1 .

The clojure code below recapitulates the formulas above, using jMonkeyEngine’s Matrix4f
objects, which can describe any a�ne transformation.

Listing 18: Program to interpret triangles as a�ne transforms.

(defn triangle->matrix4f
"Converts the triangle into a 4x4 matrix: The first three columns
contain the vertices of the triangle; the last contains the unit
normal of the triangle. The bottom row is filled with 1s."

[#^Triangle t]
(let [mat (Matrix4f.)

[vert-1 vert-2 vert-3]
(mapv #(.get t %) (range 3))
unit-normal (do (.calculateNormal t)(.getNormal t))
vertices [vert-1 vert-2 vert-3 unit-normal]]

(dorun
(for [row (range 4) col (range 3)]
(do
(.set mat col row (.get (vertices row) col))
(.set mat 3 row 1)))) mat))

(defn triangles->affine-transform
"Returns the affine transformation that converts each vertex in the
first triangle into the corresponding vertex in the second
triangle."

[#^Triangle tri-1 #^Triangle tri-2]
(.mult
(triangle->matrix4f tri-2)
(.invert (triangle->matrix4f tri-1))))

Triangle Boundaries

For e�ciency’s sake I will divide the tactile-pro�le image into small squares which inscribe each

pixel-triangle, then extract the points which lie inside the triangle and map them to 3D-space

using triangle-transform above. To do this I need a function, convex-bounds which �nds the

smallest box which inscribes a 2D triangle.

inside-triangle? determines whether a point is inside a triangle in 2D pixel-space.

Listing 19: Program to e�ciently determine point inclusion in a triangle.

(defn convex-bounds
"Returns the smallest square containing the given vertices, as a

41

Hundreds of hair-like elements provide a sense of touch

vector of integers [left top width height]."
[verts]
(let [xs (map first verts)

ys (map second verts)
x0 (Math/floor (apply min xs))
y0 (Math/floor (apply min ys))
x1 (Math/ceil (apply max xs))
y1 (Math/ceil (apply max ys))]

[x0 y0 (- x1 x0) (- y1 y0)]))

(defn same-side?
"Given the points p1 and p2 and the reference point ref, is point p
on the same side of the line that goes through p1 and p2 as ref is?"
[p1 p2 ref p]
(<=
0
(.dot
(.cross (.subtract p2 p1) (.subtract p p1))
(.cross (.subtract p2 p1) (.subtract ref p1)))))

(defn inside-triangle?
"Is the point inside the triangle?"
{:author "Dylan Holmes"}
[#^Triangle tri #^Vector3f p]
(let [[vert-1 vert-2 vert-3] [(.get1 tri) (.get2 tri) (.get3 tri)]]
(and
(same-side? vert-1 vert-2 vert-3 p)
(same-side? vert-2 vert-3 vert-1 p)
(same-side? vert-3 vert-1 vert-2 p))))

Feeler Coordinates

The triangle-related functions above make short work of calculating the positions and orienta-

tions of each feeler in world-space.

Listing 20: Program to get the coordinates of “feelers ” in both world and UV-coordinates.

(defn feeler-pixel-coords
"Returns the coordinates of the feelers in pixel space in lists, one
list for each triangle, ordered in the same way as (triangles) and
(pixel-triangles)."

[#^Geometry geo image]
(map
(fn [pixel-triangle]
(filter
(fn [coord]
(inside-triangle? (->triangle pixel-triangle)

(->vector3f coord)))
(white-coordinates image (convex-bounds pixel-triangle))))

(pixel-triangles geo image)))

(defn feeler-world-coords
"Returns the coordinates of the feelers in world space in lists, one

42

Hundreds of hair-like elements provide a sense of touch

list for each triangle, ordered in the same way as (triangles) and
(pixel-triangles)."

[#^Geometry geo image]
(let [transforms

(map #(triangles->affine-transform
(->triangle %1) (->triangle %2))

(pixel-triangles geo image)
(triangles geo))]

(map (fn [transform coords]
(map #(.mult transform (->vector3f %)) coords))

transforms (feeler-pixel-coords geo image))))

Listing 21: Program to get the position of the base and tip of each “feeler”

(defn feeler-origins
"The world space coordinates of the root of each feeler."
[#^Geometry geo image]
(reduce concat (feeler-world-coords geo image)))

(defn feeler-tips
"The world space coordinates of the tip of each feeler."
[#^Geometry geo image]
(let [world-coords (feeler-world-coords geo image)

normals
(map
(fn [triangle]

(.calculateNormal triangle)
(.clone (.getNormal triangle)))

(map ->triangle (triangles geo)))]

(mapcat (fn [origins normal]
(map #(.add % normal) origins))

world-coords normals)))

(defn touch-topology
[#^Geometry geo image]
(collapse (reduce concat (feeler-pixel-coords geo image))))

Simulated Touch

Now that the functions to construct feelers are complete, touch-kernel generates functions to

be called from within a simulation that perform the necessary physics collisions to collect tactile

data, and touch! recursively applies it to every node in the creature.

Listing 22: E�cient program to transform a ray from one position to another.

(defn set-ray [#^Ray ray #^Matrix4f transform
#^Vector3f origin #^Vector3f tip]

;; Doing everything locally reduces garbage collection by enough to
;; be worth it.
(.mult transform origin (.getOrigin ray))
(.mult transform tip (.getDirection ray))
(.subtractLocal (.getDirection ray) (.getOrigin ray))
(.normalizeLocal (.getDirection ray)))

43

Hundreds of hair-like elements provide a sense of touch

Listing 23: This is the core of touch in CORTEX each feeler follows the object it is bound to,

reporting any collisions that may happen.

(defn touch-kernel
"Constructs a function which will return tactile sensory data from
’geo when called from inside a running simulation"
[#^Geometry geo]
(if-let

[profile (tactile-sensor-profile geo)]
(let [ray-reference-origins (feeler-origins geo profile)

ray-reference-tips (feeler-tips geo profile)
ray-length (tactile-scale geo)
current-rays (map (fn [_] (Ray.)) ray-reference-origins)
topology (touch-topology geo profile)
correction (float (* ray-length -0.2))]

;; slight tolerance for very close collisions.
(dorun
(map (fn [origin tip]

(.addLocal origin (.mult (.subtract tip origin)
correction)))

ray-reference-origins ray-reference-tips))
(dorun (map #(.setLimit % ray-length) current-rays))
(fn [node]

(let [transform (.getWorldMatrix geo)]
(dorun
(map (fn [ray ref-origin ref-tip]

(set-ray ray transform ref-origin ref-tip))
current-rays ray-reference-origins
ray-reference-tips))

(vector
topology
(vec
(for [ray current-rays]
(do
(let [results (CollisionResults.)]
(.collideWith node ray results)
(let [touch-objects

(filter #(not (= geo (.getGeometry %)))
results)

limit (.getLimit ray)]
[(if (empty? touch-objects)

limit
(let [response

(apply min (map #(.getDistance %)
touch-objects))]

(FastMath/clamp
(float
(if (> response limit) (float 0.0)

(+ response correction)))
(float 0.0)
limit)))

limit])))))))))))

44

Hundreds of hair-like elements provide a sense of touch

Armed with the touch! function, CORTEX becomes capable of giving creatures a sense of

touch. A simple test is to create a cube that is out�tted with a uniform distribution of touch

sensors. It can feel the ground and any balls that it touches.

Listing 24: CORTEX interface for creating touch in a simulated creature.

(defn touch!
"Endow the creature with the sense of touch. Returns a sequence of
functions, one for each body part with a tactile-sensor-profile,
each of which when called returns sensory data for that body part."
[#^Node creature]
(filter
(comp not nil?)
(map touch-kernel

(filter #(isa? (class %) Geometry)
(node-seq creature)))))

The tactile-sensor-pro�le image for the touch cube is a simple cross with a uniform distribu-

tion of touch sensors:

Figure 20: The touch pro�le for the touch-cube. Each pure white pixel de�nes a touch

sensitive feeler.

45

Proprioception provides knowledge of your own body’s position

Figure 21: The touch cube reacts to cannonballs. The black, red, and white cross on the

right is a visual display of the creature’s touch. White means that it is feeling something

strongly, black is not feeling anything, and gray is in-between. The cube can feel both the

�oor and the ball. Notice that when the ball causes the cube to tip, that the bottom face

can still feel part of the ground.

2.11 Proprioception provides knowledge of your own body’s position

Close your eyes, and touch your nose with your right index �nger. How did you do it? You could

not see your hand, and neither your hand nor your nose could use the sense of touch to guide

the path of your hand. There are no sound cues, and Taste and Smell certainly don’t provide any

help. You know where your hand is without your other senses because of Proprioception.

Humans can sometimes loose this sense through viral infections or damage to the spinal cord

or brain, and when they do, they loose the ability to control their own bodies without looking

directly at the parts they want to move. In The Man Who Mistook His Wife for a Hat (Sacks 1998),

a woman named Christina looses this sense and has to learn how to move by carefully watching

her arms and legs. She describes proprioception as the "eyes of the body, the way the body sees

itself".

Proprioception in humans is mediated by joint capsules, muscle spindles, and the Golgi tendon

organs. These measure the relative positions of each body part by monitoring muscle strain and

length.

