
A DECISION RA nON ALE MAN AGEtvfENT SYSTEM:

CAPTURING, REUSING, AND MANAGING

THE REASONS FOR DECISIONS

by
Jintae Lee

B.A. Mathematics, Univ. of Chicago (1979)

M.Phil. Univ. of Cambridge (1982)

Submitted to the Department of

Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PIDLOSOPHY

IN COMPUTER SCIENCE

at the

MASSACHUSETTS INSITITUTE OF TECHNOLOGY

February 1992

© Massachusetts Institute of Technology 1992

All rights reserved

Signature of Author
-------~------------------------------

Certified by

Department of EECS
September 20, 1991

Patrick H. Winston
Professor,.#tificial Intelligence Laboratory I ~sis Supervisor

Accepted by, -------,r--.7"-----------7"--=---------------- -..... .

ARCHIVES Campbell L. Searle

G
;;;~'~:-L-" Departmental Committee on Graduate Studies
,,'I''''oJ, , I Ci(. "\

M ~ 1 r ' ~ r, "2) Pi. " .I :J~
~ l. , '" .. , " c" "

A Decision Rationale Management System:
Capturing, Reusing, and Managing the Reasons for Decisions

by

Jintae Lee

Submitted to the EECS Department on September 17, 1991,

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

Abstract

This thesis identifies the needs for capturing and managing decision rationales, articulates

the concept of a decision rationale management system that meet these needs, and presents

a computer system that implements the concept.

Capturing and managing decision rationales, i.e. the deliberations leading to decisions, can

bring about many benefits. The rationales can then be 'sed to support decision making,

can be shared among decision makers, and can be reused for similar decisions. A decision

rationale management system, i.e. a system that captures and manages decision rationales

to provide these benefits, requires three major components: a language for representing

elements of rationales, a method of using the language to capture the rationales, and a set of

services that use the captured rationales to support decision making.

This thesis articulates a model of decision rationales and uses it to develop DRL, a language

for representing the elements in this model. The thesis also presents SIBYL, a computer

system that helps people to capture rationales ill DRL by providing a number 01 interface

features intended to reduce the overhead associated with explicit representations. Using the

rationales captured in DRL, SIBYL provides computational decision services, such as

retrieving useful rationales from past decisions, maintaining dependencies among the

various elements of rationales, and keeping track of multiple decision states. These

services realize the benefits of a sU'uctured representation of rationales, and provide further

motivation for capturing rationales in DRL.

Thesis Supervisor: Patrick H. Winston

Title: Professor

Acknowledgements

First, I thank the members of my thesis committee, Professors Patrick H. Winston, Thomas

W. Malone, Randall pavis, and Marvin Minsky, for their guidance and patience. Patrick has

supplied the enthusiasm for this research that I needed all along. Tom has brainwashed me

with his ideas that are now difficult to shake off. Randy has been the source of constant

critique, which undoubtedly made the research more painful but better. Marvin has supplied

me with his vision and pointers that only he could have given.

I thank all my friends at the AI Laboratory and the Center for Coordination Science: Kum

Yew Lai, Lukas Reucker, Rick Lathrop, Kevin Crowston, Franklyn Turbak, Palll Resnick,

John Mallery, Roger Hurwitz, Gary Borchardt, Jolene Galegher, Mark Ackennann, and

many others. Kum-Yew -- with his interests ranging from artificial intelligence, human

computer interaction, tinance, civil engineering, computer-supported cooperative work.

systems dynamics, economics to mention only a few -- was a friend who couldn't say no and

whom I could always relied on for bouncing out ideas. He has been sorely missed ever since

he left MIT to become a student of finance. I hold him partially responsible for any error or

fuzziness in this thesis because if he stayed around, he would have undoubtedly pointed them

out to me. Lukas -- amid the thousand activities that he somehow juggles, ranging from

parachuting, scuba diving, organizing lab tours, lecture series committee, Anemie club, to

mention a few -- provided me with the most detailed comments on this thesis than anybody

else. His comments made reading this thesis less painful than would be otherwise. Rick has

also been an invaluable source of encouragement and ideas when I was down and out. I

guess I could write a book detailing my appreciations.

I would like to thank "design rationalizers": Tom Moran, Jack Carroll, Jeff Conklin, Ray

McCall, Gerhard Fischer, Allan MacClean, Simon Shum, Mark Novic, and others who

helped me directly or indirectly see better the issues involved in managing rationales. I

would also like to thank people at Xerox PARe and GTE Laboratory: Frank Halasz, Cathy

Marshall, Susan Newman, Austin Henderson, Danny Bobrow, Frank Manola, Michael

Brodie, and many others that I talked to in these places. Working at these places not only

saved me and my family from starving, but also was a wonderful way to work out and

bounce off ideas. There are others who came across my path and left their marks in this

research. Randy Trigg, despite our brief interaction, comes to my mind, but I am sure there

are many many more. I apologize for not being able to thank them individually, but that is

only because I am running out of space and time.

At last, but most of all, I thank my family, Hyokyung, Youngwon, and Jangwon, who

always greeted me with smiles and made me smile even during my darkest hours. And my

parents, who have been very patient with my progress and always supportive. And my

parents-in-law who put their daughter in the trust of a man who earns minimum wages and

yet never complained. I thank them all from the deepest of my heart.

Contents

1. Intrcxluction .. 1

1.1 The Problems 1 ••• 4

1.2 Summary- of Approaches .. 9

2. A Scenario ... 14

3. The Structure of Decision Rationales .. .30

3.1 What do we want to do with decision rationales? 31

3.2 Models of Decision Rationale ... 32

4. DRL: A Decision Representation Language .. .41

4.1 Overview ... 42

4.2. DRL's Representation of the Decision Rationale Model..46

5. SIBYL: An Environment for Using DRL. ... 52

5.1 Overview .. 53

5.2 Implementation .. 57

5.3 Setting up an Initial Structure ... 58

5.4 Releasing the Initial Structure ... 64

5.5 Augmenting the Decision Structure .. 65

5.6 Making the Decision ... 7'5

5.7 Evaluating the Outcome of the Decision ... 76

6. Computational Services .. 79

6.1 Prt;cedent ManageIIlent .. 81

6.1.1 Specific Retrieval Request .. 81

6.1.2 General Retrieval Request ... 85

6.2 Dependency Management .. 104

6.2.1 The Scope ... 1 04

6.2.2 Implementation I. ... 107

6.2.3 Implementation II ... 111

6.3 Viewpoint Management ... 113

6.3.1 Representation .. 114

6.3.2 User Interface ... 116

6.3.3 Implementation .. 120

6.4 Other Services .. 121

7. Comparison to Related Work. ... 128

7.1 Systems that Capture Rationales ... 129

7.2 Semi-Fonnal Rationale Management Systems 134

8. Conclusion .. 148

8.1 Contributions .. 148

8.2 Future Research .. ., ... 152

Appendix: Details ofDRL .. 157

References ... 177

Chapter 1

Introduction

A structured representation of decision rationales, i.e. the deliberations leading to a

decision, can bring about many benefits. The knowledge that decision makers bring to the

decision becomes available for other people or computational agents to share, augment, and

argue about. The representation of a decision making process serves as a document of how

the decision developed, which in turn can serve as a basis for learning and justification. In

addition, a well-structured representation provides a basis for defining computational

services for decision making, such as keeping track of dependencies and retrieving useful

rationales from past decisions.

Some of these benefits have been explored so far by a few systems, but most of these

systems require highly formalized and structured domain knowledge. For example, the

research on derivational analogy systems [Carbonell 1986; Huhns & Acosta 1988; Mostow

1989; Steinberg & Mitchell 1985] explore ways of capturing the reasoning behind design

and reusing parts of the reasoning trace for solving redesign or similar design problems.

These systems, however, require that the domain knowledge be sufficiently formalized so

that the problem solver can run in the first place. As a result, they are inapplicable to

domains where the knowledge is less structured, not well understood yet, or too expensive

to be formally represented. Even in the domains (e.g. design of circuits or parsers) whose

knowledge has been formalized, decisions typically involve consideration of other worldly

knowledge -- such as availability of resources or political influences -- which may be

difficult to forrnalize. Nevertheless, capturing and managing rationales is no less important

or urgent in these domains.

The goal of this thesis is to develop a system that captures and manages rationales in such a

way that their benefits can be realized without requiring the formalized domain knowledge.

This goal is achieved by developing a representation that allows informal description of

domain knowledge to be included in formal structures. These formal structures need to

capture generic knowledge about decision making, and support interesting computational

operations. Because people are still necessary to interpret the informal descriptions, any

system that uses this type of representation, i. e. semi-formal representation [Lai et al.

1988]" requires much human interaction. Nevertheless, it helps solve the problem of brittle

performance because people can supply the expertise or commonsense where the system

cannot, at least until we gradually understand more of the domain and make the system

und(:rstand it too.

The last point about gradual understanding leads to another goal of this research, that of

producing a system that is practically useful. Apart from its obvious merit, this goal is

deriv.ed from the more ambitious goal of producing an automated rationale management

2

system. Although informal descriptions provide us with flexibility, they need to be

formalized if one's goal is to automate rationale management as much as possible. This

goal of automation is similar to the one underlying the derivational analogy systems

mentioned above, but this research takes the approach of incremental formalization in

realizing this goal. The approach is to start with a system that is useful even without much

understanding of the domain knowledge, but have the system record the domain

knowledge in the course of its use, which can then be formalized and fed back into the

system, thereby making it more powerful. This feedback loop is possible in a rationale

management system because the rationales captured by the system embody knowledge

about the domain, though it might be in the form of informal descriptions. Thus, a system

that captures and manages rationales also helps us gain more understanding of the domain

and formalize the knowledge. For this approach to work, however, it is important that the

system is useful enough to be used in real situations. Although the usefulness of the

current system cannot be claimed without much qualification, the attempt to make a useful

system has generated many constraints and has been achieved to a degree, as discussed in

the thesis.

The thesis proceeds as follows. In the rest of this chapter, I first describe and categorize a

number of concrete problems that motivated this research (Section 1.1). I then discuss the

approach that this thesis takes to solve these problems (Section 1.2). In particular, I

propose the concept of a decision rationale management system as a solution to these

problems and articulate its components. This discussion provides a preview of the thesis.

In Chapter 2, a scenario illustrates concrete behaviors that I believe an ideal decision

rationale management system should have. This scenario serves as a yardstick against

which the success of this thesis is measured.

3

The next four chapters constitute the main body of this thesis. Chapter 3 identifies the

elements of a decision rationale that need to be represented by building a sequence of

models which differentiate, in different degrees, the internal structure of decision

rationales. These models are also used as a framework for later discussions. Based on

these models, Chapter 4 presents a rationale representation language, called DRL (Decision

Representation Language). Chapters 5 and 6 present SIBYL, the decision rationale

management system that use DRL to capture and manage rationales. Chapter 5 describes

the environment that SIBYL provides for using DRL to capture rationales. Chapter 6

discusses the computational services that SIBYL provides by using the captured rationales.

These three chapters, 4, 5, and 6, describe each of the components of a rationale

management system: language, method, and services.

Chapter 7 compares SmYL to other tools that support decision making. First, the existing

rationale management systems are located along two dimensions: the formalization required

and the reusability of the rationales (Section 7.1). Then, the tools that are closest to SmYL

in this space are discussed in detail (Section 7.2). Chapter 8' concludes the thesis by

summarizing its contributions and discussing the topics for future research.

1.1 The Problems

This research grew out of my experience in helping a group to set up its computing

environment. We had to decide, for example, which workstation to buy, which network

protocol to use, and whether to use a relational database or an object-oriented database.

One of the most frustrating aspect of this experience was the realization that although

hun~eds of groups must have made similar decisions in the past, we had to start from

4

scratch because the information that must have been collected and analyzed in these

decisions, i.e. their decision rationales, were not available to us. Likewise, hundreds of

groups would make similar decisions in the future, and they would not be able to benefit

from our experience because they would not have access to our decision rationale. The

difficulty in reusing rationales is only one of the problems that we face in decision making.

Other problems include keeping track of the issues discussed ~md those yet to be resolved,

explaining the rationale to other groups, or even just physically getting people together to ..

talk about these issues.

These problems can be categorized as follows. Consider a decision making process as

consisting of sessions, e.g. meetings in case of group decision making or individual

deliberations otherwise (Fig. 1.1). First, there are problems of managing rationales within

a session like being able to find out what depends on what or ask "what-if' questions.

Then there are problems of managing rationales across sessions -- for example,

remembering what have been resolved in previous sessions and what need yet to be

resolved. Across decisions. there are problems of sharing rationales across decisions

taking place concurrently, such as sharing information among groups making similar

decisions. Finally, also across decisions but separated in time, there are the problems of

reusing rationales from past decisions, as discussed above. Each of these categories is

described in the rest of this section.

Managing Rationales within a Session

In making decisions, we often need to keep track of dependencies, compare multiple

viewpoints, and ask "what-if' questions. There are many techniques and tools that address

the problems in this category -- for example, decision analysis and simulation tools. In

5

(a decision)

Q sessi00

Reusing Rationales
across Decisions

Sharing
Rationales

across
Decisions

~ Managing

e>----+0- Rationales ""-~
across ~

Sessions

Figure 1.1 Kinds of needs for managing rationales

many decisions, however, these tools are too rigid for use. For example, we could not use

these tools in our decisions about the database or the network protocol because the use of

tools required fonnalization of a wide variety of concerns that were either too difficult or

too expensive to fonnalize. Furthennore, these tools are useful only after we have a clear

understanding of the factors that influence our decisions; they do not help us find out what

these factors are.

6

Managing Rationales across Sessions

Different kinds of problems arise in managing rationales at-TOSS sessions within a decision

making process. Here, typical problems include those of bookkeeping. for example

remembering the issues discussed previously, the issues yet to be resolved. or what is

being done about them. Associate with this category is the problem of ensuring that the

individuals involved in decision making can exchange their ideas in a quick and focused

manner. Typically. decision making takes place in face-to-face meetings, which

necessitates finding a place and a time in which the decision makers can all meet together.

This problem, as many people complain, often unnecessarily prolong the decision making

process. In addition, face-to-face meetings have other known problems. For example.

people have to wait until the meeting to contribute their knowledge, or may not contribute

their ideas if meetings are dominated by certain individuals

Sharing Rationales across Decisions

Often, the different subgroups need to communicate their rationales to other groups so that

the groups reach a common understanding of the problems and share their own expertise.