It’s clear that this is a vital sense for �uid, graceful movement. It’s also particularly easy to

implement in jMonkeyEngine.

My simulated proprioception calculates the relative angles of each joint from the rest position

de�ned in the Blender �le. This simulates the muscle-spindles and joint capsules. I will deal with

Golgi tendon organs, which calculate muscle strain, in the next section (2.12).

46

http://en.wikipedia.org/wiki/The_Man_Who_Mistook_His_Wife_for_a_Hat
http://en.wikipedia.org/wiki/Articular_capsule
http://en.wikipedia.org/wiki/Muscle_spindle
http://en.wikipedia.org/wiki/Golgi_tendon_organ
http://en.wikipedia.org/wiki/Golgi_tendon_organ

Proprioception provides knowledge of your own body’s position

Helper functions

absolute-angle calculates the angle between two vectors, relative to a third axis vector. This

angle is the number of radians you have to move counterclockwise around the axis vector to get

from the �rst to the second vector. It is not commutative like a normal dot-product angle is.

The purpose of these functions is to build a system of angle measurement that is biologically

plausible.

Listing 25: Program to measure angles along a vector

(defn right-handed?
"true iff the three vectors form a right handed coordinate
system. The three vectors do not have to be normalized or
orthogonal."
[vec1 vec2 vec3]
(pos? (.dot (.cross vec1 vec2) vec3)))

(defn absolute-angle
"The angle between ’vec1 and ’vec2 around ’axis. In the range
[0 (* 2 Math/PI)]."
[vec1 vec2 axis]
(let [angle (.angleBetween vec1 vec2)]
(if (right-handed? vec1 vec2 axis)

angle (- (* 2 Math/PI) angle))))

Proprioception Kernel

Given a joint, proprioception-kernel produces a function that calculates the Euler angles be-

tween the objects the joint connects. The only tricky part here is making the angles relative to

the joint’s initial “straightness”.

Listing 26: Program to return biologically reasonable proprioceptive data for each joint.

(defn proprioception-kernel
"Returns a function which returns proprioceptive sensory data when
called inside a running simulation."
[#^Node parts #^Node joint]
(let [[obj-a obj-b] (joint-targets parts joint)

joint-rot (.getWorldRotation joint)
x0 (.mult joint-rot Vector3f/UNIT_X)
y0 (.mult joint-rot Vector3f/UNIT_Y)
z0 (.mult joint-rot Vector3f/UNIT_Z)]

(fn []
(let [rot-a (.clone (.getWorldRotation obj-a))

rot-b (.clone (.getWorldRotation obj-b))
x (.mult rot-a x0)
y (.mult rot-a y0)
z (.mult rot-a z0)

X (.mult rot-b x0)
Y (.mult rot-b y0)
Z (.mult rot-b z0)
heading (Math/atan2 (.dot X z) (.dot X x))

47

Muscles contain both sensors and e�ectors

pitch (Math/atan2 (.dot X y) (.dot X x))

;; rotate x-vector back to origin
reverse
(doto (Quaternion.)
(.fromAngleAxis
(.angleBetween X x)
(let [cross (.normalize (.cross X x))]
(if (= 0 (.length cross)) y cross))))

roll (absolute-angle (.mult reverse Y) y x)]
[heading pitch roll]))))

(defn proprioception!
"Endow the creature with the sense of proprioception. Returns a
sequence of functions, one for each child of the \"joints\" node in
the creature, which each report proprioceptive information about
that joint."
[#^Node creature]
;; extract the body’s joints
(let [senses (map (partial proprioception-kernel creature)

(joints creature))]
(fn []

(map #(%) senses))))

proprioception! maps proprioception-kernel across all the joints of the creature. It

uses the same list of joints that joints uses. Proprioception is the easiest sense to implement in

CORTEX, and it will play a crucial role when e�ciently implementing empathy.

Figure 22: In the upper right corner, the three proprioceptive angle measurements are

displayed. Red is yaw, Green is pitch, and White is roll.

2.12 Muscles contain both sensors and e�ectors

Surprisingly enough, terrestrial creatures only move by using torque applied about their joints.

There’s not a single straight line of force in the human body at all! (A straight line of force would

correspond to some sort of jet or rocket propulsion.)

In humans, muscles are composed of muscle �bers which can contract to exert force. The

muscle �bers which compose a muscle are partitioned into discrete groups which are each con-

trolled by a single alpha motor neuron. A single alpha motor neuron might control as little as

48

Muscles contain both sensors and e�ectors

three or as many as one thousand muscle �bers. When the alpha motor neuron is engaged by

the spinal cord, it activates all of the muscle �bers to which it is attached. The spinal cord gener-

ally engages the alpha motor neurons which control few muscle �bers before the motor neurons

which control many muscle �bers. This recruitment strategy allows for precise movements at

low strength. The collection of all motor neurons that control a muscle is called the motor pool.

The brain essentially says "activate 30% of the motor pool" and the spinal cord recruits motor

neurons until 30% are activated. Since the distribution of power among motor neurons is un-

equal and recruitment goes from weakest to strongest, the �rst 30% of the motor pool might be

5% of the strength of the muscle.

My simulated muscles follow a similar design: Each muscle is de�ned by a 1-D array of num-

bers (the "motor pool"). Each entry in the array represents a motor neuron which controls a

number of muscle �bers equal to the value of the entry. Each muscle has a scalar strength factor

which determines the total force the muscle can exert when all motor neurons are activated. The

e�ector function for a muscle takes a number to index into the motor pool, and then "activates" all

the motor neurons whose index is lower or equal to the number. Each motor-neuron will apply

force in proportion to its value in the array. Lower values cause less force. The lower values can

be put at the "beginning" of the 1-D array to simulate the layout of actual human muscles, which

are capable of more precise movements when exerting less force. Or, the motor pool can simulate

more exotic recruitment strategies which do not correspond to human muscles.

This 1D array is de�ned in an image �le for ease of creation/visualization. Here is an example

muscle pro�le image.

Figure 23: A muscle pro�le image that describes the strengths of each motor neuron in a

muscle. White is weakest and dark red is strongest. This particular pattern has weaker

motor neurons at the beginning, just like human muscle.

Muscle meta-data

Listing 27: Program to deal with loading muscle data from a Blender �le’s metadata.

(defn muscle-profile-image
"Get the muscle-profile image from the node’s Blender meta-data."
[#^Node muscle]
(if-let [image (meta-data muscle "muscle")]
(load-image image)))

(defn muscle-strength
"Return the strength of this muscle, or 1 if it is not defined."
[#^Node muscle]
(if-let [strength (meta-data muscle "strength")]
strength 1))

(defn motor-pool
"Return a vector where each entry is the strength of the \"motor
neuron\" at that part in the muscle."
[#^Node muscle]

49

Muscles contain both sensors and e�ectors

(let [profile (muscle-profile-image muscle)]
(vec
(let [width (.getWidth profile)]
(for [x (range width)]
(- 255

(bit-and
0x0000FF
(.getRGB profile x 0))))))))

Of note here is motor-pool which interprets the muscle-pro�le image in a way that allows

me to use gradients between white and red, instead of shades of gray as I’ve been using for all

the other senses. This is purely an aesthetic touch.

Creating muscles

Listing 28: This is the core movement function in CORTEX, which implements muscles that

report on their activation.

(defn movement-kernel
"Returns a function which when called with a integer value inside a
running simulation will cause movement in the creature according
to the muscle’s position and strength profile. Each function
returns the amount of force applied / max force."
[#^Node creature #^Node muscle]
(let [target (closest-node creature muscle)

axis
(.mult (.getWorldRotation muscle) Vector3f/UNIT_Y)
strength (muscle-strength muscle)

pool (motor-pool muscle)
pool-integral (reductions + pool)
forces
(vec (map #(float (* strength (/ % (last pool-integral))))

pool-integral))
control (.getControl target RigidBodyControl)]

(fn [n]
(let [pool-index (max 0 (min n (dec (count pool))))

force (forces pool-index)]
(.applyTorque control (.mult axis force))
(float (/ force strength))))))

(defn movement!
"Endow the creature with the power of movement. Returns a sequence
of functions, each of which accept an integer value and will
activate their corresponding muscle."
[#^Node creature]
(for [muscle (muscles creature)]
(movement-kernel creature muscle)))

movement-kernel creates a function that controls the movement of the nearest physical node

to the muscle node. The muscle exerts a rotational force dependent on it’s orientation to the object

in the Blender �le. The function returned by movement-kernel is also a sense function: it returns

50

CORTEX brings complex creatures to life!

the percent of the total muscle strength that is currently being employed. This is analogous to

muscle tension in humans and completes the sense of proprioception begun in the last chapter.

2.13 CORTEX brings complex creatures to life!
The ultimate test of CORTEX is to create a creature with the full gamut of senses and put it though

its paces.

With all senses enabled, my right hand model looks like an intricate marionette hand with

several strings for each �nger:

Figure 24: View of the hand model with all sense nodes. You can see the joint, muscle, ear,

and eye nodes here.

With the hand fully rigged with senses, I can run it though a test that will test everything.

51

CORTEX brings complex creatures to life!

Figure 25: An alternate view of the hand.

52

CORTEX brings complex creatures to life!