For example, in designing a product, designers might want to know why the marketing

group wants some feature and dislike others. Another problem in this category arises when

two groups making similar decisions want to share infonnation. For example, at one point

I worked for two groups making similar decisions about hardware and software platforms.

The two groups shared many requirements and alternatives. hence were in the position of

benefiting from shared information. By virtue of being involved in both. I was able to

transfer some knowledge but this transfer was accidental and could have been more

systematic.

7

Reusing Rationales from Past Decisions

We do not reuse enough knowledge from past decisions. We often make decisions similar

to the ones that we or other groups have made before. For example, I have helped three

more groups make decisions about the computing environment since the original experience

that I referred to. There were enough requirements and alternatives (e.g. minimize cost,

interface to email) that were shared among these groups so that many pieces of the

knowledge accumulated by one group cculd have been useful to the others.

The reusable knowledge includes more than factual information; the knowledge from past

decisions might reveal a critical requirement that current decision makers did not think

about, an option they were unaware of, an assumption they mistakenly held, or an

argument they did not consider. Also valuable is the knowledge about how different

requirements relate to one another; for example, the knowledge that minimizing cost can

typically be factored into minimizing purchase cost, minimizing maintenance cost, and

minimizing development cost. If nothing else, the knowledge of the requirements

considered in similar past decisions can serve as a useful checklist. Much of the useful

knowledge from past decisions, however, is usually ignored. As a result, we often repeat

the same efforts and mistakes.

Moreover, we need to understand the rationales for a past decision for reasons other than

reusing them in similar decisions. Another problem in this category is that of keeping an

audit trail so that we can justify or review our decisions. Yet another problem is in design,

where the rationales for the original design can be valuable for troubleshooting or redesign

of the artifact. In all of these cases, if we had some way of selectively accessing the

relevant parts of the deliberations underlying past decisions, we would be able to learn

8

much from them, not to mention saving the effort of collecting those pieces of knowledge

in the ftrst place.

1.2 Summary of Approaches

In the last section, I described and categorized the problems that motivated our research. I

propose a Decision Rational Management System as a solution to these problems. A

Pecision Rationale Management System (RMS) has three components:

(1) a language for describing the elements of decision rationale,

(2) a method for using the language to capture the rationales,

(3) a set of services that use the captured rationales to provide decision support.

For example, a simple example of decision rationale management system is to

(1) use English,

(2) write down everything said by anybody in the decision making process, and

(3) ftnd whatever we need from the record by brute force (e.g. by flipping through

pages of the notebooks used).

This solution is in most cases unsatisfactory. The cost of writing down everything and

later finding what is needed is so large that the benefit of actually finding something is not

likely to override the cost.

So we need to design a decision rationale management system, i.e. a tool for supporting

decision rationale management, whose benefits exceed its costs. In other words, the

challenge in the design of a decision rationale management syster;l is to:

(1) design a language that is structured enough to capture the ~Hiportant elements of

design rationale and their relations,

9

(2) develop a method which helps reduce the cost of using the language to capture

rationales, and

(3) define services which reward the user for recording rationales. ,
A rational management system (RMS) 1 that satisfies these constraints can solve or alleviate

the problems discussed in the previous section. This thesis substantiate this claim by

developing a system called SIBYL. Its language, DRL, is based on a model that

characterize the important elemp,nts of decision rationales (Chapter 3), and provides

constructs for represent3ng them (Chapter 4). SmYL provides an environment in which to

capture raKionales in DRL as a by-product of making decisions. This environment is built

on top of Object Lens [Lai et al. 1988], a tool for building computer supponed cooperative

work, and uses its features such as template editors and various display fonnats, to make

the rationale capture easier (Chapter 5). SIBYL also provides a set of computational

services, such as keeping track of dependencies, comparing multiple versions, and

retrieving relevant rationales from past decisions, that reward the user for recording

rationales (Chapter 6). In the rest of this section, I provide an overview of how SIBYL

addresses the problem categories discussed above.

Managing Rationales within a Session

As mentioned in the previous section, there are many decision suppon tools, such as

decision analysis, help manage rationales, but their use requires the precision or the

fonnalization often not available or too expensive to produce in many decisions. In order

1 In the rest of tile thesis, I will often abbreviate Decision Rationale Management System as Rationale
Munagement System.

10

to manage rationales in these situations, SIBYL implements DRL as a semi-formal

representation (Chapter 3). That is, the constructs of DRL for representing the elements of

rationales, such as alternatives, goals, and arguments about them, are implemented as

formal types with their own attributes, but allows the values of these attributes to be a

mixture of formal and informal descriptions. This way, the domain knowledge can be

entirely described informally (as attribute values of the fonnal constructs), but SIBYL can

still help manage rationales based cn the way that the fonnal constructs have been used.

For example, all the information, say abont an interaction manager, may be given in

English, but SIBYL can provide its service as long as it knows that it is an alternative, one

of the DRL constructs because it knows how an alternative should relate to other constructs

ofDRL.

Using the rationales captured in DRL, SIBYL can provide the following services for

managing rationales within a session. SmYL allows the user to maintain the consistency

among the elements of rationales (Section 6.2). For example, when an assumption

(represented as a claim in DRL) is no longer true, the user can ask SIBYL to invalidate the

arguments that depend on it. The user can also create and compare multiple decision. states,

for example, a given decision under different assumptions (Section 6.3). Using the

structure of DRL, sm YL can also keep track of the rationales by collecting and displaying,

for example, all the arguments evaluating a given alternative, or the criteria used for the

evaluations. These services are not as powerful as those provided by some other decision

support tools and often require interaction with users in the absence of formalized domain

knowledge. On the other hand, SIBYL allows the user to create formal objects modeling

domain knowledge, and write rules that exploit the knowledge to obtain more powerful

services.

11

Managing Rationales across Sessions

Because the rationales are captured in DRL during a session with SIBYL, managing

rationales across sessions becomes easier for several reasons. First, the rationales are

permanently available in the electronic form accessible to the computer. Furthennore,

because they are represented in a structured way, smYL can easily find decisions that are

unresolved from the previous sessions, questions that need yet to be answered, or the

arguments that need yet to be evaluated. SIBYL in fact helps managing rationales across

sessions by making the boundary between the sessions less rigid. Because SIBYL

provides a forum in which to examine and update the rationales, its users can make a

decision without having to be physically together (Chapter 5). This ability to make

decisions asynchronously also solves some of the problems in face-to-face meetings

mentioned above: such as delay caused by meeting arrangements.

Reusing Rationales across Decisions

In addition to the benefits of providing a permanent, electronic, and structured record of the

past decision rationales, SmYL provides services that specifically help the user to retrieve

relevant parts of the rationales from past decisions. There are two ways of retrieving the

rationales once they are represented in DRL. If the user is looking for something specific,

e.g. arguments about a given alternative or answers to a question, then the user can specify

a partial structure as a query. A rule system takes this query, and retrieves any structure

from past decisions that matches this partial specification (Section 6.1.1). U sers, however,

are often interested in relevant rationales without necessarily looking for anything specific.

To support such cases, I have also developed an interactive algorithm for retrieving relevant

12

rationales for a given decision (Section 6.1.2). This algorithm, labelled the precedent

manager, is based on the intuition that two decisions are similar to the extent that they share

similar goals, and uses the goals shared between a given decision and past decisions to

judge potentially relevant rationales.

Sharing Rationales across Decisions

Sharing rationales becomes easier again because DRL makes the elements of rationales and

their relations explicit. For example, if the user is interested in all the arguments about an

alternative or answers to a question, it is easy to collect the relevant elements and send them

to the group. Using the features of the underlying Object Lens, mentioned above, SIBYL

can send and receive a collection of structured objects through email or in a file, and link

them appropriately to the objects that already exist in the current environment (Chapter 5).

This way, a group can request and access parts of rationales of the other groups and use

this knowledge as a basis for mutual understanding, for collaboration, or for further

communication across groups.

In the next chapter, I describe a scenario that illustrates the overall idea from the user's

point of view. This scenario illustrates (he benefits that will motivate the user to use the

language and the kinds of services that an RMS needs to provide.

13

Chapter 2

A Scenario

This chapter illustrates the behaviors of an idealized decision rationale management system

which the implemented system has tried to approximate. This scenario represents a first

step taken, logically as well as historically, in the present research. Logically, it specifies

the goals of the research in concrete fonns. Historic3.1ly, the rest of the research discussed

in later chapters -- design and implementation of the language, the interface, and the

services -- follows the articulation of this scenario. As such, the scenario provides a way

to present the goals and main ideas clearly without getting into the details of the actual

interface. It also serves as a yardstick against which the success of the current research is

to be measured.

14

The system presented below is different from the implemented system in the following

ways. First,it uses natural language interface in order to get the main ideas across more

clearly. The use of natural language, though beyond the capability of the implemented

system, makes it possible to describe the user request and the system response without

having to describe at this point the details of the SIBYL interface, such as the menus and

buttons that the user needs to activate. The actual interface of the implemented system is

described in Chapters 5 and 6. Also, in order to present the main goals and ideas concisely

at this point in the thesis, a step in the scenario sometimes represents a number of steps in

the implemented system. The scenario uses a few terms, such as issue and subissue, that

are slightly different from the ones actually implemented but more intuitively obvious. A

few features, such as multiple shading of the nodes in a graph, are presented in the

scenario, though not implemented, when they help getting across main ideas better. The

scenario therefore should be regarded as a concrete illustration of the goals and the main

ideas that have guided the present research not as a description of the current system.

Imagine a group designing a window manager, i.e. the software which provides and

manages windows for different applications. Typically a window manager would provide

functions that an application can call upon, for example, to do something like create, move,

resize, and scroll a window or structure the components of a window in a certain way.2

There are different ways in which these functions can be provided to the applications. At

2 Window manager design was chosen as an example domain for several reasons. First, it is a domain that
we are just beginning to understand. The domain knowledge has not been formalized, but parts of it could
be, e.g. knowledge about modularization. Thus, it provides an opportunity to explore the feasibility and
the usefulness of a rationale management system in realistic situations. Also, many issues that this
domain faces are potentially reusable for other domains. For example, the issue of whether to have a strict
interface between modules is quite general and arise in many other domains,such as the design of operating
systems or programming language. Thus, it provides a chance to explore cross..cJomain reusability of the
rationales as well, which is not discussed in this thesis, but is a topic of future research. In constructing
the scenario, [Lane 1990] a'1d [Hopgood et aI. 1985) have been very useful.

15

one extreme, applications can have access any of the window manage; functions. At the

other extreme, applications can have no access to any of the window manager functions

directly but have to go through a layer of abstraction (i.e. an interaction manager or the user

interface management system), which typically consists of higher level routines composed

of window manager functions. There are also intermediate solutions, such as allowing

direct access to the window manager functions but also providing a toolbox (or library) of

higher level routines that applications are encouraged to use.

In the scenario, two alternatives are currently being considered: the interaction manager and

the toolbox interfaces. These alternatives are described further in the scenario itself. The

scenwio starts at a point where the group has used SIBYL to raise a number of issues and

accumulated some arguments concerning them. Imagine that John, a member of this

group, is about to use SIBYL to catch up on the current state of the decision making and

to contribute additional knowledge.

Notation:

User's requests and the system responses are in the courier font.

The actions taken by the user or the system are in italic courier.

The comments and the figure captions are in Times.

Getting Background Knowledge

User: Show me the current issues.

16

Target System: displays graphically the issues and their

relations. (Fig. 2.1)

How best to design
WING, our

window manager? --- influences ---I
How portable
should be our
applications?

subissue

Vlhat kind of
interface for
applications?

subissue
I

What kind of
knowledge
should be

visible to the
applications?

subissue

subissue

Should windows
be supported

across network?

Should WINO support
direct manipulation

style?

Figure 2.1 A browser displaying the issues currently being considered. The ones in
heavier boxes represent unresolved issues.

17

User: double mouse-clicks on the issue, "What kind o.f application

interface?" ta get more information about it.

Target System: displays all the information about the chosen issue

in the form of attribute/value pairs. (Fig. 22) There are two

alternatives being considered: Interaction Manager and Toolbox

approach, as shown in the Alternatives attribute.

Issue: What kind of application interface?

Alternatives: I [Tooibox] [Interaction Manager]]
Goals: [Reduce development Cost] [Highl y portable] [Support many UI

styles]

SubIssues: [What kind of knowledge should be visible to the applications?]
[Should WING support direct manipulation style?]

Comments:
App~ations need to tell the window manager about how its information should
be displayed. How should this information be communicated? What parts of
the window manager should be made visible to the applications, and how?

FIgure 2.2 A browser dIsplayIng InfOrmatIOn about the Issue, "What kInd of
application interface?" A square bracket denotes an object, which can be expanded and
examined in more detail.

User: double mouse-clicks on the alternatives in the Alternatives

field to examine them in more detail.

Target System: displays the information about the two

alternatives. (Figure 2.3)

18

AL TERNA TIVE: Interaction Manager

Issue:

Comments:

I What kind of application interface?

Applications can access the window manager only through a sbicllayer
that provides an absuact interface to the window manager features.

C -< c:::::> Applications
e.g. [Cousin] ,

Interaction Manager

Window Manager

ALTERNATIVE: Toolbox

Issue:

Comments:

I What kind of application interface? J
Applications can use the functions in a toolkit that provide higher level
access to the window manager features, but can access the window
manager directly as well without going through the toolkit

e.g. [MacIntosh Toolbox]

[X Toolkit Intrinsic]

Applications

Figure 2.3 Browsers displaying two alternatives being considered in the issue, "What
kind of application interface?"

Catching Up

John wants to know about the changes since the last time he looked at this decision.

The default method for dispJaying the changes is to show only the evaluations updated

19

as a result of these changes. From these evaluations. the user can trace the changes

responsible for these updates, as illustrated in the scenario below. Optionally,

however, the system can also replay the changes in the chronological order; each

change can be displayed, for example, at the user's mouse-click.

User: Give me the updates.

Target System: The following describes the objects added or

changed since the last time you used the system that might be

relevant to the current decision. You might want to examine them

before you proceed.