Figure 26: Selected frames from a full test of the hand with all senses. Note especially the

interactions the hand has with itself: it feels its own palm and �ngers, and when it curls

its �ngers, it sees them with its eye (which is located in the center of the palm. The red

block appears with a pure tone sound. The hand then uses its muscles to launch the cube!

53

CORTEX enables many possibilities for further research

2.14 CORTEX enables many possibilities for further research
Often times, the hardest part of building a system involving creatures is dealing with physics and

graphics. CORTEX removes much of this initial di�culty and leaves researchers free to directly

pursue their ideas. I hope that even novices with a passing curiosity about simulated touch or

creature evolution will be able to use cortex for experimentation. CORTEX is a completely simu-

lated world, and far from being a disadvantage, its simulated nature enables you to create senses

and creatures that would be impossible to make in the real world.

While not by any means a complete list, here are some paths CORTEX is well suited to help

you explore:

Empathy my empathy program leaves many areas for improvement, among which are using

vision to infer proprioception and looking up sensory experience with imagined vision,

touch, and sound.

Evolution Karl Sims created a rich environment for simulating the evolution of creatures on a

Connection Machine (Sims 1994). Today, this can be redone and expanded with CORTEX on

an ordinary computer.

Exotic senses Cortex enables many fascinating senses that are not possible to build in the real

world. For example, telekinesis is an interesting avenue to explore. You can also make a

“semantic” sense which looks up metadata tags on objects in the environment the metadata

tags might contain other sensory information.

Imagination via subworlds this would involve a creature with an e�ector which creates an

entire new sub-simulation where the creature has direct control over placement/creation of

objects via simulated telekinesis. The creature observes this sub-world through its normal

senses and uses its observations to make predictions about its top level world.

Simulated prescience step the simulation forward a few ticks, gather sensory data, then supply

this data for the creature as one of its actual senses. The cost of prescience is slowing the

simulation down by a factor proportional to however far you want the entities to see into

the future. What happens when two evolved creatures that can each see into the future

�ght each other?

Swarm creatures Program a group of creatures that cooperate with each other. Because the

creatures would be simulated, you could investigate computationally complex rules of be-

havior which still, from the group’s point of view, would happen in real time. Interactions

could be as simple as cellular organisms communicating via �ashing lights, or as complex

as humanoids completing social tasks, etc.

HACKER for writing muscle-control programs Presented with a low-level muscle control / sense

API, generate higher level programs for accomplishing various stated goals. Example goals

might be "extend all your �ngers" or "move your hand into the area with blue light" or "de-

crease the angle of this joint". It would be like Sussman’s HACKER, except it would operate

with much more data in a more realistic world. Start o� with "calisthenics" to develop sub-

routines over the motor control API. The low level programming code might be a turning

54

CORTEX enables many possibilities for further research

machine that could develop programs to iterate over a "tape" where each entry in the tape

could control recruitment of the �bers in a muscle.

Sense fusion There is much work to be done on sense integration – building up a coherent

picture of the world and the things in it. With CORTEX as a base, you can explore concepts

like self-organizing maps or cross modal clustering in ways that have never before been

tried.

Inverse kinematics experiments in sense guided motor control are easy given CORTEX’s support

– you can get right to the hard control problems without worrying about physics or senses.

55

3. EMPATH: action recognition in a simulated worm

3 EMPATH: action recognition in a simulated worm

Here I develop a computational model of empathy, using CORTEX as a base. Empathy in this

context is the ability to observe another creature and infer what sorts of sensations that creature

is feeling. My empathy algorithm involves multiple phases. First is free-play, where the creature

moves around and gains sensory experience. From this experience I construct a representation

of the creature’s sensory state space, which I call Φ-space. Using Φ-space, I construct an e�cient

function which takes the limited data that comes from observing another creature and enriches

it with a full compliment of imagined sensory data. I can then use the imagined sensory data to

recognize what the observed creature is doing and feeling, using straightforward embodied action

predicates. This is all demonstrated with using a simple worm-like creature, and recognizing

worm-actions based on limited data.

Figure 27: Here is the worm with which we will be working. It is composed of 5 segments.

Each segment has a pair of extensor and �exor muscles. Each of the worm’s four joints is

a hinge joint which allows about 30 degrees of rotation to either side. Each segment of the

worm is touch-capable and has a uniform distribution of touch sensors on each of its faces.

Each joint has a proprioceptive sense to detect relative positions. The worm segments are

all the same except for the �rst one, which has a much higher weight than the others to

allow for easy manual motor control.

Listing 29: Program for reading a worm from a Blender �le and out�tting it with the senses

of proprioception, touch, and the ability to move, as speci�ed in the Blender �le.

(defn worm []
(let [model (load-blender-model "Models/worm/worm.blend")]
{:body (doto model (body!))
:touch (touch! model)
:proprioception (proprioception! model)
:muscles (movement! model)}))

56

Embodiment factors action recognition into manageable parts

3.1 Embodiment factors action recognition into manageable parts
Using empathy, I divide the problem of action recognition into a recognition process expressed in

the language of a full compliment of senses, and an imaginative process that generates full sensory

data from partial sensory data. Splitting the action recognition problem in this manner greatly

reduces the total amount of work to recognize actions: The imaginative process is mostly just

matching previous experience, and the recognition process gets to use all the senses to directly

describe any action.

3.2 Action recognition is easy with a full gamut of senses
Embodied representation using multiple senses such as touch, proprioception, and muscle tension

turns out be exceedingly e�cient at describing body-centered actions. It is the right language for

the job. For example, it takes only around 5 lines of clojure code to describe the action of curling

using embodied primitives. It takes about 10 lines to describe the seemingly complicated action

of wiggling.

The following action predicates each take a stream of sensory experience, observe however

much of it they desire, and decide whether the worm is doing the action they describe. curled?
relies on proprioception, resting? relies on touch, wiggling? relies on a Fourier analysis of

muscle contraction, and grand-circle? relies on touch and reuses curled? in its de�nition,

showing how embodied predicates can be composed.

Listing 30: Program for detecting whether the worm is curled. This is the simplest action

predicate, because it only uses the last frame of sensory experience, and only uses proprio-

ceptive data. Even this simple predicate, however, is automatically frame independent and

ignores vermopomorphic
1

di�erences such as worm textures and colors.

(defn curled?
"Is the worm curled up?"
[experiences]
(every?
(fn [[_ _ bend]]

(> (Math/sin bend) 0.64))
(:proprioception (peek experiences))))

Listing 31: Program for summarizing the touch information in a patch of skin.

(defn contact
"Determine how much contact a particular worm segment has with
other objects. Returns a value between 0 and 1, where 1 is full
contact and 0 is no contact."
[touch-region [coords contact :as touch]]
(-> (zipmap coords contact)

(select-keys touch-region)
(vals)
(#(map first %))
(average)
(* 10)

1
Like anthropomorphic except for worms instead of humans.

57

Action recognition is easy with a full gamut of senses

(- 1)
(Math/abs)))

Listing 32: Program for detecting whether the worm is at rest. This program uses a sum-

mary of the tactile information from the underbelly of the worm, and is only true if every

segment is touching the �oor. Note that this function contains no references to proprio-

ception at all.

(def worm-segment-bottom (rect-region [8 15] [14 22]))

(defn resting?
"Is the worm resting on the ground?"
[experiences]
(every?
(fn [touch-data]

(< 0.9 (contact worm-segment-bottom touch-data)))
(:touch (peek experiences))))

Listing 33: Program for detecting whether the worm is curled up into a full circle. Here the

embodied approach begins to shine, as I am able to both use a previous action predicate

(curled?) as well as the direct tactile experience of the head and tail.

(def worm-segment-bottom-tip (rect-region [15 15] [22 22]))

(def worm-segment-top-tip (rect-region [0 15] [7 22]))

(defn grand-circle?
"Does the worm form a majestic circle (one end touching the other)?"
[experiences]
(and (curled? experiences)

(let [worm-touch (:touch (peek experiences))
tail-touch (worm-touch 0)
head-touch (worm-touch 4)]

(and (< 0.55 (contact worm-segment-bottom-tip tail-touch))
(< 0.55 (contact worm-segment-top-tip head-touch))))))

Listing 34: Program for detecting whether the worm has been wiggling for the last few

frames. It uses a Fourier analysis of the muscle contractions of the worm’s tail to deter-

mine wiggling. This is signi�cant because there is no particular frame that clearly indicates

that the worm is wiggling — only when multiple frames are analyzed together is the wig-

gling revealed. De�ning wiggling this way also gives the worm an opportunity to learn

and recognize “frustrated wiggling”, where the worm tries to wiggle but can’t. Frustrated

wiggling is very visually di�erent from actual wiggling, but this de�nition gives it to us

for free.

(defn fft [nums]
(map
#(.getReal %)
(.transform
(FastFourierTransformer. DftNormalization/STANDARD)

58

Action recognition is easy with a full gamut of senses

(double-array nums) TransformType/FORWARD)))

(def indexed (partial map-indexed vector))

(defn max-indexed [s]
(first (sort-by (comp - second) (indexed s))))

(defn wiggling?
"Is the worm wiggling?"
[experiences]
(let [analysis-interval 0x40]
(when (> (count experiences) analysis-interval)
(let [a-flex 3

a-ex 2
muscle-activity
(map :muscle (vector:last-n experiences analysis-interval))
base-activity
(map #(- (% a-flex) (% a-ex)) muscle-activity)]

(= 2
(first
(max-indexed
(map #(Math/abs %)

(take 20 (fft base-activity))))))))))

With these action predicates, I can now recognize the actions of the worm while it is moving

under my control and I have access to all the worm’s senses.