• The decision problem, [Should the windows be supported across

network?], which is a subdecision of the current one, has been

resolved in favor of the alternative, [YES, but only local

network] .

• The decision problem, [What kind of knowledge should be visible

to applications?], might be worth reexamining because an

assumption on which it is based has changed.

The syst~m can be told to monitor a particular change and, when the change occurs, do

certain things, like propagating its consequences and/or notifying the user.

• The price of the X terminal has just been reduced. That

changes the evaluations in the decision problem, [Should

windows be supported across netuork?)

20

User: Show me the current status of the issue, "What kind of

application interface?"

Target System: displays a matrix that shows current evaluations of

the alternatives with respect to different criteria. (Figure 2. 4)

.
The Current Status of Decision Problem: What kind of application interface?

~ Reduce Highly Implement direct

AlteTI~:ltives development cost portable manipulation

Interaction
Manager

L*?# H M

Toolbox M M* unevaluated

Figure 2.4 A decision matrix displaying the current status of the issue, "What kind of
application interface?"

In this matrix, each of the alternatives being considered is evaluated with respect to the

requirements that the group wants to satisfy. The requirements are shown in the

columns, the alternatives in the rows, and the evaluation of the alternatives with respect

to a criterion in each of the corresponding cells. The cells changed from the last

examination are marked with *. The previous version is available for comparison so

that we can see the new one side-by-side with the old one, Also, those evaluations for

which there are unanswered questions are marked with ?, and those for which there are

qualifications with # .

21

User: Show me the reasons for the evaluation of Interaction Manager

with respect to Reduce development cost.

Target System: displays a browser displaying arguments responsible

for the evaluation. (Figwe 2.5)

Arguments evaluating "Interaction Manager"
with respect to "Reduce Development Cost"

Interaction· Manager
. ACHIEVES

Reduce
Development Cost

raises

denies

qualifies

Expensive to
Build

This is one time cost.
Once built, it will
reduce application

dvpmt. costs

Figure 2.5 An argument browser displaying arguments that led to the current
evaluation of the alternative, Interaction Manager, with resp~.ct to the criterion,
Reduce Development Cost

The arguments shown above are the result of the initial structure being augmented by

the members of the decision making process.. In principle, the group members may be

computational agents who have been working on finding relevant decisions, although

22

the current implementation does not support such a feature. The nodes shaded are the

ones that have remained unchanged.

The user could also find out the reasons underlying other evaluations by examining the

argument browser associated with each of the evaluations. Also, if the user does not

understand some of the arguments, the user can get more infomUltion by expanding the

nodes in question. For example, suppose that lohn did not understand what the

qualification was in the above argument browser.

User: double clicks on the qualifying claim to expand and examine it

in more detail.

Target System: displays the qualifying claim in ful' .. 'l!~ig. 2.6)

CLAIM: This is one time cost. Once built, it will reduce application
dvpmt. costs.

Qualifies:

Comments:

["Expensive to build" denies "Interaction Manager
achieves Reduce Development Cost"]

It is true that building an interaction manager is

expensive compared to building a toolbox, but

because an interaction manager provides a

comprehensive set of high level features, it makes

applications development easier.

Figure 2.6 A browser displaying the claim qualifying another claim that
"expensive to build" denies "Interaction Manager achieves Reduce
Development Cost." Note that this claim being qualified is shown as a link
labelled "denies" in Figure 2.5.

23

Making Changes

User: enters additional arguments, and replies to question raised

after examining the current state of the decision,

Target System: helps the user to update the argument browser

through context sensitive menus and displays the updated browser

(Fig. 2.7)

Arguments evaluating "Interaction Manager"
with respect to ''Reduce Development Cost"

Interaction Manager
ACHIEVES ..

Reduce
Development Cost. den~ies ~ .,. Expensive to

.... Build L..;.;....;.;... _____ --I

supports

answers

Has not been finalized,
but around $ 40K

qualifies

This is one time cost.
Once built, it will
reduce application.

dvpmt costs' ..

We built one before,
though for a different

platfonn

Figure 2.7 The argument browser updated with additional arguments.

24

The user can also relate two claims with stronger-than (or equal-to) relation if he judges

one claim to be stronger than the other claim. The user would also have to specify the

attribute on which they are being compared -- e.g. plausibility. In fact, the user is able

to compare any two objects of the same type using these relations. The system can

sometimes figure out from this comparative information which alternatives dominate

others.

The consequences of additional claims or questions entered are propagated. For

example, the decision matrix shown earlier would now show the relevant cells marked

appropriately depending on the type of changes (e.g. marked for reevaluation).

Reusing Past Decision Rationales

User: Find me useful information from past decisions

Tarqet System: The following decision matrix summarizes the

updated evaluations, given the new knowledge transferred from past

decisions. The evaluations are tentative, subject to your

modifications and confirmations. 3 (Fig. 2.8)

3 Although the system is shown as responding immediately here, t!le implemented system requires much
interaction with the user to produce this response, as discussed in Section 7.1.2.

25

The Current Status of Decision Problem: What kind of application interface?

~ Reduce Highly Common User Implement
Direct

Alternatives development cost portable Interface Manipulation

Interaction
L*# H M* L* Manager

Toolbox M M* unevaluated H*

Extensible
Interaction L* M* uncvaluated M*

Manager

Figure 2.8 Decision matrix that displays the additional alternatives (e.g. Extensible
Interaction Manager), additional goal (e.g. Common user interface), and updated
evaluations as a result of transferring relevant rationales from past decisions.

User: Show me the reasons for the evaluation of Interaction Manager

with respect to the criterion, Implement Direct Manipulation.

Target System: displays the argument browser showing the arguments

augmented by those that have been brought in from past decisions.

Again, the shaded nodes represent those objects that have not changed

since the last examination by the user. responsible for the

evaluation. (Fig. 2.9)

The interface is the same whether the additional objects (alternatives, goals, claims)

were added by additional human or by the system through retrieving them from past

decisions. The only difference is that in the latter case the changes are tentative, and

they may be pruned before finally incorporating them into the current knowledge base,

as described below.

26

Interaction
Manager achieves

the goal,
[Implement direct denies

manipulation]

comments

I
Ask Sam

because he
used an

interaction
manager

Its interaction
style is 100 rigid
10 su~ direct

manipulation
(Myers 87)

denies

I
In our case. it does not
matter because we have
only simple objects 10

manipulate

Has only
limited

knowledge
of

application
semantics

It is still
hard even if
application

defined
types are
allowed

1M can be
extended 10

suppon
application-de

qualifies fined data

I' l~
de . supports

mes

Some 1M's
suppon
direct

manipulation
this way.

e.g. JiUses
MacAw

answers

through procedures

Figure 2.9 An argument browser displaying the arguments incorporated from
past decisions, potentially relevant for the evaluation of the alternative,
Interaction Manager, with respect to the goal, Implement direct manipulation.

The user can examine the new obj~cts, deletes those not useful. and keeps the rest after

modifying them if necessary. For example, John deletes the argument on the left

middle, "Ask Sam because he used .. 1t because the fact that Sam used an interaction

manager is a context-sensitive knowledge that does not carry over to the current

decision context. Also, John modifies the argument on the bottom left side, ItIn Ollr

case, it does not matter because we have only simple objects to manipulate," to "It may

27

not matter if we decide not to allow customizable icons." In other words, the original

argument did not exactly carry over, but suggested something close that is relevant.

Managing Multiple Viewpoints

John wonders how evaluations would change if he gives up the goal of portability.

User: Suppose we do not consider [Portability). How does that

change the evaluation?

Target System: shows a changed decision matrix (not shown)

The user can examine the reasons for the changed evaluation. As before, the changed

objects have been marked. Now he wants to save the current state so that he can come

back to it later or compare it to other states that have also been saved.

User: Create a viewpoint, called "Without portability".

Target System: The new viewpoint will inherit from the initial

viewpoint, and the changes that have been introduced since the

initial viewpoint are:

• [Portability] is no longer a goal .

• The following objects have been added: [Common User Interface)

(GOAL), [Extensible Interaction Manager] (ALTERNATIVE), ...

• The following objects have been inactivated: [Interaction

Manager] (ALTERNATIVE), ...

28

• The following objects have been changed: the importance

attribute of [Portability] (GOAL), .•.

IS it o.k. to save this new viewpoint?

User: o.k.

Target System: The viewpoint, "Without portability," has been

saved.

Wrapping Up

User: What do we need to do to resolve the current decision?

Target System:

• We need to resolve the decision, [Should the windows be

supported over the net?]

• We have to answer the Question, [What are the examples of the

interaction manager based systems and their experiences?]

John continues to examine the decision problem, its alternatives, arguments. in the

manner described above. Finally, he asks the system to monitor a decision for him.

User: Let me know when the decision, [Should the windows be

supported over the net?], is made.

Target System: o. k.

29

Chapter 3

The Structure of
Decision Rationales

The goal of this chapter is to characterize the elements of decision rationales that are

important to represent explicitly. Of course, what is important to represent depends on the

task for which the representation is used. The tasks for a rationale management system

have been illustrated in the scenario. In the first section, I summarize these tasks in the

form of questions. Then I develop a sequence of models, each of which makes explicit the

objects and the relations that make up decision rationales. The consecutive models are

increasingly more complex because the objects and relations are successively differentiated

from one model to the next. For each model, I discuss what extra tasks the additional

refinement allows us to do. The framework provided by these models is used in the rest of

the thesis, to present DRL (Chapter 4), to discuss the kinds of rationales that can be reused

(Chapter 6), as well as to discuss related representations (Chapter 7).

30

3.1 What do we want to do with decision rationales?

One way of characterizing a task is to list the questions that we need to answer to

accomplish the task. Given the goal of producing the behaviors illustrated in the scenario,

our representation should be able to answer the following questions, abstracted from the

scenario.

• What is the status of the current decision?

• What did we discuss last week and what do we need to do today?

• What are the alternatives being considered?

• What are their ~ros and cons?

• Why do we even consider this alternative, and how is it related to the one that we

discussed last week?

• 'What are the two most favorable alternatives so far?

• How does this new fact affect the current evaluations?

• What if we do not consider this goal?

• Why is this goal important anyway?

• What are the decisions that depend on this decision?

• What are the unresolved decisions? What are we currently doing about them?

• What's the consequences of doing away with this assumption?

• How did other people deal with this problem?

• What can we learn from the past decisions?

The above list of the questions is by no means complete. They have been chosen to

illustrate the differences in what the following models do or do not allow us to do. They

are, however, representative of the questions that arose in our experience of capturing and

31

managing decision rationales. As such, they serve as test cases against which the adequacy

of a model can be checked. If it turns out that there are some questions which cannot be

answered by a particular model of decision rationale, then answering those questions is not

a task of the system based on that model or the system would have to extend its model.

3.2 Models of Decision Rationale

We now develop a series of progressively richer models of decision rationale. As shown

in Fig. 3.1, each model makes explicit the objects and the relations that make up decision

rationales. The successive models are increasingly more complex because the objects in the

next model in the sequence differentiate the objects in the previous one.

Decision rationale in the most general sense is an explanation of why the decision was

made the way it was. So in our first model of decision rationale, an artifact is associated

with a body of reasons as shown in Fig. 3.1 a. The internal structure of these reasons can

be made explicit to different degrees. At one extreme, they can be completely

undifferentiated. An example is the natural language description of a historical record we

used earlier. We can also imagine a representation, however, where logical support

relations among reasons is made more explicit by providing constructs like Logically

Implies, Supports, Denies, Qualifies, and Presupposes. We will use the term Argument

Space to refer to what we have called a body of reasons because the reasons are captured

either as a historically recorded or logically structured record of the various arguments

relevant for a decision.

32

.

(a) MODEL 1: A decision OUlOOITIC is associated with a body of all the arguments explaining the outoome.

" 1/'

.......
....... L

...•................•......•.....•

"",,.-" "
.,.,,,

/'

.•... -";,,,/,...-,
................ ~

.................... "'",..",

(b) MODEL 2: Alternatives and their relations arc made explicit and the arguments about individual alternatives
can be differentiated.

(e) MODEL 3: Evaluation measures used and their relations are made explicit and the arguments about them can
be differentiated.

Figure 3.1 (a)-(c). Models of decision rationale
(continued on the next page)

33

,

(d) MODEL 4: Criteria used for evaluations and their relations are made explicit and the arguments about them can be
further differentiated in the argument space.

-'..,................... \\

~"".;'",.... ~~\ ~ ,
.. -'------. \ •..• -.!- ~ ,

....... ..,;.:::..~.- , './ ., .. .(............... \ ...
-- -- --.---.-.~:::~:::.:-~:::.:-.... -......... --.~;~ . ./.-.' "}" '

. (,,,----'--- '. J, \ .-
............... \\ \

"-. -.. -.......... .) ~ '/ .
............... ..:(................. //".,. \ ",,----

........... "." argu.-.....
....... -- · .. ·'111 "14fed

10 ialUal

(e) MODEL 5: Individual issues are made explicit, each of which contains the alternatives, evaluations, and criteria used in
discussing the issue. A part of the argument space includes the meta-arguments about the issues and their relations.

Figure 3.1 (d)-(e). Models of decision rationale
(continued from the previous page)

34

•

There is much we can do with our first model of decision rationale. A representation based

on this model can help us answer the questions, "What did we discuss last week and what

do we need to do today?" Such a representation can also help us answer the questions:

How did other people deal with this problem? What can we learn from the past decisions?

Our first model, however, does not help us much with the other questions, though we shall

qualify this statement immediatdy. Saying that it does not help much is not saying that we

cannot answer these questions. If the user works hard enough and the representation based

on the model has all necessary infonnation captured, even if it is just in the fonn of natural

language free text, these questions can be answered. So the real issue is how much the

model itself helps us answer the questions by making the structure of the argument space

more explicit for us to reason about or by providing computational services that help us

answer the questions directly. We will see how more differentiated models allow us to

answer these questions more easHy, although they increase the cost in some other ways

[Conklin & Yakemovic in print].