Listing 35: Use the action predicates de�ned earlier to report on what the worm is doing

while in simulation.

(defn debug-experience
[experiences text]
(cond
(grand-circle? experiences) (.setText text "Grand Circle")
(curled? experiences) (.setText text "Curled")
(wiggling? experiences) (.setText text "Wiggling")
(resting? experiences) (.setText text "Resting")))

These action predicates satisfy the recognition requirement of an empathic recognition sys-

tem. There is power in the simplicity of the action predicates. They describe their actions without

getting confused in visual details of the worm. Each one is independent of position and rotation,

but more than that, they are each independent of irrelevant visual details of the worm and the

environment. They will work regardless of whether the worm is a di�erent color or heavily

textured, or if the environment has strange lighting.

Consider how the human act of jumping might be described with body-centered action pred-

icates: You might specify that jumping is mainly the feeling of your knees bending, your thigh

muscles contracting, and your inner ear experiencing a certain sort of back and forth accelera-

tion. This representation is a very concrete description of jumping, couched in terms of muscles

and senses, but it also has the ability to describe almost all kinds of jumping, a generality that you

might think could only be achieved by a very abstract description. The body centered jumping

59

Φ-space describes the worm’s experiences

Figure 28: Using debug-experience, the body-centered predicates work together to clas-

sify the behavior of the worm. the predicates are operating with access to the worm’s full

sensory data.

predicate does not have terms that consider the color of a person’s skin or whether they are male

or female, instead it gets right to the meat of what jumping actually is.
Of course, the action predicates are not directly applicable to video data, which lacks the

advanced sensory information which they require!

The trick now is to make the action predicates work even when the sensory data on which

they depend is absent!

3.3 Φ-space describes the worm’s experiences

As a �rst step towards building empathy, I need to gather all of the worm’s experiences during

free play. I use a simple vector to store all the experiences.

Each element of the experience vector exists in the vast space of all possible worm-experiences.

Most of this vast space is actually unreachable due to physical constraints of the worm’s body.

For example, the worm’s segments are connected by hinge joints that put a practical limit on the

worm’s range of motions without limiting its degrees of freedom. Some groupings of senses are

impossible; the worm can not be bent into a circle so that its ends are touching and at the same

time not also experience the sensation of touching itself.

As the worm moves around during free play and its experience vector grows larger, the vector

begins to de�ne a subspace which is all the sensations the worm can practically experience during

normal operation. I call this subspace Φ-space, short for physical-space. The experience vector

de�nes a path through Φ-space. This path has interesting properties that all derive from physical

embodiment. The proprioceptive components of the path vary smoothly, because in order for

the worm to move from one position to another, it must pass through the intermediate positions.

The path invariably forms loops as common actions are repeated. Finally and most importantly,

proprioception alone actually gives very strong inference about the other senses. For example,

60

Empathy is the process of building paths in Φ-space

when the worm is proprioceptively �at over several frames, you can infer that it is touching the

ground and that its muscles are not active, because if the muscles were active, the worm would

be moving and would not remain perfectly �at. In order to stay �at, the worm has to be touching

the ground, or it would again be moving out of the �at position due to gravity. If the worm is

positioned in such a way that it interacts with itself, then it is very likely to be feeling the same

tactile feelings as the last time it was in that position, because it has the same body as then. As

you observe multiple frames of proprioceptive data, you can become increasingly con�dent about

the exact activations of the worm’s muscles, because it generally takes a unique combination of

muscle contractions to transform the worm’s body along a speci�c path through Φ-space.

The worm’s total life experience is a long looping path through Φ-space. I will now introduce

simple way of taking that experience path and building a function that can infer complete sensory

experience given only a stream of proprioceptive data. This empathy function will provide a

bridge to use the body centered action predicates on video-like streams of information.

3.4 Empathy is the process of building paths in Φ-space
Here is the core of a basic empathy algorithm, starting with an experience vector:

An experience-index is an index into the grand experience vector that de�nes the worm’s life.

It is a time-stamp for each set of sensations the worm has experienced.

First, I group the experience-indices into bins according to the similarity of their propriocep-

tive data. I organize my bins into a 3 level hierarchy. The smallest bins have an approximate size

of 0.001 radians in all proprioceptive dimensions. Each higher level is 10x bigger than the level

below it.

The bins serve as a hashing function for proprioceptive data. Given a single piece of pro-

prioceptive experience, the bins allow me to rapidly �nd all other similar experience-indices of

past experience that had a very similar proprioceptive con�guration. When looking up a pro-

prioceptive experience, if the smallest bin does not match any previous experience, then I use

successively larger bins until a match is found or I reach the largest bin.

Given a sequence of proprioceptive input, I use the bins to generate a set of similar experiences

for each input using the tiered proprioceptive bins.

Finally, to infer sensory data, I select the longest consecutive chain of experiences that threads

through the sets of similar experiences, starting with the current moment as a root and going

backwards. Consecutive experience means that the experiences appear next to each other in the

experience vector.

A stream of proprioceptive input might be:

[flat, flat, flat, flat, flat, flat, lift-head]

The worm’s previous experience of lying on the ground and lifting its head generates possible

interpretations for each frame (the numbers are experience-indices):

61

Empathy is the process of building paths in Φ-space

[flat, flat, flat, flat, flat, flat, flat, lift-head]
1 1 1 1 1 1 1 4
2 2 2 2 2 2 2
3 3 3 3 3 3 3
6 6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8 8 8 8
9 9 9 9 9 9 9

These interpretations suggest a new path through phi space:

[flat, flat, flat, flat, flat, flat, flat, lift-head]
6 7 8 9 1 2 3 4

The new path through Φ-space is synthesized from two actual paths that the creature has

experienced: the "1-2-3-4" chain and the "6-7-8-9" chain. The "1-2-3-4" chain is necessary because

it ends with the worm lifting its head. It originated from a short training session where the worm

rested on the �oor for a brief while and then raised its head. The "6-7-8-9" chain is part of a longer

chain of inactivity where the worm simply rested on the �oor without moving. It is preferred over

a "1-2-3" chain (which also describes inactivity) because it is longer. The main ideas again:

• Imagined Φ-space paths are synthesized by looping and mixing previous experiences.

• Longer experience paths (less edits) are preferred.

• The present is more important than the past — more recent events take precedence in

interpretation.

This algorithm has three advantages:

1. It’s simple

2. It’s very fast – retrieving possible interpretations takes constant time. Tracing through

chains of interpretations takes time proportional to the average number of experiences in a

proprioceptive bin. Redundant experiences in Φ-space can be merged to save computation.

3. It protects from wrong interpretations of transient ambiguous proprioceptive data. For

example, if the worm is �at for just an instant, this �atness will not be interpreted as im-

plying that the worm has its muscles relaxed, since the �atness is part of a longer chain

which includes a distinct pattern of muscle activation. Markov chains or other memoryless

statistical models that operate on individual frames may very well make this mistake.

Listing 36: Program to convert an experience vector into a proprioceptively binned lookup

function.

62

Empathy is the process of building paths in Φ-space

(defn bin [digits]
(fn [angles]
(->> angles

(flatten)
(map (juxt #(Math/sin %) #(Math/cos %)))
(flatten)
(mapv #(Math/round (* % (Math/pow 10 (dec digits))))))))

(defn gen-phi-scan
"Nearest-neighbors with binning. Only returns a result if
the proprioceptive data is within 10% of a previously recorded
result in all dimensions."
[phi-space]
(let [bin-keys (map bin [3 2 1])

bin-maps
(map (fn [bin-key]

(group-by
(comp bin-key :proprioception phi-space)
(range (count phi-space)))) bin-keys)

lookups (map (fn [bin-key bin-map]
(fn [proprio] (bin-map (bin-key proprio))))

bin-keys bin-maps)]
(fn lookup [proprio-data]

(set (some #(% proprio-data) lookups)))))

Figure 29: longest-thread �nds the longest path of consecutive past experiences to ex-

plain proprioceptive worm data from previous data. Here, the �lm strip represents the

creature’s previous experience. Sort sequences of memories are spliced together to match

the proprioceptive data. Their carry the other senses along with them.

longest-thread infers sensory data by stitching together pieces from previous experience.

It prefers longer chains of previous experience to shorter ones. For example, during training

the worm might rest on the ground for one second before it performs its exercises. If during

63

Empathy is the process of building paths in Φ-space

recognition the worm rests on the ground for �ve seconds, longest-thread will accommodate

this �ve second rest period by looping the one second rest chain �ve times.

longest-thread takes time proportional to the average number of entries in a proprioceptive

bin, because for each element in the starting bin it performs a series of set lookups in the preceding

bins. If the total history is limited, then this takes time proportional to a only a constant multiple

of the number of entries in the starting bin. This analysis also applies, even if the action requires

multiple longest chains – it’s still the average number of entries in a proprioceptive bin times

the desired chain length. Because longest-thread is so e�cient and simple, I can interpret

worm-actions in real time.

Listing 37: Program to calculate empathy by tracing though Φ-space and �nding the

longest (ie. most coherent) interpretation of the data.

(defn longest-thread
"Find the longest thread from phi-index-sets. The index sets should
be ordered from most recent to least recent."
[phi-index-sets]
(loop [result ’()

[thread-bases & remaining :as phi-index-sets] phi-index-sets]
(if (empty? phi-index-sets)

(vec result)
(let [threads

(for [thread-base thread-bases]
(loop [thread (list thread-base)

remaining remaining]
(let [next-index (dec (first thread))]
(cond (empty? remaining) thread

(contains? (first remaining) next-index)
(recur
(cons next-index thread) (rest remaining))
:else thread))))

longest-thread
(reduce (fn [thread-a thread-b]

(if (> (count thread-a) (count thread-b))
thread-a thread-b))

’(nil)
threads)]

(recur (concat longest-thread result)
(drop (count longest-thread) phi-index-sets))))))

There is one �nal piece, which is to replace missing sensory data with a best-guess estimate.

While I could �ll in missing data by using a gradient over the closest known sensory data points,

averages can be misleading. It is certainly possible to create an impossible sensory state by av-

eraging two possible sensory states. For example, consider moving your hand in an arc over

your head. If for some reason you only have the initial and �nal positions of this movement in

your Φ-space, averaging them together will produce the proprioceptive sensation of having your

hand inside your head, which is physically impossible to ever experience (barring motor adaption

illusions). Therefore I simply replicate the most recent sensory experience to �ll in the gaps.

Listing 38: Fill in blanks in sensory experience by replicating the most recent experience.

64

EMPATH recognizes actions e�ciently

(defn infer-nils
"Replace nils with the next available non-nil element in the
sequence, or barring that, 0."
[s]
(loop [i (dec (count s))

v (transient s)]
(if (zero? i) (persistent! v)

(if-let [cur (v i)]
(if (get v (dec i) 0)
(recur (dec i) v)
(recur (dec i) (assoc! v (dec i) cur)))

(recur i (assoc! v i 0))))))

3.5 EMPATH recognizes actions e�ciently
To use EMPATH with the worm, I �rst need to gather a set of experiences from the worm that

includes the actions I want to recognize. The generate-phi-space program (listing 39 runs the

worm through a series of exercises and gathers those experiences into a vector. The do-all-the-things
program is a routine expressed in a simple muscle contraction script language for automated

worm control. It causes the worm to rest, curl, and wiggle over about 700 frames (approx. 11

seconds).

Listing 39: Program to gather the worm’s experiences into a vector for further processing.

The motor-control-program line uses a motor control script that causes the worm to

execute a series of “exercises” that include all the action predicates.

(def do-all-the-things
(concat
curl-script
[[300 :d-ex 40]
[320 :d-ex 0]]
(shift-script 280 (take 16 wiggle-script))))

(defn generate-phi-space []
(let [experiences (atom [])]
(run-world
(apply-map
worm-world
(merge
(worm-world-defaults)
{:end-frame 700
:motor-control
(motor-control-program worm-muscle-labels do-all-the-things)
:experiences experiences})))

@experiences))

Listing 40: Use longest-thread and a Φ-space generated from a short exercise routine to

interpret actions during free play.

(defn init []
(def phi-space (generate-phi-space))

65

EMPATH recognizes actions e�ciently

(def phi-scan (gen-phi-scan phi-space)))

(defn empathy-demonstration []
(let [proprio (atom ())]
(fn
[experiences text]
(let [phi-indices (phi-scan (:proprioception (peek experiences)))]

(swap! proprio (partial cons phi-indices))
(let [exp-thread (longest-thread (take 300 @proprio))

empathy (mapv phi-space (infer-nils exp-thread))]
(println-repl (vector:last-n exp-thread 22))
(cond
(grand-circle? empathy) (.setText text "Grand Circle")
(curled? empathy) (.setText text "Curled")
(wiggling? empathy) (.setText text "Wiggling")
(resting? empathy) (.setText text "Resting")
:else (.setText text "Unknown")))))))

(defn empathy-experiment [record]
(.start (worm-world :experience-watch (debug-experience-phi)

:record record :worm worm*)))

These programs create a test for the empathy system. First, the worm’s Φ-space is gener-

ated from a simple motor script. Then the worm is re-created in an environment almost exactly

identical to the testing environment for the action-predicates, with one major di�erence : the

only sensory information available to the system is proprioception. From just the proprioception

data and Φ-space, longest-thread synthesizes a complete record the last 300 sensory experi-

ences of the worm. These synthesized experiences are fed directly into the action predicates

grand-circle?, curled?, wiggling?, and resting? and their outputs are printed to the screen

at each frame.

The result of running empathy-experiment is that the system is generally able to interpret

worm actions using the action-predicates on simulated sensory data just as well as with actual

data. Figure 30 was generated using empathy-experiment:

One way to measure the performance of EMPATH is to compare the suitability of the imagined

sense experience to trigger the same action predicates as the real sensory experience.

Listing 41: Determine how closely empathy approximates actual sensory data.

(def worm-action-label
(juxt grand-circle? curled? wiggling?))

(defn compare-empathy-with-baseline [matches]
(let [proprio (atom ())]
(fn
[experiences text]
(let [phi-indices (phi-scan (:proprioception (peek experiences)))]

(swap! proprio (partial cons phi-indices))
(let [exp-thread (longest-thread (take 300 @proprio))

empathy (mapv phi-space (infer-nils exp-thread))
experience-matches-empathy
(= (worm-action-label experiences)

66

EMPATH recognizes actions e�ciently

Figure 30: From only proprioceptive data, EMPATH was able to infer the complete sensory

experience and classify four poses (The last panel shows a composite image of wiggling, a

dynamic pose.)

(worm-action-label empathy))]
(println-repl experience-matches-empathy)
(swap! matches #(conj % experience-matches-empathy)))))))

(defn accuracy [v]
(float (/ (count (filter true? v)) (count v))))

(defn test-empathy-accuracy []
(let [res (atom [])]
(run-world
(worm-world :experience-watch

(compare-empathy-with-baseline res)
:worm worm*))

(accuracy @res)))

Running test-empathy-accuracy using the very short exercise program do-all-the-things
de�ned in listing 39, and then doing a similar pattern of activity using manual control of the worm,

yields an accuracy of around 73%. This is based on very limited worm experience, and almost all

errors are due to the worm’s Φ-space being too incomplete to properly interpret common poses.

By manually training the worm for longer using init-interactive de�ned in listing 42, the

accuracy dramatically improves:

Listing 42: Program to generate Φ-space using manual training.

(defn init-interactive []
(def phi-space
(let [experiences (atom [])]

(run-world
(apply-map

67

Digression: Learning touch sensor layout through free play

worm-world
(merge
(worm-world-defaults)
{:experiences experiences})))

@experiences))
(def phi-scan (gen-phi-scan phi-space)))

init-interactive allows me to take direct control of the worm’s muscles and run it through

each characteristic movement I care about. After about 1 minute of manual training, I was able

to achieve 95% accuracy on manual testing of the worm using test-empathy-accuracy. The

majority of disagreements are near the transition boundaries from one type of action to another.

During these transitions the exact label for the action is often unclear, and disagreement between

empathy and experience is practically irrelevant. Thus, the system’s e�ective identi�cation ac-

curacy is even higher than 95%. When I watch this system myself, I generally see no errors in

action identi�cation compared to my own judgment of what the worm is doing.

3.6 Digression: Learning touch sensor layout through free play

In the previous chapter I showed how to compute actions in terms of body-centered predicates,

but some of those predicates relied on the average touch activation of pre-de�ned regions of the

worm’s skin. What if, instead of receiving touch pre-grouped into the six faces of each worm

segment, the true partitioning of the worm’s skin was unknown? This is more similar to how a

nerve �ber bundle might be arranged inside an animal. While two �bers that are close in a nerve

bundle might correspond to two touch sensors that are close together on the skin, the process of

taking a complicated surface and forcing it into essentially a 2D circle requires that some regions

of skin that are close together in the animal end up far apart in the nerve bundle.

In this chapter I show how to automatically learn the skin-partitioning of a worm segment

by free exploration. As the worm rolls around on the �oor, large sections of its surface get acti-

vated. If the worm has stopped moving, then whatever region of skin that is touching the �oor

is probably an important region, and should be recorded. The code I provide relies on the worm

segment having �at faces, but still demonstrates a primitive kind of multi-sensory bootstrapping

that I �nd appealing.

Listing 43: Program to detect whether the worm is in a resting state with one face touching

the �oor.

(def full-contact [(float 0.0) (float 0.1)])

(defn pure-touch?
"This is worm specific code to determine if a large region of touch
sensors is either all on or all off."
[[coords touch :as touch-data]]
(= (set (map first touch)) (set full-contact)))

After collecting these important regions, there will many nearly similar touch regions. While

for some purposes the subtle di�erences between these regions will be important, for my purposes

I collapse them into mostly non-overlapping sets using remove-similar in listing 44

68

Digression: Learning touch sensor layout through free play

Listing 44: Program to take a list of sets of points and “collapse them” so that the remaining

sets in the list are signi�cantly di�erent from each other. Prefer smaller sets to larger ones.