Our second model (Fig. 3.1 b) differs from the first by making explicit multiple alternatives

and their relations. Decision making involves fonnulating several alternatives for a

problem, comparing them, and merging them as needed. In our first model, only a single

solution is made explicit at a given time, and all other alternatives are present only implicitly

in the argument space. Our second model makes the alternatives explicit, including the

ones that have been rejected. Once the alternatives become explicit, we can talk about their

attributes (e.g. current status such as "rejected" or "waiting for more information"), make

the relations among the alternatives explicit (e.g. specialization, historical precedence),

define computational operations on them (e.g. compare alternatives, display the alternatives

that specialize another alternative), or even argue about whether an alternative is worth

considering. The alternatives other than the one finally chosen are interesting because

many of the issues discussed and the knowledge used in evaluating them are important in

35

other contexts or for re-evaluation of a discussion when situational constraints change. We

use the term Alternative Space to refer to this set of multiple alternatives and their

relations.

The relations amoJ'lg alternatives can be historical or logical. Historical relations may be not

only the linear sequence that we usually describe as versions, but also more complex

relations such as layers and contexts [Bobrow & Goldstein 1980]. The logical relations

may include Specializes, Generalizes, Elaborates, or Simplifies. Or alternatives can be

related through a design space [McKinlay et al. 1990]. To the extent that we want a

representation to represent different alternatives and their relations, we say that the

alternative space is within the scope of the representation.

By now, we have an alternative space connected to the argument space, as shown in Fig.

3.1b. For each of the alternatives, there are arguments describing the reasons for its

current evaluation, just as in our first model there are arguments describing the evaluation

status of that single alternative. i.e., that it was chosen. Some of the arguments can be

shared; for example, an argument can support an alternative while denying another; so it is

better to think of the arguments about the different alternatives forming a single large

argument spacet as shown in Fig. 3.1 b.

Once the alternative space is represented, we can imagine how we can make a system that

helps us answer some new questions in our list. To answer "What are the alternatives

being considered?" and "What are their pros and cons?," we can associate an argument

space with each of the alternatives through relations such as Supports or Objects To. If the

representation of the alternative space makes explicit historical relations (e.g. Replaces) or

structural relations (e.g. Is A Part 0/), among the alternatives, then it can also help us

36

, C • • • , • ' '. ~ ~'.' '. .' ' t '.. • . ~

answer questions such as "Why do we even consider this alternative, and how is it relatr,d

to the one that we discussed last week?"

However, once we make explicit multiple alternatives, we need to articulate more carefully

what the argument space is about. In our f1I'St model when we had a single artifact, namely

the chosen one, the argument space contained reasons for the choice of that artifact.

Similarly, the arguments for the other alternatives are about why they were not chosen, or,

to generalize, why they have their particular evaluation status, e.g. "Still in Consideration",

"Waiting for More Information", "Rejected". These evaluation status could be nominal

categories (such as the above examples), ordinal categories (such as "Very Good,"

"Guod," and "Poor") or a continuous measure (such as the probability that the alternative

will achieve a given set of goals).

Therefore, we introduce a new space, Evaluation Space (Fig. 3.1c), where ,he

evaluation statuses of all alternatives are made explicit and inter-related. Usually, we do

not and need not specify any elaborate relation among the evaluation measures we use.

Often, the implicit ordinal relation among these values (e.g. "Very Good," "Good,"

"Poor," "Very Poor") is sufficient; we leave it to the human user to assign these values to

the alternatives. However, if we want to define any computational service that manages

these values, for example, a program that automatically propagates and merges evaluation

measures to produce a higher level summary, then we need to be very careful about what

these values mean. We need to specify the units of measurement, some calculus for

combinillg them, and a model specifying what they mean. Even in the case where these

actions are left to the user, for example. if the human user is expected to combine these

values to produce a higher level summary measure, we need to set down what these values

mean so that their interpretation does not become arbitrary.

37

Making the evaluation space explicit allows us to differentiate two components of the

argument space: (1) arguments about why an alternative has its current evaluation status,

and (2) arguments about the alternatives themselves, e.g., why we should or should not

even consider an object as an alternative or whether this alternative is really a special case of

another alternative. With a representation of the evaluation space, we can now answer

questions such as: "What are the two most favorable alternatives so far?" and "How does

this new fact affect the current evaluations?" We can also explain an evaluation measure

pointing to the arguments in the argument space behind the decision in question, and

elaborating on how the particular evaluation measure is derived or computed from these

arguments or how it is related to other measures.

Our models so far do not make explicit the criteria used in producing an evaluation.

However, the criteria used for the evaluation and their relations are usually quite important

to represent explicitly. For example, it is important to know that the argument "Clean

separation between window manager and application" is a pro-argument for the alternative

"Interaction Manager" because of the goal of portability, which is used as a criterion for

evaluation. By making this criterion explicit, we can group all the arguments that appeal to

this criterion and weigh them Rgainst one another. If the criterion changes or becomes less

important, we can perform appropriate operations on all the arguments that presuppose this

goal (for example, making these arguments less important). Knowing how a criterion is

related to others (e.g. knowing that "Implement direct manipulation" is a way of achieving

"Naive user support"), also allows us to change its importance when related criteria

change. We use the term Criteria Space to refer to these criteria and their relations. As

Fig. 3.1d shilws, once we have the criteria space explicit, we can further differentiate the

argument space by grouping those arguments which are about the criteria and their

relations.

38

Hence, it is important that a language whose scope includes the criteria space represent the

different attributes of the criteria and the relationship among them. For example, it should

allow us to represent the importance of these criteria and the synergistic or tradeoff relations

among them. A set of criteria can be sub-criteria of another in the sense !hat satisfying them

facilitates the satisfaction of the latter. These sub-criteria can be related among themselves

in various ways: they can be mutually exclusive in the sense that satisfying one makes it

impossible to satisfy others; or they can be independent of each other in the sense that

satisfying one does not change the likelihood of satisfying others. These sub-criteria can

be related to their parent criterion in various ways as well: they can be exhaustive in the

sense that satisfying all of them is equivalent to satisfying the parent goal; or they may not

cover the parent goal completely.

With the criteria space represented, we can now see how the system might be able to help

us answer questions such as: what if we do not consider this goal? or why is this goal

important anyway? The answer might be "If we give up this goal (say portability), then the

evaluation of the alternative X changes to "High" because all these claims that argue against

X were based on the importance of portability. II or "portability is important because it is a

subgoal of another important goal, Have a wide dis~bution." These answers can be

derived only from a representation that makes the relation between evaluations, criteria, and

arguments explicit. Of course, representation of the criteria is not sufficient for answering

these questions; however, the explicit representation of the criteria space seems a necessary

condition if we want to provide some support answering these questions. At least, we

would have the infonnation necessary to define an operation that will give or suggest the

answers to these questions. We will give examples of such operations later in Chapter 6.

So far, we have identified and discussed the structure of a single decision underlying an

artifact, namely which of the alternatives should we choose? However, with the

39

representation of such local structures alone, namely its argument space, alternative space,

and criteria space, we still cannot ask some of the questions in the list such as: "What are

the unresolved issues?" and "What are the issues that depend on this issue?" To answer

such questions, we need a more global picture of how individual issues are related. A

decision often requires and/or influences many other decisions. For example, a decision

can be a sub-decision of another if the latter requires making the first decision. A decision

can be a specialization of another if the first decision is a more detailed case of the second.

It is important to capture how these decisions are related, and we use the tenn Issue

Space to refer to them.4 A unit in this issue space is, therefore, a single decision that has

as its internal structure the other spaces, as shown in Fig. 3.1e. Once we have an issue as

an explicit element, we can associate attributes such as "Status" and "Actions Taken" with

issues and answer questions such as "What are the unresolved issues?" as well as "What

are we currently doing about them?" Representing the dependency relation among the

issues will allow us to answer questions like "What are the issues that depend this issue?"

There are still some questions that we have not yet covered such as: How did other people

deal with this problem?" and "What can we learn from the past decisions?" We argue,

however, that the five spaces so far identified, the spaces of arguments, alternatives,

evaluations, criteria, and issue, can contain enough infonnation to answer these questions.

In Chapter 6, we discuss computational operations that help us answer these additional

questions by exploiting the structun~ of the five spaces.

4 The tenn Issue Space is used instead of Decision Space because Decision Space is sometimes
used to refer to the set of all objects relevant to making a decision.

40

Chapter 4

DRL:
A Decision Representation
Language

This chapter presents a language, DRL, developed for representing and managing decision

rationales. DRL has been designed based on the last model in the sequence of the models

developed in the previous chapter. As such, it provides constructs for representing the five

spaces of argument, alternative, evaluation, criteria, and issue.

The philosophy underlying the design of DRL has been a minimalist. For each of the

spaces, DRL started out with the fundamental object type and the relation types that are

important to answer the kinds of questions enumerated in the previous chapter. For

example, for the criteria space, DRL provides the object type, GOAL, to represent a criteria

and the relation, IS A SUBGOAL OF, which is necessary to answer the question, Why is

portability important? In the course of using DRL to represent decision rationales,

41

however, additional questions arose. And it is only when these questions could not be

answered by the existing constructs that additional constructs were added. Figure 4.1

shows all the constructs that DRL currently provides. Although not large in number, these

constructs have proved to be adequate in representing the cases and providing the services

that we have explored so far.

I first give an overall description of DRL and then discuss, in the next section, how these

constructs map to the five spaces. More detailed descriptions of the DRL constructs and

their semantics are provided in Appendix 1. I would like to emphasize that this chapter

describes DRL as a language, not the user interface for using the language. At times, the

language may seem complex, but much of these complexities can be hidden from the user

through user interface such as context sensitive menus that display appropriate actions in

appropriate contexts. The actual user interface is described in the next chapter.

4.1 Overview

This section provides a high-level overview of DRL, and the next section discusses the

constructs DRL provides for representing each of the spaces discussed in the last chapter.

Figure 4.1 shows the object types that form the vocabulary of DRL. Objects of type DRL

Relation and its subtypes can be used to link two other objects. For instance, Achieve

objects can be used to link an Alternative object to a Goal object. The legal types that can

be linked are shown inside the parentheses following the names of the relations. Figure

4.2 shows the schema for a decision graph, which is used to graphically illustrate the

rationales at a given moment. This schema shows how the DRL constructs are related to

one another. Figure 4.3 shows a decision graph for an example decision problem.

42

Alternative Achieves (alternative, goal)

Goal----- Decision Problem - Is a Good Altem,tive for (alternative, dedslon problml)

Supports (claim, claim)

DRL
Object

Oaim---

Question

Group

Viewpoint

Procedure

Status - Dedd~

Is RelatedTo

Denies (claim, claim)

Presupposes (claim, claim)

Is A Subgoal Of (g~L goal)

- Is it SubdKision of (decision problem, decision problem)

Answers (claim, question)

Is An Answering ProoedureFor (procedure, question)

Is A Result Of (claim, procedure)

Tradeoffs (object, object, attrlbute)

Is A Kind Of (object, object)

Raises (object. qUestiOii)

Suggests (object, object) <
Comments (cLaim. object)

Figure 4.1 The DRL Vocabulary

is a good alternative for

achieves
Alternative

~
is an

answering
procedure

Claim for

is a resul~of \

~

is a subgoal of

achieves

denies

supports

denies

Ic47ses

~

achieves

Figl1re 4.2 The schema for a decision graph, showing the relationship among the
major constructs of DRL

43

is a good
alternative

for

Is a good
alternative

for

H .. not
tMNIn

finalized
yot, but
around
S 40K

Roqulro.
application to
work at a low

lovol

~ @¥"i€~

Is a subgoal of ~upport many UI .tyle~
,~ ,

beforo,

.uPp~l
ono r

!hc:.~::ro~~ I ;fjdenl-
platform

• quallflo

Thl.laone /
tlmeccat.

Once built, It
will r.duce r--appllc.tlon
dvpmt co.t.

EXpen.lvo to
build

achlov ••

de:::"/

.upport.

an.w.r.

1
portability

acr_.
dovlce.,
o.p ...

.upport.

I
Clean

_paratlon
blW wm and
appllc.tlon.

achlovoe.

;f
.upport.

,/
Not vory good
becau_ tho
ab.tractlon
Iovol h .. nol
rl_n much

1M'.
Intoractlon

.tylo Ia
rigid

denle.

achlovo.

"

achlov ••

" .upport.

Provide. tho
noxlbility b

Implement
direct

manipulation

;2
~ Q

c:
.c

~
0
c:
.~
'g
Q
u -
~
><

r.tJ
c: «

('I'l

~

~
~

A Decision Problem represents the problem that requires a decision; for example, where to

place the window commands. An Alternative represents an option being considered: e.g.

[IM] or [Toolbox]. A Goal represents a desirable state or property used for comparing the

alternatives. A Goal is elaborated in tenns of its subgoals. In particular, a decision

problem is a goal of special kind, i.e. of the fonn, "Choose the optimal X for Y," where Y

is elaborated by its subgoals. For example, choosing the best alternative for the decision

problem, [Which application interface for WING?], means choosing an altemative that

satisfies as much as possible its subgoals: [Reduce dvpt cost], [Is portable], [Support many

VI styles]. Every relation in DRL is a subclass of Claim, as shown in Fig. 4.1. For

example, the rightm05t Achieves link in Fig. 4.3 represents the Claim that the Alternative

[Toolbox] achieves the Goal [Implement direct manipulation].

We evaluate an Alternative with respect to a Goal by arguing about the Achieves relation

between the Alternative and the Goal, i.e., the claim that the Alternative achieves the Goal.

We argue about a Claim by producing other Claims that Support or Deny the Claim or by

qualifying the Claim by pointing out the Claims that it Presupposes. The overall evaluation

of an alternative is represented by the Evaluation attribute value of the Is A Good

Alternative for link between the Alternative and the Decision Problem, i.e., the claim that

the alternative is a good alternative resolution for the issue. This evaluation is a function of

the evaluations of the Achieves claims that link the Alternative to the different Goals.

The constructs of DRL can be divided into two rwjor categories: those specific for each of

the five spaces and those that are generic. The constructs discussed so far are specific to a

space. DRL also provides constructs for representing objects and relations that are useful

in any of the spaces. Group is used to represent a collection of objects and has the attribute,

"Member Relations," which tells us how the objects are related. A relation can take a Group

of objects rather than a single object. For example, a Goal may be relate,d to a Group of

45

other Goals through a Is A Subgoal o/link. The construct, Is A Kind Of, represents the

usual generalization (or specialization) relation. The other constructs are discussed in the

next section and in Appendix I.

4.2. DRL's Representation of the Decision Rationale Model

This section discusses the DRL constructs in more detail and explain how they represent

each of the five spaces in the model that DRL adopts, namely the argument, the alternative,

the criteria, the evaluation, and the issue space. Figure 4.4 shows the regions of a decision

graph schema which represent the different spaces.

The Argument Space

An argument is represented in DRL as a set of related Claims. A Claim subsumes what

other people might call facts, assumptions, statements, or rules. Instead of making these

distinctions, which is sometimes arbitrary and difficult to make, a DRL Claim has the

attribute Plausibility that indicates how much confidence we have in the claim. This has the

advantage of not imposing a set of predeteffilined categories on the user, and avoiding the

ambiguity resulting from the disagreement among people on what facts or assumptions are.

When it is desirable to make the distinction say, between facts and assumptions, we can do

so simply by specializing a claim or by using nominal categories like "fact" and

"assumption" based on the Plausibility attribute values in different Claims. In fact, we can

do so post facto or dynamically by using a numeric measure as the plausibility value, and

mapping between this measure and the measure based on nominal categories like "facts" or

"assumptions. "

46

Allernatlve
Space

Issue Space

isalood
altanativc for

Criteria Space

Argument Space

Figure 4.4 The constructs of DRL grouped by the kinds of decision rationales that they
represent.

A Claim can be Supported, Denied, or Presupposed by another Claim. For example, the

C iaim, [Difficult to use], is supported by the claim, [Requires application to work at a

lower level]. All DRL relations are special types of Claims. For example, when we link

Claim 1 to Claim 2 through a Supports relation, we are making the claim, [Claim 1

supports Claim 2]. Likewise, an Achieves relation from an Alternative object to a Goal

object represents the claim that the alternative achieves the goal. Hence, any DRL relation,

like Supports, Denies, Achieves, Is A Subgoal Of, is a Claim, and can be argued about;

users can support, deny, or qualify them. For example, [Interaction manager achieves

Reduce dvt cost] (shown as the achieves link between [1M] and the goal [Reduce dvpt

cost]) is a claim which is denied by [Expensive to build]. That [Expensive to build] denies

47

the achieves claim is itself a claim, which is in turn denied by the claim [This is one time

cost].

The Alternative Space

Alternative is the fundamental unit of the Alternative Space and represents an option being

considered, e.g. ItToolboxlt and ItInteraction Manager.1t Alternatives are shown as rounded

boxes in the left bottom of the figure. Currently, in DRL, alternatives are related to each

other through only the generic relation, Is A Kind Of. Thus, we can say that [Extensible

1M] is a special case of the alternative, [1M]. There may be other relations that are

important to represent among alternatives, such as Elaborates, Simplifies, or Is the Next

Version of. Although these relations may be added to DRL if the task requires them, they

are not in the core vocabulary of DRL.

DRL represents the arguments about the alternative space the same way it represents the

arguments about the goal space. We can argue about whether an alternative should be an

alternative at all or whether an alternative is really a specialized version of another

alternative; we can do so by creating Claims that deny or support the appropriate relations,

such as Is A Good Alternative/or or Is A Kind of. The relations can be also qualified by

linking them to another claim via a Presupposes relation. For example, the user may want

to argue that [Extensible 1M] is really not a special kind of [1M] because the extensibility

violates the fundamental characteristic of [1M], namely the strict separation of window

manager and application. He can express this argument by adding a claim to that effect and

making it deny the Is A Kind Ojrelation between the two alternatives.

48

The Criteria Space

In DRL, criteria are represented by Goals. DRL uses the tenn "Goal" rather than

"Criterion" because for each criterion, we can always define a corresponding goal, namely

the goal of achieving the criterion. We rather want to convey the richer relationship

possible among these goals than what the tenn criteria usually conveys. For example, a

Goall s A Subgoal of another Goal if achieving the first Goal facilitates the achievement of

the second. A set of subgoals can be related among themselves in various ways; they can

be mutually exclusive, independent of each other, or partially overlapping. These

relationships are represented by creating a Group object and specifying these Goals to be its

members; the relations among these Goals are specified in the "Member Relations" property

of the Group.

Decision Problem represents the goal of choosing the best alternative. All the other goals

for a decision are subgoals of the decision problem in the sense that they elaborate what it

means to choose the best alternative. In our example, the interpretation of the decision

problem [Which application interface for WING'?] is the desired state of having chosen an

application interface that is best for our window manager, and the interpretation of the goal,

[Is portable], is the desired state of having chosen an application interface that makes our

window manager portable. Hence, [Is portable] is a subgoal of the decision problem in

this interpretation.

The arguments about the criteria space are represented in the same way as those about the

alternative space. Because the Is A Subgoal of relation is a Claim, as is any other DRL

relation, we can argue about whether a goal is desirable or whether it contributes to

achieving another goal by arguing about this relational claim. For example, we can argue

about whether [Support many UI styles] should be a goal at all by producing claims

49

supporting or denying the Is A Subgoal O/relation between the goal and the decision

problem.

The Evaluation Space

The Evaluation of an object is represented in DRL as the Evaluation attribute value of the

object. In particular, the evaluation of an alternative with respect to a given goal is

represented by the Evaluation attribute value of the Achieves relation between the alternative

and the goal. The overall evaluation of an alternative is represented by the Evaluation

attribute value of the Is A Good Alternative For relation between the alternative and the

decision problem. This value represents the evaluation of how well the alternative satisfies

the overall goal. This value, in turn, is a function of the evaluations of the Achieves

relations between the alternative and dIe subgoals of the decision problem. It is also a

function of how the subgoals interact to satisfy the parent goal, such as the extent to which

tradeoffs and synergies exist among these goals.

As default evaluation measures, DRL provides simple ordinal categories: H (High), M

(Medium), and L (Low). However, the user can adopt other nominal, ordinal, or numeric

measures. If the user wants these evaluation measures to be automatically computed, for

example, to produce the evaluation of Is A Good Alternative For from the evaluations of

the Achieves relations, then the user needs to specify the method for propagating and

merging evaluations. DRL, as a language, is not committed to any particular method for

doing so, but only provides an interface for using such a method. A claim has the attribute

Evaluation Method which can be used to specify a method for computing the evaluation of

that claim. This method can be specified globally for all the instances of Claim, but can be

overridden by a specific method for any instance of Claim.

50

The arguments about the evaluations of claims are captured by claims as well. For

example, the arguments about the overall evaluation of an alternative is represented as a set

of claims that support, deny, or qualify the Is A Good Alternative For relation. The

arguments about the evaluation of an alternative with respect to a goal is captured as a set of

claims about the Achieves relation between the alternative and the goal.

The Issue Space

Decision Problem is the unit of the issue space. A decision problem Is A Subdecision 0/

another decision problem if resolving the latter requires resolving the first. For example,

deciding which application interface is best for a window manager might require deciding

whether the window manager should support windows over network. A decision problem

Is A Kind 0/ another decision problem if the first decision problem is a special case of the

second: e.g., deciding which application interface is best for a window manager is a special

case of deciding the external interface for a window manager. Again, there are other

relations among decision problems that might b~ potentially useful to represent. For

example, the Replaces or Elaborates relations might be important for describing how

decisions have been elaborated over time. As yet, however, the tasks to which DRL has

been put did not require them. Arguments about the issue space are represented, as usua ••

by the claims about the relations about decision problems, namely the Is A Subdecision 0/

and Is A Kind O/relations.

51

Chapter 5

SIBYL: An Environment
for Using DRL

As described in Chapter 1, a rationale management system consists of three components:

• a language for representing the important elements of rationales

• a method for using the language to capture the rationales

• a set of services that use the captured rationales to support decision making

The first component, language, was described in the previous chapter. In this chapter, we

discuss the second component of our rationale management system, namely the method for

using DRL to capture rationales. The third component, a set of decision support services,

is described in the next.

52

S.1 Overview

A method of using a language for representing rationales should tell us the following:

• when the language should be used at all, i.e. the scope of the applicability of the

language.

• for a process within this scope, a description of its major phases so that the user ()f the

language knows which constructs to use and how to use them in each of these

phases. In other words, the method should tell the user how rationales (such as

shown in Fig. 5.1) can be constructed from the beginning to the end so that these

rationales can be examined by human users and used by the computational services.

The answer to the first question, i.e. the scope of the applicability of DRL, is that DRL in

most useful in asynchronous distributed decision making, where the members of a decisioa

making group communicate either via a shared knowledge base or email. The use of DRL.

in fact the use of most structured representations with typed objects and relations, require a

fair amount of cognitive processing on the part of the user. In order to express somelhing

in a typed language, one has to do at least three things: first one has to find the type in

which to express it, one has to relate it to the existing types, and one has to actually encode

it into the fonnat required by the system (e.g. create a node and key in some of its

attributes).

53

Which application Imp .. ment direct
Interlace for WING? Is a subgoal of ---____________ ..:====::::.-- m.nlpulatlon

Is a good
alternative

for

Is a good
ahernatlve

lor

llnallzed
yot, but
around

S 40K

Thl ... ono
time cost.

Onee built. It
will reduce
application
dvpmt eoet.

denl_

achlev ••

r I.~

.n.w.r.

I
portability

across
davleo.,

osp •••

.upport.

I
Clean

.opar.tlon
bCw wm and
application.

.ch"ve.

1M'.
Int.raetbn

.lyla I.
rIgid

achIeve.
;tf

danlee

.chleve.

$ de~/ .uppcrts,;{
--- /

Difficult to u.e

""
.upport.

'.uppart. Not very good

.uppart. / _u_ the I e.tracllon Provlcte. the
Requlr.. Ie_I h_ not flexibility to

work ... low cre toolbOx dlract

/
application to I IT work to I ri •• n much Imp"ment

[Toolbox ~ I "p' , ... ~ 'M _....... I

~

-o:i
cD ,-

t.t.
e
~
'0
0
to)

=
"[~ .,.,
e
~

..c:
0.

~
C
0 .-m .-g
'0
0 -0.

5
>C
0
C

-< -. V')

e
6h .-t.t.

The more such cognitive processing is required, the better it is done in the context of an

asynchronous distributed decision making. In that context, users have more time to reflect

on what they are expressing and on how it relates to the other existing objects. This

especially valuable if users either cannot get together physically or find it less convenient to

do so. DRL, I believe, is structured enough to require a fair amount of cognitive

processing. Therefore, I consider its ideal context of use to be that of distributed decision

making. For example, judging from the attempts to encode the rationales that unfold in real

time face-to-face meetings, the kind of cognitive processing mentioned above would either

not keep up with the fast pace that typically characterize such meetings or slow down the

pace to a degree that might not be acceptable to the members of a decision making group.

Whether DRL can be used for dynamic, real-time rationale management is an empirical

question, and until it is proven otherwise, the scope of the applicability of DRL is restricted

to that of asynchronous distributed decision making.5

The method for using a rationale representation should also provide us with a process

description, from beginning to end, of the major phases involved in the rationale capture

process within its scope. By "major phases" I do not mean steps of decision making

process in general, but the stages that a given method introduces in supporting the decision

process. That is, the phases into which a decision process is divided depends on whether

the method requires different treatments for them, such as use of the different constructs

and different activities. If, on the other hand, our method is the paper and pencil method

that says "write down everything that is said in the meeting," discussed earlier as a simple

case of an RMS, then as far as this method is concerned, there is only one major phase,

5 Decision making. however. even asynchronous ones, often involves face-to-face meetings. and a rationale
management system should be able to represent in some way the rationales in such meetings lest it leaves a
gap within the rationales it is capturing. In SIBYL. it is suggested that the ration:lles that cannol be
captured in the process be reconstructed after recording the process in an unstructured form. e.g. in video or
audio recording.

55

namely the decision making process as a whole. On the other hand, if a method tells us to

write down only those things that are discussed in some parts of the process, e.g.

discussion sessions, then those pms would be a separate phase. Making explicit method

specific phases makes clear the process model that the method is assuming or imposing;

this helps evaluate the method and relate it to other methods.

Figure 5.2 shows the major phases that SIBYL imposes on using DRL. Circles represent

major states marking the boundaries of the phases:

• initialized decision structure,

• released decision structure,

• augmented decision structure,

• decided,

• decision outcome evaluated.

Between these states are the actions that bring about these states, represented as boxes in

the figure. The precedence relation among these actions is indicated with a directed arc.

That is, if an action requires another action to have been performed in order for it to be

executable, there is a directed arc from the second to the first. Otherwise, the actions can

be executed in any order and multiple times. In the following, each of these phases is

described.

Before I do so, a note on implementation is in order (because a large part of the method of

using DRL is built into its user interface). A method for using a language can be specified

in different ways. One way is to embed the method in the interface for using the language

so that the user only need to follow what seems obvious at each point. For example, the

system may be able to display a context-sensitive menu that displays a possible set of

actions that the user can perform at every step. These actions may embody legal ways in

56

which the language can be used by the user in that context. SIBYL tries to do that most of

the time. Therefore, for each of the major phases, the actual interface of SIBYL is

described to show how the method for that phase is being encouraged or enforced by the

interface.

ugumcnts
and

COWIIer
arguments

Figure 5.2 The phases in the decision making process using SIBYL

5.2 Implementation

" 8 ,

updaIe the
OW:anefidd
of the decision

problem

delmnine the
ouu:ome of the

decision

@ision
outaxne
evaluated

SIBYL runs on top of Object Lens [Lai et al. 1988], a generic tool for building computer

supported cooperative work applications. That is, all the DRL types like goal and

alternative have been specialized from the system object of Object Lens, TIlING. SIBYL

also makes use of many features of Object Lens, like Rules, Agents, and different display

57

fonnats to provide its services, as described below. Conversely, all the features of Object

Lens are available in SffiYL. Versions of Object Lens have been implemented in

MacIntosh Common Lisp and. earlier, in Interlisp.

There are several implementations of SIBYL. All but one runs on the MacIntosh computer.

One version runs in Interlisp on Xerox 1109 Lisp Machines and runs on the Interlisp version

of Object Lens. There are several versions running on Maclntoshes, which are compatible

with different versions of Object Lens. In the following description, I describe primarily the

most current version except for the features implemented only in older versions. SmYL has

been used for capturing two real-life decision rationales and about eight cases of rationales

reconstructed from case studies.