(defn remove-similar
[coll]
(loop [result () coll (sort-by (comp - count) coll)]
(if (empty? coll) result

(let [[x & xs] coll
c (count x)]

(if (some
(fn [other-set]
(let [oc (count other-set)]
(< (- (count (union other-set x)) c) (* oc 0.1))))

xs)
(recur result xs)
(recur (cons x result) xs))))))

Actually running this simulation is easy given CORTEX’s facilities.

Listing 45: Collect experiences while the worm moves around. Filter the touch sensations

by stable ones, collapse similar ones together, and report the regions learned.

(defn learn-touch-regions []
(let [experiences (atom [])

world (apply-map
worm-world
(assoc (worm-segment-defaults)
:experiences experiences))]

(run-world world)
(->>
@experiences
(drop 175)
;; access the single segment’s touch data
(map (comp first :touch))
;; only deal with "pure" touch data to determine surfaces
(filter pure-touch?)
;; associate coordinates with touch values
(map (partial apply zipmap))
;; select those regions where contact is being made
(map (partial group-by second))
(map #(get % full-contact))
(map (partial map first))
;; remove redundant/subset regions
(map set)
remove-similar)))

(defn learn-and-view-touch-regions []
(map view-touch-region

(learn-touch-regions)))

The only thing remaining to de�ne is the particular motion the worm must take. I accomplish

this with a simple motor control program.

Listing 46: Motor control program for making the worm roll on the ground. This could

also be replaced with random motion.

69

Digression: Learning touch sensor layout through free play

(defn touch-kinesthetics []
[[170 :lift-1 40]
[190 :lift-1 19]
[206 :lift-1 0]

[400 :lift-2 40]
[410 :lift-2 0]

[570 :lift-2 40]
[590 :lift-2 21]
[606 :lift-2 0]

[800 :lift-1 30]
[809 :lift-1 0]

[900 :roll-2 40]
[905 :roll-2 20]
[910 :roll-2 0]

[1000 :roll-2 40]
[1005 :roll-2 20]
[1010 :roll-2 0]

[1100 :roll-2 40]
[1105 :roll-2 20]
[1110 :roll-2 0]
])

Figure 31: The small worm rolls around on the �oor, driven by the motor control program

in listing 31.

While simple, learn-touch-regions exploits regularities in both the worm’s physiology and

the worm’s environment to correctly deduce that the worm has six sides. Note that learn-touch-regions
would work just as well even if the worm’s touch sense data were completely scrambled. The

cross shape is just for convenience. This example justi�es the use of pre-de�ned touch regions

in EMPATH.

70

Recognizing an object using embodied representation

Figure 32: After completing its adventures, the worm now knows how its touch sensors

are arranged along its skin. Each of these six rectangles are touch sensory patterns that

were deemed important by learn-touch-regions. Each white square in the rectangles

above is a cluster of “related" touch nodes as determined by the system. The worm has

correctly discovered that it has six faces, and has partitioned its sensory map into these six

faces.

3.7 Recognizing an object using embodied representation
At the beginning of the thesis, I suggested that we might recognize the chair in Figure 2 by

imagining ourselves in the position of the man and realizing that he must be sitting on something

in order to maintain that position. Here, I present a brief elaboration on how to this might be

done.

First, I need the feeling of leaning or resting on some other object that is not the �oor. This

feeling is easy to describe using an embodied representation.

Listing 47: Program describing the sense of leaning or resting on something. This involves

a relaxed posture, the feeling of touching something, and a period of stability where the

worm does not move.

(defn draped?
"Is the worm:
-- not flat (the floor is not a ’chair’)
-- supported (not using its muscles to hold its position)
-- stable (not changing its position)
-- touching something (must register contact)"

[experiences]

71

Recognizing an object using embodied representation

(let [b2-hash (bin 2)
touch (:touch (peek experiences))
total-contact
(reduce
+
(map #(contact all-touch-coordinates %)

(rest touch)))]
(println total-contact)
(and (not (resting? experiences))

(every?
zero?
(-> experiences

(vector:last-n 25)
(#(map :muscle %))
(flatten)))

(-> experiences
(vector:last-n 20)
(#(map (comp b2-hash flatten :proprioception) %))
(set)
(count) (= 1))

(< 0.03 total-contact))))

Figure 33: The draped? predicate detects the presence of the cube whenever the worm

interacts with it. The details of the cube are irrelevant; only the way it in�uences the

worm’s body matters. The “unknown” label on the �fth frame is due to the fact that the

worm is not stationary. draped? will only declare that the worm is draped if it has been

still for a while.

Though this is a simple example, using the draped? predicate to detect a cube has interesting

advantages. The draped? predicate describes the cube not in terms of properties that the cube

has, but instead in terms of how the worm interacts with it physically. This means that the cube

can still be detected even if it is not visible, as long as its in�uence on the worm’s body is visible.

This system will also see the virtual cube created by a “mimeworm", which uses its muscles in

a very controlled way to mimic the appearance of leaning on a cube. The system will anticipate

that there is an actual invisible cube that provides support!

72

Recognizing an object using embodied representation

Figure 34: Can you see the thing that this person is leaning on? What properties does it

have, other than how it makes the man’s elbow and shoulder feel? I wonder if people who

can actually maintain this pose easily still see the support?

This makes me wonder about the psychology of actual mimes. Suppose for a moment that

people have something analogous to Φ-space and that one of the ways that they �nd objects in

a scene is by their relation to other people’s bodies. Suppose that a person watches a person

miming an invisible wall. For a person with no experience with miming, their Φ-space will only

have entries that describe the scene with the sensation of their hands touching a wall. This

sensation of touch will create a strong impression of a wall, even though the wall would have to

be invisible. A person with experience in miming however, will have entries in their Φ-space that

describe the wall-miming position without a sense of touch. It will not seem to such as person

that an invisible wall is present, but merely that the mime is holding out their hands in a special

way. Thus, the theory that humans use something like Φ-space weakly predicts that learning

how to mime should break the power of miming illusions. Most optical illusions still work no

matter how much you know about them, so this proposal would be quite interesting to test, as it

predicts a non-standard result!

73

4. Contributions

4 Contributions
The big idea behind this thesis is a new way to represent and recognize physical actions, which

I call empathic representation. Actions are represented as predicates which have access to the

totality of a creature’s sensory abilities. To recognize the physical actions of another creature

similar to yourself, you imagine what they would feel by examining the position of their body

and relating it to your own previous experience.

Empathic representation of physical actions is robust and general. Because the representation

is body-centered, it avoids baking in a particular viewpoint like you might get from learning

from example videos. Because empathic representation relies on all of a creature’s senses, it can

describe exactly what an action feels like without getting caught up in irrelevant details such

as visual appearance. I think it is important that a correct description of jumping (for example)

should not include irrelevant details such as the color of a person’s clothes or skin; empathic

representation can get right to the heart of what jumping is by describing it in terms of touch,

muscle contractions, and a brief feeling of weightlessness. Empathic representation is very low-

level in that it describes actions using concrete sensory data with little abstraction, but it has the

generality of much more abstract representations!

Another important contribution of this thesis is the development of the CORTEX system, a

complete environment for creating simulated creatures. You have seen how to implement �ve

senses: touch, proprioception, hearing, vision, and muscle tension. You have seen how to create

new creatures using Blender, a 3D modeling tool.

As a minor digression, you also saw how I used CORTEX to enable a tiny worm to discover the

topology of its skin simply by rolling on the ground. You also saw how to detect objects using

only embodied predicates.

In conclusion, for this thesis I:

• Developed the idea of embodied representation, which describes actions that a creature can

do in terms of �rst-person sensory data.

• Developed a method of empathic action recognition which uses previous embodied expe-

rience and embodied representation of actions to greatly constrain the possible interpreta-

tions of an action.

• Created EMPATH, a program which uses empathic action recognition to recognize physical

actions in a simple model involving segmented worm-like creatures.

• Created CORTEX, a comprehensive platform for embodied AI experiments. It is the base on

which EMPATH is built.

74

1. Appendix: CORTEX User Guide

1 Appendix: CORTEX User Guide
Those who write a thesis should endeavor to make their code not only accessible, but actually

usable, as a way to pay back the community that made the thesis possible in the �rst place. This

thesis would not be possible without Free Software such as jMonkeyEngine3, Blender, clojure,

emacs, ffmpeg, and many other tools. That is why I have included this user guide, in the hope

that someone else might �nd CORTEX useful.

1.1 Obtaining CORTEX

You can get cortex from its mercurial repository at http://hg.bortreb.com/cortex. You may

also download CORTEX releases at http://aurellem.org/cortex/releases/. As a condition of

making this thesis, I have also provided Professor Winston the CORTEX source, and he knows how

to run the demos and get started. You may also email me at cortex@aurellem.org and I may

help where I can.

1.2 Running CORTEX

CORTEX comes with README and INSTALL �les that will guide you through installation and

running the test suite. In particular you should look at test cortex.test which contains test

suites that run through all senses and multiple creatures.

1.3 Creating creatures
Creatures are created using Blender, a free 3D modeling program. You will need Blender version

2.6 when using the CORTEX included in this thesis. You create a CORTEX creature in a similar

manner to modeling anything in Blender, except that you also create several trees of empty nodes

which de�ne the creature’s senses.