5.3 Setting up an Initial Structure

To initiate a new decision in SmYL, one perfonns the following actions:

• create an instance of decision problem,

• relate the decision problem to other existing objects, such as other decisions

• specify an initial set of goals and alternatives,

• optionally, add claims and counter-claims evaluating the alternatives with respect to the

specified goals

Creating an Instance of Decision Problem

In Object Lens, one creates an instance of a given type by double mouse-clicking on the

type object in the type browser. The type browser is shown in Fig. 5.3 and displays all the

58

smYL types that currently exist. Double-mouse clicking on a type brings up a a template

editor displaying the new instance as well as a set of menu items representing the actions

that can be legally perfonned on the object. Figure 5.4 shows such an editor that contains

an instance of Decision Problem. Initially, this new instance has only those attributes fIlled

in for which default values could be obtained.

Relating the Decision to Existing Objects

The decision problem is then related to other existing objects. For instance, our example

decision, "Which application interface for WING?", is a subdecision of the decision, "How

best design our window manager, WING". To express this relationship, one mouse-clicks

on the appropriate field (Le. is a subdecision of) and chooses the action Add Link from a

pop-up menu that appears. The action Add Link is a means of embedding a link, i.e. a

All T es

DRI. DBJECT

PROCEDURE DESCRIPTION

EHEcurRan: PROCEDURE

IS RELRTED TO

IS A RESULT OF

ANSWERS

SUGGESTS

RCHIEUES

I S I SUBSOIL Of

PRESUPPOSES

I S SUPPORTED BY

IS DENIED IV

DECISION PROBLEM

Figure 5.3 A type browser showing DRL objects

59

RAISES

IS R GOOD RLTERNRTI

IS R SUBDECISION DF

DECISION PROBLEM: Untitled
Show Matrix J (Say.) (Stf\d) (OtNrs)

IINa- I LInt.! tied
J ~

Eator ~Ol-j in

~t. '5/24/91 23:37:22

~iSGS {~:
IGoal5 ~
IAI t8rna~iv.s ~
IStatus ~ unreso I ved

ISubdec is i ons ~
liS A Subd4tcision Of~

~eYUlords r J
ITe)(t ~ I 0

Figure 5.4 A new instance of decision problem with default
values.

reference pointer, to anNher object within a field of an object. When the action Add-Link

is selected, the cursor turns into a cross-bar and the user is asked to click on the object that

should be the value of the field originally clicked on (i.e. is a subdecision of in our

example). When the user clicks on the parent decision, a link to this decision, represented

by its name in a square bracket, is embedded in that field, as shown in Fig. 5.5. A

corresponding effect takes place in the parent decision problem object; its subdecision field

now contains a link to "Which application interface for WING?" In Object Lens, a link to

an object is shown as its name enclosed in a square bracket, e.g. [How best design our

window manager, WING?]. When double clicking on this link, the object that it links to is

displayed in full, as indicated by the arrow in Fig. 5.5.

60

DECISION PROBLEM: Which application Interface fo lot DECISION PROBLEM: How best deslQn WING 01

Shaw~tri" I (~v. I (Stnd I (Oth l~ ~how~tri" I (~v. I (Stn4 I (Oth I
I~ II~ich application Int~rface for 1- MHow be .. t duign IoIING, 0","

I
Q UINn? ., window -..nager?

Itr-tor Ilol-J In / , fFeator ~Ol-J In I pale OS/24/91 23:37:22 L ,
§te ~5/01/91 11:23:24 I ~iS"] /

~ I AT ~I .. s
EIS I /

Ilooals U!!~~~~~I!~:Jf:7~~~lablel
/ !Aller-nat! U

~Il""""li"'" Illo .. l;n 11 10nign 21 I Elatus I unresal"f

~ I , ElalUS
~1$lons I L , ISubdeC I s I ens I [loIhlch appllcClllon InlerfClce
lis A $utxJ.clslon 01 CKo," best d.slgn IIING,our .. Indo", fo~ IIING?J CShould wlndo .. s b.

IsuDDorted across network7J manaaer?1

~ey.ords II I liS A Subdaclslon 0~1 I
~8l(l I There Clr" different WClII" to lIake

the feCI lures of CI window MOnClger
~d5 II I

available to appllcCltlons. For
e"ClAple, there could be CI strict

ttext Ilia are going to develop a
abstraction IClller or I~ss strict window laanClger. Th~ gOClI of
but eore flexible opproaches, a.g. IIING, our window manager, .. III
toolbol(. IIhat kind of interface .. e be to facilitate lhe
choose will Influence oth.r fClct~·s dave I C>pI\en t 0 f the f I none I CI I
such 05 portabll I til of the .. Indow appllcCltlons that are In the
• anager, the .fforts Involv.d In plan (cf. [XFINI, [ConI1an I) .
building applications, .tc.

~ 0

Figure 5.5 The decision problem instance related to other existing objects. In particular, it is
specified to be a subdecision of [How best design WING, our window manager?]

Specifying Initial Alternatives and Goalsl

To specify alternatives for this decision problem, the user chooses the field Alternative and

then mouse-clicks on the action, Add An Alternative. This action will automatically bring

up an instance of a new alternative template. As shown in Fig. 5.6, this action places a link

back to the decision problem in the Decision Problem field of the alternative, and a

corresponding link to the alternative being created in the Alternative field of the decision

problem. Here, two alternatives, [1M] and [Toolbox], have been added this way.

Similarly, through the action, Add A Goal, one creates and interconnects Goal objects

61

standing for the properties that an optimal alternative should have. Figure 5.6 shows two

goals, "Reduce dvpt Cost" and "Is portable" that have been added. 6

cMslgn lIltID,ocr wlndotl

One way of providing an
.... --.... appIICGtlon Interface Is to

build an In~tlon I1anagw
<In>, which serves as a strict
Int .. f_ bew..n the window
aanagr and ~llcatians. In
would consist of a cOIIPletlt
set of hl9'l level routines
that appllCGtlons can call to
aoanage the I r ., indotlS, and
app I I cations IIOU I d haIIe no
other access to the window
IICa'IGgW' •

Figure 5.6 The decision problem elaborated further with its alternatives and goals. Oile of
the alternative, [1M], is shown expanded.

The user who created the decision problem can at this point optionally elaborate on the

initial set of goals and alternatives, or add arguments and counter ar?uments about them.

6 Add a Goal, Add an Alternative actions are from the older Xerox version of SIBYL. In the current
version, Add-Link is used to be consistent with the Object Lens interface. We describe the older interface
here because it is simpler to explain, and for the same reason, the current version plans to implement these
actions.

62

However, these actions will be described in the third phase, augmenting the decision

structure.

The user at this point can ask for a decision matrix for this decision problem. A Decision

Matrix, such as shown in Figure 5.7, is the major interface between SmYL and the user.

It displays the goals in the top row and the alternatives in the leftmost column. The value in

each cell represents the current evaluation of the alternative with respect to the goal

associated with the cell. Initially, each cell displays the value, "unevaluated". As people·

produce pro and con claims for the alternatives, the values shown in the cells get updated

accordingly, as described below.

Which application interface for WING1
Show T empl~ttl S~y. [Send [Others

Goals Is portable Reduce dvpt cost

Importonce ~+ H

Rlternatiues

1M ~ ~ I
ToolboH M H

Figure 5.7 A decision matrix displaying the evaluations of the alternatives
with respect to different goals

63

.

5.4 Releasing the Initial Structure

A decision problem is released when it is made accessible to other users so that they caI}
(

augment the decision structure by contributing their own knowledge or evaluations about

the alternatives, goals, and claims.

There are different ways in which a decision problem can be released.

One way which has been actually used so far is to send the initialized decision as an

electronic mail message. SmYL makes use of ~lte Object Lens feature of sending objects

via email. An Object Lens object, including a folder object containing a group of objects,

can be sent in a message. These objects are translated into an ASCII representation before

they are sent over the net. On the receiving end, Object Lens systems can then parse this

representation into the original objects. Because these objects have unique global

identifiers and version identifiers, they are loaded only when there are no objects with the

same object and version identifiers. (For detailed descriptions of this feature of Object

Lens, see Object Lens: User Guide.)

If one decides to make decisions over an electronic network, one would select the decision

problem instance and choose the action Send. The system asks whether to send only this

object, or all the objects that are immediately linked to the object, or all the objects that are

linked to the objects at all (i.e. transitive closure). Since the decision problem has all goals

and alternatives linked to it, which in turn can refer to other objects, the third option is

commonly chosen so that all the objects connected with the decision problem are sent to the

other users. The recipients of these o~iects can then examine this structure, make their own

contributions in the manner described in the next section, and send the augmented structure

back to other users.

64

This method has been used successfully on small-scale decision problems, where there

were not many concurrent updates. However, it has one major problem, namely that of

maintaining global consistency. Because the decision state that one user sees may be

different from that seen by another user at a given moment, an argument that is put forth by

one user may be irrelevant or confusing by the time it gets to other users.

Another way of releasing the initial decision, one which would avoid the above problem of

consistency, is to store the structure in a shared database and give the other users

appropriate access rights. The use of a shared database allows us to take advantage of the

concurrency control features of the database in order to help maintain consistency. The

database connection to Object Lens, however, has just been implemented and is not quite

stable enough yet. Once it is stable, however, SIBYL would adopt this method of

relea~tDg a decision problem.

5.5 Augmenting the Decision Structure

Once the decision problem is released, the users contribute to the decision making by:

• relating it to existing objects

• specifying goals and alternatives

• elaborating goals and alternatives

• adding arguments and counter-arguments

• assigning evaluations

• asking questions

• answering questions

65

The fmt two processes were described in the previous section. In this section, the rest are

described.

Elaborating Goals and Alternatives

As the decision making progresses, the initial goals and alternatives become more specific,

and need to be elaborated. In SIBYL, a goal is elaborated by creating its subgoals. For

example, the goal "Support many UI styles" is elaborated to mean "Implement direct

manipulation" and "Support form-based interface easily." To create subgoals for a given

goal, one brings up a goal browser, such as one shown in Fig. 5.8, which shows all the

goals for a given decision problem. When one clicks on one of the goals, a pop-up menu

appears with a set of actions that can be performed on that goal. One of the actions is

Create a Subgoal, which, when executed, will bring up a template editor containing a new

instance of the goal, and automatically link it to the goal clicked via a subgoal relation.

When editing is finished and the new goal is saved, the goal browser is automatically

updated to include the new goal related to the goal clicked via a subgoallink. 7

Another action in the pop up menu, Argue about Relations, allows us to argue about

whether something should be a goal at all. When the action is chosen, SIBYL presents a

pop-up menu displaying a list of all the relations between the object selected and other

objects (remember that relations are first class objects). To argue whether something

7 If one also believes that these subgoals are exhaustive in the sense that satisfying all of hem is equivalent
to satisfying the parent goal, that they are disjunctive in the sense that satisfying one of them is equivalent
to satisfying the parent goal, or that they are mutually er.clusive, or mutually independent. then one can
specify these different relations by relating the subgoals to the parent goal via a Group object and specify
these relations as olle of the attribute of the Group object. This information about the relationship among
the subgoats is used by the plausibility managementlarer when the plausibility of the claims are propagated
through these Is A Subgoal O/relations.

66

should be a goal at all, we choose the relation Is A SubgoalOf, which links the goal object

in question to its parent goal (possibly the decision problem object). This relation -- the

claim that the goal is a subgoal of the goal that it was linked to -- is displayed in a template

editor containing the instance of that relation; one can now support, deny, or qualify that

relation in the manner described ill the next subsection on adding arguments.

fOLDER: 811 Goals

(S.v.) (S.nd) ! Dup1ic.t) (OthtrS)

IHau URII Goals ~

Icon ten tsl SUDDOr t !II i ndoUls over the net I -Subgoals ~
• ..-.(Irnplernent direct lIIanipylatlon I

Succor t manu U I stu I es J<:t:.:::
~SUDDort forlll-based Interrace eas II.; I

Is Dortable I

Reduce dvct cost I

.-~
~

Figure 5.8 A goal browser displaying all the goals and their relations

So far, I have described how to add goals, additional alternatives, elaborate existing goals,

and argue whether they should be goals at all. Alternatives can be elaborated and argued

about in a similar manner via the alternative browser, which displays all the alternatives for

a given decision problem. 8

8 Another way of adding. elaborating goals and alternatives is by bringing potentially useful objects from
past decisions. The precedent m.ll1ager helps one do so and it is discussed in Section 6.1.

67

Adding Arguments and Counter-Arguments

In SIBYL, one evaluates an alternative by arguing about how well it achieves each of the

goals specified so far. The user can do so by bringing up an argument browser associated

with the alternative and the goal in question. For example, if the argument is that an

interaction manager interface is good for portability because it provides a strict separation

between abstraction levels, then one would click on the cell which is in the intersection of

the alternative [1M] and the goal [Is portable]. Figure 5.9 shows an argument browser as

well as the cell that the user clicked on to bring up the browser. This claim that an

alternative achieves a goal is automatically generated by the system for each alternative

whenever a goal is created, and an argument browser for each cell in the decision matrix

initially contains this claim for people to argue about.

Which application interface for WIN6?
Show T.mpl~t..{ S~". I S.nd I Otl~.,.s

60als Is portable Reduce dvpt cost

Importance ~+ H
RlternatilJes

1M ~ r I
ToolboN ~ H/

/'
,I

fOLDER: Rrquments 8bou~MI achielJinq [Reduce dupt cost)

(Sin) I Send II (l>u~1icitf ...) (Othtrs)
" lIN<- HArgument:6 abou\ll'IMI achi~ing [Reduce dvpt cosU I ~ -ICon tllll tsl I M ach i eves Red!. ce dvo t cos t I -P'gisIiS ~ w.·.·.· Is Suppot' ted

- I s Den i 11<1 81,1
-AnsUl.rs
-Is Qualified

{}
{}

Figure 5.9 An argument browser displaying arguments for the
evaluation of the alternative [1M] with respect to the goal [Reduce
dvpt cost], shown in the decision matrix above.