Mass

To give an object mass in CORTEX, add a “mass” metadata label to the object with the mass in

jMonkeyEngine units. Note that setting the mass to 0 causes the object to be immovable.

Joints

Joints are created by creating an empty node named joints and then creating any number of

empty child nodes to represent your creature’s joints. The joint will automatically connect the

closest two physical objects. It will help to set the empty node’s display mode to “Arrows” so that

you can clearly see the direction of the axes.

Joint nodes should have the following metadata under the “joint” label:

;; ONE of the following, under the label "joint":
{:type :point}

;; OR

75

http://hg.bortreb.com/cortex
http://aurellem.org/cortex/releases/

Creating creatures

{:type :hinge
:limit [<limit-low> <limit-high>]
:axis (Vector3f. <x> <y> <z>)}
;;(:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)

;; OR

{:type :cone
:limit-xz <lim-xz>
:limit-xy <lim-xy>
:twist <lim-twist>} ;(use XZY rotation mode in Blender!)

Eyes

Eyes are created by creating an empty node named eyes and then creating any number of empty

child nodes to represent your creature’s eyes.

Eye nodes should have the following metadata under the “eye” label:

{:red <red-retina-definition>
:blue <blue-retina-definition>
:green <green-retina-definition>
:all <all-retina-definition>
(<0xrrggbb> <custom-retina-image>)...
}

Any of the color channels may be omitted. You may also include your own color selectors,

and in fact :red is equivalent to 0xFF0000 and so forth. The eye will be placed at the same position

as the empty node and will bind to the neatest physical object. The eye will point outward from

the X-axis of the node, and “up” will be in the direction of the X-axis of the node. It will help to

set the empty node’s display mode to “Arrows” so that you can clearly see the direction of the

axes.

Each retina �le should contain white pixels wherever you want to be sensitive to your chosen

color. If you want the entire �eld of view, specify :all of 0xFFFFFF and a retinal map that is entirely

white.

Here is a sample retinal map:

76

Creating creatures

Figure 35: An example retinal pro�le image. White pixels are photo-sensitive elements.

The distribution of white pixels is denser in the middle and falls o� at the edges and is

inspired by the human retina.

Hearing

Ears are created by creating an empty node named ears and then creating any number of empty

child nodes to represent your creature’s ears.

Ear nodes do not require any metadata.

The ear will bind to and follow the closest physical node.

Touch

Touch is handled similarly to mass. To make a particular object touch sensitive, add metadata of

the following form under the object’s “touch” metadata �eld:

<touch-UV-map-file-name>

You may also include an optional “scale” metadata number to specify the length of the touch

feelers. The default is 0.1, and this is generally su�cient.

The touch UV should contain white pixels for each touch sensor.

Here is an example touch-uv map that approximates a human �nger, and its corresponding

model.

Proprioception

Proprioception is tied to each joint node – nothing special must be done in a Blender model to

enable proprioception other than creating joint nodes.

77

Creating creatures

Figure 36: This is the tactile-sensor-pro�le for the upper segment of a �ngertip. It de�nes

regions of high touch sensitivity (where there are many white pixels) and regions of low

sensitivity (where white pixels are sparse).

Figure 37: The �ngertip UV-image form above applied to a simple model of a �ngertip.

Muscles

Muscles are created by creating an empty node named muscles and then creating any number

of empty child nodes to represent your creature’s muscles.

Muscle nodes should have the following metadata under the “muscle” label:

<muscle-profile-file-name>

Muscles should also have a “strength” metadata entry describing the muscle’s total strength

at full activation.

Muscle pro�les are simple images that contain the relative amount of muscle power in each

simulated alpha motor neuron. The width of the image is the total size of the motor pool, and the

redness of each neuron is the relative power of that motor pool.

While the pro�le image can have any dimensions, only the �rst line of pixels is used to de�ne

the muscle. Here is a sample muscle pro�le image that de�nes a human-like muscle.

Muscles twist the nearest physical object about the muscle node’s Z-axis. I recommend using

the “Single Arrow” display mode for muscles and using the right hand rule to determine which

78

Creating creatures

Figure 38: A muscle pro�le image that describes the strengths of each motor neuron in a

muscle. White is weakest and dark red is strongest. This particular pattern has weaker

motor neurons at the beginning, just like human muscle.

way the muscle will twist. To make a segment that can twist in multiple directions, create mul-

tiple, di�erently aligned muscles.

79

CORTEX API

1.4 CORTEX API
These are the some functions exposed by CORTEX for creating worlds and simulating creatures.

These are in addition to jMonkeyEngine3’s extensive library, which is documented elsewhere.

Simulation

(world root-node key-map setup-fn update-fn) create a simulation.

root-node a com.jme3.scene.Node object which contains all of the objects that should

be in the simulation.

key-map a map from strings describing keys to functions that should be executed when-

ever that key is pressed. the functions should take a SimpleApplication object and a

boolean value. The SimpleApplication is the current simulation that is running, and

the boolean is true if the key is being pressed, and false if it is being released. As an

example,

{"key-j" (fn [game value] (if value (println "key j pressed")))}

is a valid key-map which will cause the simulation to print a message whenever the

’j’ key on the keyboard is pressed.

setup-fn a function that takes a SimpleApplication object. It is called once when ini-

tializing the simulation. Use it to create things like lights, change the gravity, initialize

debug nodes, etc.

update-fn this function takes a SimpleApplication object and a �oat and is called every

frame of the simulation. The �oat tells how many seconds is has been since the last

frame was rendered, according to whatever clock jme is currently using. The default

is to use IsoTimer which will result in this value always being the same.

(position-camera world position rotation) set the position of the simulation’s main cam-

era.

(enable-debug world) turn on debug wireframes for each simulated object.

(set-gravity world gravity) set the gravity of a running simulation.

(box length width height & {options}) create a box in the simulation. Options is a hash

map specifying texture, mass, etc. Possible options are :name, :color, :mass, :friction,

:texture, :material, :position, :rotation, :shape, and :physical?.

(sphere radius & {options}) create a sphere in the simulation. Options are the same as in

box.

(load-blender-model file-name) create a node structure representing the model described

in a Blender �le.

(light-up-everything world) distribute a standard compliment of lights throughout the sim-

ulation. Should be adequate for most purposes.

80

CORTEX API

(node-seq node) return a recursive list of the node’s children.

(nodify name children) construct a node given a node-name and desired children.

(add-element world element) add an object to a running world simulation.

(set-accuracy world accuracy) change the accuracy of the world’s physics simulator.

(asset-manager) get an AssetManager, a jMonkeyEngine construct that is useful for loading

textures and is required for smooth interaction with jMonkeyEngine library functions.

(load-bullet) unpack native libraries and initialize the bullet physics subsystem. This func-

tion is required before other world building functions are called.

Creature Manipulation / Import

(body! creature) give the creature a physical body.

(vision! creature) give the creature a sense of vision. Returns a list of functions which will

each, when called during a simulation, return the vision data for the channel of one of the

eyes. The functions are ordered depending on the alphabetical order of the names of the

eye nodes in the Blender �le. The data returned by the functions is a vector containing the

eye’s topology, a vector of coordinates, and the eye’s data, a vector of RGB values �ltered

by the eye’s sensitivity.

(hearing! creature) give the creature a sense of hearing. Returns a list of functions, one for

each ear, that when called will return a frame’s worth of hearing data for that ear. The

functions are ordered depending on the alphabetical order of the names of the ear nodes

in the Blender �le. The data returned by the functions is an array of PCM (pulse code

modulated) wav data.

(touch! creature) give the creature a sense of touch. Returns a single function that must be

called with the root node of the world, and which will return a vector of touch-data one entry

for each touch sensitive component, each entry of which contains a topology that speci�es

the distribution of touch sensors, and the data, which is a vector of [activation, length]
pairs for each touch hair.

(proprioception! creature) give the creature the sense of proprioception. Returns a list of

functions, one for each joint, that when called during a running simulation will report the

[heading, pitch, roll] of the joint.

(movement! creature) give the creature the power of movement. Creates a list of functions,

one for each muscle, that when called with an integer, will set the recruitment of that muscle

to that integer, and will report the current power being exerted by the muscle. Order of

muscles is determined by the alphabetical sort order of the names of the muscle nodes.

81

CORTEX API

Visualization/Debug

(view-vision) create a function that when called with a list of visual data returned from the

functions made by vision!, will display that visual data on the screen.

(view-hearing) same as view-vision but for hearing.

(view-touch) same as view-vision but for touch.

(view-proprioception) same as view-vision but for proprioception.

(view-movement) same as view-vision but for muscles.

(view anything) view is a polymorphic function that allows you to inspect almost anything

you could reasonably expect to be able to “see” in CORTEX.

(text anything) text is a polymorphic function that allows you to convert practically any-

thing into a text string.

(println-repl anything) print messages to clojure’s repl instead of the simulation’s terminal

window.

(mega-import-jme3) for experimenting at the REPL. This function will import all jMonkeyEngine3

classes for immediate use.

(display-dilated-time world timer) Shows the time as it is �owing in the simulation on a

HUD display.

82

Bibliography

Atkeson, Christopher Granger (1986). “Roles of knowledge in motor learning”. Available at: http:
//hdl.handle.net/1721.1/29195. PhD thesis. MIT.

The author builds a robotic arm that can rapidly learn a rigid body model of itself, then re�ne its motions by

practicing and gaining real-world experience. This idea of using real-world experience to guide actions helped

inspire EMPATH.

Bear et al. (2006). Neuroscience: Exploring the Brain. 3rd Edition. Lippincott Williams & Wilkins.

isbn: 9780781760034.

This is the introductory textbook to 9.01. It provides a good introduction to all major human senses.

Blender (2013). http://www.blender.org/.

All complicated creatures in CORTEX are described using Blender’s extensive 3D modeling capabilities. Blender

is a very sophisticated 3D modeling environment and has been used to create a short movie called Sintel http:

//www.sintel.org/.

Brooks, Rodney A. (1991). “Intelligence Without Representation”. In: Arti�cial Intelligence 47.1-3.

Available at : http://people.csail.mit.edu/brooks/papers/representation.pdf,

pp. 139–159.

Presents an argument that simulation will not be enough to develop arti�cial intelligence, and that we must rely

on the real world and robots if we are to build truly robust systems. While CORTEX embraces simulation because

of Time, this paper remains a compelling argument for why the entire enterprise might not even be a good idea.

Coen, Michael Harlan (2006). “Multimodal dynamics : self-supervised learning in perceptual and

motor systems”. Available at: http://hdl.handle.net/1721.1/34022. PhD thesis. MIT.

This thesis shows how to use multiple senses to mutually bootstrap o� of each other and achieve clustering

results that no sense could be able to achieve alone. Cross-modal clustering becomes more powerful the more

senses it has, and is ideal to implement in an environment such as CORTEX’s.

Harvey, Christopher D. et al. “Intracellular dynamics of hippocampal place cells during virtual

navigation”. In: Nature 461. Available at :

83

http://hdl.handle.net/1721.1/29195
http://hdl.handle.net/1721.1/29195
http://www.blender.org/
http://www.sintel.org/
http://www.sintel.org/
http://people.csail.mit.edu/brooks/papers/representation.pdf
http://hdl.handle.net/1721.1/34022

http://papers.cnl.salk.edu/PDFs/IntracelllularDynamicsofVirtualPlaceCells2011-
4178.pdf, pp. 941–946.

Researchers at Princeton created a special Quake II level that simulated a maze, and added an interface where a

mouse could run on top of a ball in various directions to move the character in the simulated maze. They mea-

sured hippocampal activity during this exercise to try and tease out the method in which spatial data was stored

in that area of the brain. I �nd this promising because it shows that simulated worlds are still clear enough for

a simple rat to navigate — they don’t just have meaning from our own highly advanced imaginations. I want to

see if a rat can reasonably grow up if it lives its entire life hooked up to the game!

jMonkeyEngine3 (2013). http://hub.jmonkeyengine.org/.

This is the video game engine on which CORTEX is based.

Ke, Yan, R. Sukthankar, and M. Hebert (2005). “E�cient visual event detection using volumetric

features”. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference. Vol. 1.

http://www.intel-research.net/Publications/Pittsburgh/092620050705_320.pdf,

166–173 Vol. 1.

This is an example of using frame-dependent methods to detect actions in video. I consider this to be the wrong

language for describing actions, because it has no way to completely describe even a simple action like “curling”

from all points of view.

Larson, Stephen David (2003). “Intrinsic representation : bootstrapping symbols from experience”.

Available at: http://hdl.handle.net/1721.1/28462. MA thesis. MIT.

This is an example of a thesis that I think could be improved with CORTEX. Larson uses a simple blocks world

simulator to explore using self-organizing maps to bootstrap symbols just from exploration with a simulated

arm and colored blocks.

Minsky, Marvin (1986). The Society of Mind. Available at: http://aurellem.org/society-of-
mind. New York, NY, USA: Simon & Schuster, Inc. isbn: 0-671-60740-5.

Society of Mind has amazing idea density and is full of good and bad ideas. It’s one of the main inspirations for

CORTEX.

Sacks, Oliver (1998). The Man Who Mistook His Wife For A Hat: And Other Clinical Tales. Simon

and Schuster. isbn: 9780330700580.

This book describes exotic cases where the human mind goes wrong. The section on proprioception is partic-

ularly relevant to this thesis, and one of the best explanations of how important proprioception is, though the

eyes of someone who has lost the sense.

Sims, Karl (1994). “Evolving Virtual Creatures”. In: Computer Graphics (Siggraph ’94 Proceedings).

84

http://papers.cnl.salk.edu/PDFs/Intracelllular Dynamics of Virtual Place Cells 2011-4178.pdf
http://papers.cnl.salk.edu/PDFs/Intracelllular Dynamics of Virtual Place Cells 2011-4178.pdf
http://hub.jmonkeyengine.org/
http://www.intel-research.net/Publications/Pittsburgh/092620050705_320.pdf
http://hdl.handle.net/1721.1/28462
http://aurellem.org/society-of-mind
http://aurellem.org/society-of-mind

Available as: http://www.karlsims.com/papers/siggraph94.pdf, pp. 15–22.

Karl Sims uses a simulated virtual environment similar to CORTEX to study the evolution of a set of creatures

as they develop to perform various tasks such as swimming or competing for a ball. His code only ran on the

Connection Machine (CM-5), which sadly doesn’t exist anymore. CORTEX presents an opportunity to continue

this line of research.

Singh, Pushpinder (2005). “EM-ONE : an architecture for re�ective commonsense thinking”. Avail-

able at: http://hdl.handle.net/1721.1/33926. PhD thesis. MIT.

Inspired by Minsky’s work, Singh sought to build a simulated environment where his creatures could learn to

solve problems together. The code has similar concepts to Φ-space in that he collects all of a creature’s past

experience into a vector.

Sussman, Gerald J. (1973). “A Computational Model of Skill Acquisition”. Available at: http:
//hdl.handle.net/1721.1/6894. PhD thesis. MIT.

Sussman creates a program called HACKER, which operates in a blocks world environment and learns to debug

programs to build things with blocks and control its own body. This sort of approach to problem solving is beg-

ging to be implemented in CORTEX’s rich world. Will program debugging still work well with many more senses

and a more complicated environment?

Turing, Alan M. (1950). “Computing machinery and intelligence”. In: Mind. Available as: http:
//www.csee.umbc.edu/courses/471/papers/turing.pdf, pp. 433–460.

The original paper that inspired the Turing test. It’s important because in it Turing states that we don’t have to

care about the “hand” part of “mind and hand”, using the example of Helen Keller as motivation. I think that this

is a mistake, and that embodiment is critical to intelligence.

Winston, Patrick Henry (2011). “The Strong Story Hypothesis and the Directed Perception Hy-

pothesis”. In: Technical Report FS-11-01, Papers from the AAAI Fall Symposium. Ed. by Pat

Langley. Available as: http://hdl.handle.net/1721.1/67693. Menlo Park, CA: AAAI

Press, pp. 345–352.

Discusses an idea called the directed perception hypothesis, which argues that much of our intelligence resides in

our senses themselves, and our ability to direct their resources on imagined problems. This has had the greatest

in�uence on CORTEX.

— (2012). “The Next 50 Years: a Personal View”. In: Biologically Inspired Cognitive Architectures 1.

Available as : http://groups.csail.mit.edu/genesis/papers/2012bica-phw, pp. 92–99.

Great summary of historical attempts at AI, and more thoughts on how directed perception and mimicry as in

EMPATH might play an important role in intelligence.

85

http://www.karlsims.com/papers/siggraph94.pdf
http://hdl.handle.net/1721.1/33926
http://hdl.handle.net/1721.1/6894
http://hdl.handle.net/1721.1/6894
http://www.csee.umbc.edu/courses/471/papers/turing.pdf
http://www.csee.umbc.edu/courses/471/papers/turing.pdf
http://hdl.handle.net/1721.1/67693
http://groups.csail.mit.edu/genesis/papers/2012bica-phw

	Empathy & Embodiment: problem solving strategies
	The problem: recognizing actions is hard!
	A step forward: the sensorimotor-centered approach
	EMPATH recognizes actions using empathy
	EMPATH is built on CORTEX, a creature builder.

	Designing CORTEX
	Building in simulation versus reality
	Simulated time enables rapid prototyping & simple programs
	All sense organs are two-dimensional surfaces
	Video game engines provide ready-made physics and shading
	CORTEX is based on jMonkeyEngine3
	CORTEX uses Blender to create creature models
	Bodies are composed of segments connected by joints
	Sight reuses standard video game components…
	…but hearing must be built from scratch
	Hundreds of hair-like elements provide a sense of touch
	Proprioception provides knowledge of your own body's position
	Muscles contain both sensors and effectors
	CORTEX brings complex creatures to life!
	CORTEX enables many possibilities for further research

	EMPATH: action recognition in a simulated worm
	Embodiment factors action recognition into manageable parts
	Action recognition is easy with a full gamut of senses
	-space describes the worm's experiences
	Empathy is the process of building paths in -space
	EMPATH recognizes actions efficiently
	Digression: Learning touch sensor layout through free play
	Recognizing an object using embodied representation

	Contributions
	Appendix: CORTEX User Guide
	Obtaining CORTEX
	Running CORTEX
	Creating creatures
	CORTEX API