68

Users express their pro and con arguments as claims supporting or denying this Achieves

claim; hence, the evaluation of the claim represents the measure of how well the alternative

is achieving the associated goal. In SIBYL, the user can always mouse-click on an object

and get a menu of all possible operations that can be performed on the object. The user

can mouse-click on this initial Achieves claim and get a menu displaying possible actions

such as Add A Supporting Claim, Add A Denying Claim, Add A Question, and Add A

Qualification. When the user chooses Add A Supporting Claim, for example, a template

editor containing the new instance of Claim is brought up and this new instance is

automatically linked to the original claim through an instance of the Supports relation.

When the user chooses Add A Supporting Claim, SmYL displays a template editor

containing the new claim instance, and links this new claim to the original claim via a

Supports relation. Figure 5.10 shows the argument browser after many people's

contribution. An argument browser is in fact a window into a particular portion of a

decision graph, e.g. the region bounded by a heavy box in Fig. 5.11.

rOlDER: 8rnumenls about IIMlochieuiog [Reduce dllpt cost)
(Siv.) (SlId) (~~) (others)

tt- ~ts aut IIHI achieving lRecb:e ~t cosU 0

~ .. """It's one tile cost J -Raises ~
ie." \; -Is~ted

ive to bui Id I -15 Denied~
-Is ~Iifiad

In oiIi ... lIoI<e .. t cost 'Vo"'ilt .. bel ... ! -15 fmInd

t's the budaet for thislt2iect? ~t 141)(I

Q

Figure 5.10 The argument browser with arguments and counter-arguments added.

69

is a good
alternative

for

is a good
alternative

for

1M

finalized
yet, but
around
$ 40K

Require.
application to
work at a low

.evoi

F~ ~u-
is a subgoal of ___ support many UI styi!!" ~

~ t

one
betore,

though tor denl_
a different

platform I ;If!
quallfl ••

Thlslaona /
time coat.

Once built, It
will reduce
application
dvpmt coata

expansive to
build

achlevea

den::' /

.upports

answers

I
portability

acroes
devices,

esp. "

supports

I
Clean

_parallon
btw wm and
applications

achlevas

.Jf
.upporta

/
Not very good
becau_ the
abatractlon
level ha. not
rl_n much

1M's
Intoractlon

style la
rigid

denies

achlevea

~

achieve.

" support.

Provide. the
".xlblllty to

Implernan:
direct

manipulation

i
K
~

.8
:g
e
::;t

..8 0

.a..-:
0..V'l
~ .
~.~
e~
oe
:3·;:
uO otl:!
'O~
.£e
0...0
S:: ... cae
~E
o ::l
-5~
"'""~ 00
c..c
0'"
'bb'S
el1
~i
_tI:!
-'0
viti:!
e~
6b'~c
~~

~

Asking and Answering Questions

Whenever the user wants more information or clarification concerning an existing object,

he can ask a question about it. He does so by, again, mouse-clicking on the appropriate

node in the argument browser and by choosing from the pop-up menu the appropriate

action, in this case Raise A Question. This action creates a new instance of a question,

links it to the object clicked via a Raises relation, and updates the argument browser. Later,

when another user wants to provide an answer to this question, that user clicks on the

question and choose from the menu the action, Answer A Question. This action creates an

instance of Claim, links it to the question via an Answers relation, and updates the

browser.

Assigning Evaluations

When the arguments are added as described above, the decision matrix is updated to reflect

the changes in evaluation that might result from the addition of the arguments. Automatic

updates by the system are possible, but there are still many problems that would have to be

resolved. Hence, currently, the update is done manually by the users in the following

manner.

A user, usually after making his own contribution, would examine the argument browser

associated with a given cell of the decision matrix. The cell already shows some

evaluations, if only it is "unevaluated". The cell may display a list of evaluations because

different users may have different evaluations of the same set of arguments. Each

evaluation can be:

71

• a string with no other associated infonnation, e.g. "unevaluated" "unanswered

questions" ,

o a list of simple keyword evaluations and their creators, e.g. (HIGH, Susan)

• an instance of a claim with its usual attributes like creator, creation time, supporting

claims, denying claims, and others.

The way in which the user would express his evaluation would depend on what he has done:

• If he has perfonned actions (e.g. answered a question. made the fIrst evaluation) that

clearly annul a current evaluation (e.g. "unanswered question II or "unevaluated"), he

would just take appropriate actions on these evaluations, e.g. delete "unanswered

question II if answered or replace "unevaluated" with his own evaluation. In expressing

his own evaluations, he can either use a text string (e.g. "H"). a list of keywords (e.g.

(HIGH, Susan», or an instance of a claim. (e.g. [High]). with the creator field filled

with his name (Fig. 5.12). One would usually use a text string or a list of the

keywords until there is a need to make it into a claim (when it becomes the subject of an

argument. for example).

• If he disagrees with his own earlier evaluation, either because of new arguments or a

change of mind. he can replace it with his new evaluation.

• Otherwise, he simply inserts his own evaluation in the list. If he does not understand or

disagrees with others' evaluations, he can ask a question or argue about the

evaluations. To do so, he might have to make some string-based evaluations into claim

instances.

72

Which application Interface for WING?
($M" T...,1at.) (Say.) (S.1I4) (OU.ws)

GOllls Is portable Raduce dvpt. cost

Importance f++ H

Rlternatiues

1M (H,Susan) (H-,Lal) (H,Kevin) (L,Lal)

ToolboH [Hedlue](H, Kevin) unanswered question, (H, Lal)

CLAIM: Medium

s.". (s ... DupliD.t •••. (others

ICreator I Susan

IDate~ 6/24/90

IS~e2rts I

IDenies I
Ip",su~os.s I
I Raises I [why .. di~ when all in

favor?]

I Evaluation I
IPlauslblllt~ I
I D5,..e I
IK~lIOrds I
(Text I I t HellS tha t 1105 t 0 f

the arguments, as I see,
favor the Too I box
al tarnatlva. So why Is
the evaluation MdiUII?

Figure 5.12 A fonnalized evaluation measure. The evaluation [Medium] shown above is
an object with its own attributes, which can be edited and examined.

A decision matrix shows only goals at a given level, that is a goal and its subgoals do not

appear in the same matrix. The subgoals of a given goal are shown in the submatrix

associated with (he goal. The user examines the submatrix for a given goal by mouse

clicking on the goal link in the decision matrix and choosing from the pop-up menu the action

73

Show the Subgoal Matrix.9 A decision submatrix for the goal [Support many UI styles] is

shown in Fig. 5.13.

Hence, when there are subgoals, there is an additional evaluation process. When the cells

in a submattix have been assigned evaluations, one goes up one level and should assign -

on the basis of the evaluations on the submatrix -- an evaluation for the appropriate cells in

its parent matrix that the submatrix is associated with.

Which lico~ion inte

600ls Is por-tQble Reduce dvpt cost

Importance H

Hlternatiues

1M Susan) (H-.,lai) (M,Kevin) (l,lal) M

ToolboH lual<H, Kevin) unanswered question, H

Imp I eaent d j rer.:t lIlan I pu ISupport forlll-based Inter

I mportance ~

Hltcrnotiues

H

(M, Kevin) H

(l, lai), [loVl] H

Figure 5.13 A decision submatrix which shows the .rationales for the evaluation of an
alternative with respect to a goal in terms of its evaluations with respect to the subgoals,
[Implement direct manipulation] and [Support form-based interface]

9 This feature is implemented in the Interlisp implementation,.

74

5.6 Making -the Decision

SIBYL does not automatically make the decisions; it only helps the user make a decision.

SIBYL assumes the existence of somebody, human or potentially a computational agent

who can examin~ the decision structure that have been elaborated so far and assign final

evaluations. For example, if the current evaluation of the cell is '(H, Kevin), (L, Lai)',

then an arbiter is needed to assign the final value, presumably based on the credibility or

reliability or expertise of the source for the differing evaluations.

Once the evaluations have been assigned to the cells and the questions that need to be

answered have been answered, this decision maker or arbiter determines the final

evaluation for each of the cells in the matrix based on the list of current evaluations as well

as the arguments (shown in the argument browser' responsible for these current

evaluations. If there are submatrices, this process starts at the bottommost submatrix and

recurs up until it reaches the topmost matrix. The decision maker decides based on the

evaluations shown in the topmost matrix at the current level.

Once the decision is made, one would record the outcome and the reasons for the outcome

by creating an instance of the type Decided and placing a link to it in the Status field of the

decision problem. Decided is a subtype of Status, which is used to represent infonnation

about the current state of a decision problem. The Chosen Alternative attribute of Decided

contains typically the chosen alternative or a description of whatever closed the discussion

about the decision, for example a description to the effect that the decision is no longer

relevant. The Rationales field of Decided points to those objects that were mainly

responsible for the final decision. For example, Fig. 5.14 shows that the decision was

made to use interaction manager as the WING application interface, and that the major

reasons for this decision were the arguments about portability and about reducing

75

design IoIING,our window

There ore dl ff lll'lt 1I<J\jS to .elke
.""------..IIIthe features of Q windOll rac:nager

av.:lliable to applications. For
exalllP I e, there c:ou I d be Q str I ct
abstraction IQuer or less strict
but .or. fl.xlbl. approach.s,
•. g. toolbox. IoIhat kind of
int fac ... choose will
influ c. olher (actors such as
portobility of the window
IICII"Iog __ , the efforts InvolV4KI In
building applications, etc.

1 1; Ig;42

Figure 5.14 Decided, a s~atus for a decision problem, shown as a formal object with its own
attributes that can be edited and examined

application development cost both in favor of the interaction manager. It could refer to

itself as the reason if all the arguments in it are judged to have been equally important.

5.7 Evaluating the Outcome of the Decision

Later, if the success or the failure of the decision is ever known, one can come back to the

decision and fill in the Evaluation field of the decision problem. The values one can fill in

can be text strings such as Utter Failure, but more instructive ways to do so involve

76

creating an instance of Claim. As shown in Fig. 5.15, one would use this claim to record

why one believes that the decision was a success or a failure, and which parts of the

decision were responsible. This way, others can also argue about this evaluation as a

claim.

C1M lIToolbox I

that the dec: Is j on _ bI" III/ CI1l
L..-__ ~IMIC_ III ttG I s a success. In

leuler, the 1M inlerfoclI alloes it
fVI on filii di fferenl plaUcn.s and

the c:ost of building applications on It
is rMCll'"kably loti.

Figure 5.15 An evaluation of the outcome of a decision problem, [turned out real well],
entered as a formal object with its own attributes can be edited and examined. The
evaluation field was not shown in the earlier figures because it was hidden, as any field
can be until needed.

77

-

Another way is to create special Success and Failure subtypes of Claim, representing the

claim that it was a success or that it wa~ a failure respectively. and use an instance of these

new subtypes to record the reasons for the evaluation. These types may have their own

attributes, like Rationales, which point to the objects that one thinks are responsible for the

success or the failure of the decision. Creation of these types would allow the sys.tem to

more easily detennine whether a decision was a success, and give the system more basis

for computational operations on these evaluations. The types. such as Success or Failure.

are not built-in types of DRL, though, because presumably different applications would

want to categorize these evaluations differently.

78

.

Chapter 6

Computational Services
based on DRL

Thus far, I have shown how rationales can be captured using SIBYL. The goal of this

chapter is to show what can be done with the captured rationales. I present the

computational services that use the captured rationales to support decision making. There

are three major services that SIBYL provides: the management of precedents,

dependencies, and viewpoints,l0 The precedent manager helps the user to retrieve

rationales from past der-isions that may be useful for the current decision. Because a major

motivation for this research is the desire to reuse rationales, the precedent management has

received most attention (Section 6.1). The other two services, dependency and viewpoint

10 There was an attempt to develop an evaluation manager that is responsible for automatically merging
and propagating evaluations. The problems encountere1 in the attempt are briefly described later.

79

managements, deal with two kinds of needs that were found to be of critical importance,

from the experience of representing and managing the rationales in example domains:

maintaining dependencies on the one hand and keeping track of multiple decision states on

the other. The dependency manager helps the user to propagate the consequences. of

changes and maintain consistency across decisions (Section 6.2). The viewpoint manager

allows the user to create multiple viewpoints and compare them (Section 6.3). The rest of

the SIBYL services, such as monitoring and sharing objects through email, are grouped

and described at the end (Section 6.4).

80

6.1 Precedent Management

One of the major motivations for this research is the desire to reuse rationales. This makes

the precedent manager the most important of the services.

The job of the precedent manager (PM) is to bring into the current decision useful

knowledge from past decisions. There are two ways in which the user might want to

retrieve past decision rationales. First, he might have something specific to look for, e.g.

any argument about how well the toolbox approach promotes a common user interface.

For this case, SmYL allows the user to specify a partial structure and retrieves any

structure matching the specified structure. This case is described in the first subsection.

Alternatively, the user might not have anything specific in mind, but just want to know if

there may be anything relevant in past decisions. In this case, SIBYL has to decide which

of the past decisions might contain useful knowledge. This case is discussed in the second

subsection.

6.1.1 Specific Retrieval Request

Often, the user wants to find a specific type of information from past decisions. For

example, he might want to know whether a certain kind of alternative has been considered

in the past, whether a question about a particular product has been answered before, or

whether there is any argument evaluating a certain type of alternative with respect to a given

81

type of goal. In this case, the user supplies a partially specified structure composed of

SmYL objects as a query.

A query consists of a set of descriptions and their relations. A description is a template of a

given type with its attributes partially filled in. Figure 6.1a shows a graphic representation

of a partial structure which consists of three descriptions (of type Claim, Alternative, and

Goal) and their relations. This partial structure specified as a query would, for example,

retrieve any claim which is about an Achieves relation between an alternative of type

[Interaction Manager] (specified by the specified attribute value, aIm: interaction manager)

and a goal whose type is [Portability]. Figure 6.2 shows actual user interface in which this

partial structure is specified.

Figure 6.1 b shows a retrieved structure. It matches the partial structure specified in Fig.

6.1a because [User Interface Management System] is an alternative which is a kind of

[Interaction Manager] and [Portability across Hardware] is a kind of [Portability]. The

retrieved structure also contains any object that is immediately linked to the matched

structure. For example, the claim [Has limited application semantics] is also retrieved

because it is attached to the Achieves relation that matches the Achieves relation specified in

the query. Only those objects immediately linked, i.e. only one level deep, are retrieved.

However, each retrieved object also has pointers to the other objects that are immediately

linked to it, so that the user can retrieve objects more distantly related to the original partial

structure by following the links.

The implementation for this case is straightforward with the Object Lens rule system.

Figure 6.2 ~hows the actual user interface through which this partial structure is, i.e. as the

if-part of a rule whose condition consists of a nested partially filled descriptions.

82

~------~~
achieves

ako:
Interaction t------------
Manager

(a) An example of a partially specified structure

provides a strong
separation

between the
window manager
and applications

t--.--t ... ~ achieves

, , ,
b

User Interface ... _. ________ •

Management
System

(b) A retrieved structure that matches the partial structure in (a).

Figure 6.1 A pal1ially specified structure used to retrieve
potentially relevant rationales

83

Ilnt..-actlon IIGnagar!

Figure 6.2 The actual u~er interface used to describe the
partially specified structure shown in Fig. 6.1 a.

The actions specified in the then-part of the rule is perfonned on all the instances that match

the nested descriptions. Hence, in the example, any claim which support any instance of

the Achieves (A, G), where A is a kind of [Interaction Manager] and G is an instance of the

goal [Portability] would be retrieved and moved into a folder called [All the Claims

84

evaluating an Alternative of type, Interaction Manager, with respect to a Goal of type,

[Portability].11

6.1.2 General Retrieval Request

The user can also request retrieval of any relevant information from past decisions without

providing a partial structure to match. Figure 6.3 shows what the PM needs to do in this

case. To bring in useful knowledge from past decisions, we need to find those decisions

that might contain useful knowledge, extract the relevant pieces of knowledge from them,

adapt them to the current decision. and link them to appropriate places in the existing body

of knowledge. The user can then examine the transferred knowledge and determine what

its effect on the current decision should be.

Selecting past decisions to look at

To determine which past decisions to look at for potentially useful knowledge, the PM does

the following:

(1) Define a similarity metric with which to measure the similarity between decision

problems,

(2) Rank the past decision problems using the metric, and

11 This implementation of rules has many limitations. The rules do not support variables nor conjunctive
conditions within a field. Disjunctive condition is specified by creating multiple rules. In one of the
implementations, all of these features are supported, but only by way of low level interaction with the user
(e.g. use of Lisp constructs).

85

Define a
similarity

metric

Select past
decision to

look at

Rank the past
decisions
using the
similarity

metric

Find relevant rationales
from past decisions

Extract the
potentially

relevant pieces of
the rationales from

the chosen
decisions

Consider only
those decisions

which rank
above a
threshold

Adapt the
potentially
relevant

pieces for the
current
decision

Figure 6.3 Tasks involved in retrieving useful rationales from past decisions.
A set of subtasks converge to a single task.

Relate the
adpated

pieces to the
existing

objects in
the current

decision

(3) Consider only those decisions which rank above a threshold (set by default

overridable by the user) and apply the next stage algorithm for extracting relevant

pieces.)

Each of these substeps is described below.

Defining a similarity metric

SIBYL uses the number of shared goals as the similariLY metric between decision

problems. Underlying this choice is the intuition that the more goals two decision

problems share, the more knowledge they are likely to contain that is potentially relevant to

each other. For example, the alternatives and the claims that evaluate these alternatives in a

86

decision are likely to be relevant to another decision to the extent dlat the two decision

problems share similar goals.

Using the similarity metric to rank the past decision

To rank past decisions using the similarity measure based on the number of shared goals,

the PM needs to know what it means for two decision problems to share goals. If we have

two decision problems, one with the goal "Easy to use" and the other with the goal, "Ease

of use," do they share a goal? The answer is, of course, that it depends. Most likely,

there would be some differences between the two goals. Whether these differences can be

ignored depends on the particular purpose at hand, i.e. for the purpose of making the

current decision. Currently, the PM leaves this decision to the user, but helps the user

make the decision by narrowing down the potential candidates for matches. Described

below is the algorithm that the PM uses to look for potential matches to suggest.

The PM retrieves potential mtttches for a current goal with the use of a goal lattice. I defer

the explanation of how a goal lattice gets created until after I explain its use in deciding

which of the goals are shared across decision problems. A goal lattice shows the goals in a

given task domain. Figure 6.4 shows some of the goals in the Lask-domain of designing an

optimal application interface. This goal lattice shows two kinds of relations among goals:

specialization and example. The specialization and examples correspond to the usual

subtype and instance distinctions.12 That is, a goal G2 is a specialization of another goal

12 The terms, specialization and example, are used because users of SIB YL are often not familiar with the
subtype and instance distinctions.

87

-",.. a specialization of
---------~ an example of

.. ..
application ~bility

across devices

'@m!b}D

• I
I
I
I
I

• I
I

•
I , , , , , , , , , ,

I , , , ,
I ,

~
'eY

Minimizewm
development cost

support windows over
network

, , , , ,

~
~

~"'"

, , ,
EnWYs~

~ , , , ,

0 .c --IS -Gi

~~ £
5= 0';;
=0 0'-

.8~
o~

~f5:
.c=
-'td
~E 00

00

;'.:l
'tdc.. 00
bIl;j
0
-s~
bIl8
.~.c
=~ -
~~
00 .g -5
-~ ~o
'td{/l
oS bIlO -<"8
~c..

...0=
e·~
~.-.- ~ ~'e

G 1 if both Gland G2 are types, and all the instances of G2 are instances of G 1. For

example, "Choose an optimal application interface" is a specialization of the goal "Design

an optimal module interface." A Goal G2 is an example of G 1 if G 1 is a goal type and G2

is an instance of G I, i.e. is in fact used in some decision problem. A goal type, on the

other hand, is never used directly in a decision problem.

Given a goal lattice, the PM decides which past decisions to retrieve in the following way.

For each goal in the current decision, find other examples of its goal type in the goal iattice.

Then for each of these examples, ask the user whether it matches the current goal. In Fig.

6.4, the current goal, [Which application interface for WING?], and [Which interface for

NEXUS?] are both examples of the goal type [Choose an optimal application interface].

SIBYL presents each of the examples found to the user as a potential match for the current

goal, which then confirms or denies the match. Each of these matched goals points to the

original decision problem in which it appeared. Using this information, the PM can rank

these past decisions by the number of matched goals. Figure 6.5 shows a precedent with

three of its goals matched to the current goals (those shown in heavier frames) .

To ensure the success of this heuristic based on the goal lattice, the lattice has to be

managed carefully. For example, if a goal type in the lattice is too general (e.g. [Design

good software)), its examples may not reflect similar concerns and may not be good

matches (e.g. [Design a good window manager], [Design a good database)). In the

following, I discuss how the lattice is to be constructed and maintained.

The goal lattice is created partly top-down and partly bottom-up. If the task-domain has a

taxonomy of goal types that is well-agreed on, then it can be used as an initial structure for

the goal lattice. For example, Fig. 6.6 shows a taxonomy of the goals in software

engineering [Boehm 1981]. These goal types can then serve as basis for adding more

89

specialized goal types and examples in the manner described below. If such a taxonomy is

not available for the domain, the lattice can start with a single node representing the top

level task, e.g. [Design a window manager], which can then be specialized. The lattice that

grows in the process can then serve, in tum, as a basis for producing a taxonomy for that

domain.

When the user posts a goal for a decision problem, he is required to use an existing goal

type or create one by specializing an existing goal. For example, if the user wanted IIdirect

manipulation" a~ a goal, he would search the lattice that has been built so far, decide which

path to go down until he comes across a goal (e.g. [Implement direct manipulation]) which

corresponds to the requirement of direct manipulation or he reaches a kaf of the lattice

without finding anything. In the first case, he would create an instance of the found goal

type and post it as a goal in the decision problem in question. In the latter case where he

does not find any existing type to be suitable, he specializes one that is as specific as

possible yet more general than [Support direct manipulation]. He then uses an instance of

it for his purposes.

90

achieve. achieve.

1"0
~ /

.upport.

User Inlerface
Managemenl

Sy.tem

achieve. I
achieve.

cI--Programmer can
neglecl a clean

.eparsllon blW his
CU.lomlzallon
code and lhe

application

Exlenalble 1 I I Inlereactlon
Manager

~c::::J • ~
NeW •• Iyle

Efficient communlcallon,
!,.g. round trip !!!!Jr .•

achieve.

nl/

qua"', ••
~ ..I An 1M can

own J Some 1M'.
• upport direct dalalype •

manipulation thl.
way, e.g. MacApp

achieve. achieves

".."" --:/ I
if

I ~

t:::I ~

"'" c2
"5
(IJ
::s
(IJ
II.)

"8 c::
II.)
(IJ

0
-5
>. -c::
0 0\

c::
II.)

"5
Col e
0..
~

"'".....: 0· ...
~S
..ell.)
0.."0
~c lib .. · ..

C
C ~
.90
(IJ..e

.... (IJ

Colli.)
.ga
II.)c
~.9 Irl: .::s
\O()

e·~
::s"t:l
~II.)

.... ..e

~-

Successful software engineering

Successful wftware product

Easy to
use

Satisfies
hwnan
needs

Fulfills
hwnan
potential

Follows
modified
golden
iule

Resource
engineering

Efficient
Balanced

~unable

Precisely
specified

Complete
Guarded
Consisten
Feasible
Testable

COJreet

Adaptable
Structured
Device-
independent
Understandable

Planning

Organizing

Staffing

Directing

Controlling

Automating

Using
modified
golden rule

Cost- Feasibility
effectiveness Validation
analyzing

Requirements
Planning Validation

Estimating

Controlling
Product Des:r

Verifn an
Meeting Val'n
Schedules
and budgets Programming

V and V

Integration
V and V

Implementation
V and V

Maintenance
VandV

Phaseout

Configuration
Management

Figure 6.6 High level goals in software engineering (from [Boehm 1981], Fig 3-5)

The goal lattice growing this way can be populated with random goal types. In order to

iiicrease the d-wnce of finding potential matches as well as help the user find or create his

92

goal in this lattice, the goal lattice is maintained by a supelVisor knowledgeable in the

domain.13 The job of the supeJVisor is to monitor the lattice and reorganize it once in a

while by creating new types that generalize or specialize existing types and redistributing

them.14 With nppropriate supelVision of the goallattic.:e, the heuristic at least provides an

initial filtering mechanism for suggesting most plausible candidates, which can then De

confirmed by human users.

~

The goal lattice is not the only way in which potential matches can be found. A large body

of research, ranging from precedent-based learning [Winston 1982], analogy

[Faulkenhainer 1989; ; Hall 1989; Winston 1980], case-based reasoning [Kolodner 1988;

Riesbeck & Schank 1989], has proposed various methods for finding good matches.

However, these methods require much domain-specific knowledge or at least knowledge

more formalized than what is available to SffiYL. Given that a goal of SIBYL is to explore

the benefits of a system which is useful whose input is entirely informal but becomes more
~

powerful as more knowledge becomes formalized and accessible, SmYL could not exploit

these methods. In the section on future research, I discuss ways in which SmYL can be

given more knowledge and ways in which these matching methods might be incorporated

into the PM.

13 There is currently one goal lattice for a given domain such as software design or hardw:re choice. A
goal lattice is globally shared across decisions within its domain. That is, the goats poSL d for all the
decisions are all created as instances of the goal types in the same lattice. When the decisions are of a
similar type, say those involved in designing a window manager, the goals that accumulate in the lattice
show all the requirements that the designers of a window manager had over time. This lattice, therefore, can
be used as a checklist for a designer of a new window manager. When the decisions cover a wide range of
topics, however, several goal lattices are needed so that each lattice does not become a mixed bag and its
size does not get overwhelming. The lattices themselves would have to be indexed in some way for the
user to know which lattice to look at. The current research does not address these issues yet.

14 The use of classifier, such as (Schmolze & Lipkis 1983), would have alleviated the need for human
intervention. If we can assume the formalization of domain knowledge as well as the goals specified,
then we can in fact exploit such automatic classificaticn here. However, without such formaJi7.ation, goals
often involve informal descriptions, which make the use of automatic classifier not possible.

93

Considering only those decisions which rank a/love the threshold

Once the past decisions are ranked using the heuristic described above, the PM applies the

next stage algorithm for extracting relevant pieces to each of them from the most highly

ranked as long as it is ranked above the threshold. The threshold is specified in temlS of

the number of shared goals, and set by the user.

Extracting and Linking the relevant pieces

from retrieved decisions

After the past decision problems are ranked based the number of matched goals, the pieces

of their rationales potentially relevant for the current decision need to be extracted.

There a.--e four kinds of potentially reusable rationales captured in DRL:15

• Goals, their relations, and arguments about them (type I)

• Alternatives, their relations, and arguments about them (type II)

• Evaluation of alternatives with respect to goals. arguments about them (type ill)

• Decision Problems, their relations, and arguments about them (type N)

Figure 6.7 shows the DRL structures that capture these rationale types. These ratio'lales

are potentially useful for the current decision because they tell us about the requirements

15 This categorization of the reusable rationales is based on the analysis of the components of decision
rationales presented in Section 8.2. This analysis distinguishes five components of decision rationales:
the criteria space, the alternative space,the evaluation space, the issue space, and an argument space behind
each of the four spaces. The Type I through IV rationales correspond to the rationales about the first four
spaces, together with an argument space ?.ssociated with it. This framework is also used to evaluate other
existing representations for decision rationales and compare them to DRL in Chapter 7.

94

considered in similar decisions, the ways in which they were related to other requirements

or decisions, the alternatives considered in achieving them, the pro and con arguments,

questions generated, and how they were answered. In the following, I illustrate how the

PM helps the user to extract relevant information from each type of these rationales. The

precedent shown in Fig. 6.5 will be used to illustrate this stage of the algorithm.

IV

is a subgoal of

is a good
II IIlem1live for

9
III

a kind of

6'0
,

suppcr1l

is • good alternative for

Figure 6.7 Types of reusable rationales in DRL

Type I Rationales: Goals, Their Relations, and Arguments about them

As shown in Fig. 6.8, Type I rationales are captured in DRL by the instances of Goal, their

relations (e.g. Is A Subgoal 0/), and the arguments about them. Starting with the highest

level goal matched in the top-ranked decision, the PM presents its subgoals to the user in

95

order to find out if the subgoals of the matched goal shouid be the subgoals of the current

goal. In our example. the highest level goal matched is the decision problem itself. [Which

interface for NEXUS?].

For each of subgoals. SIBYL asks the user whether it should be a subgoal of the matched

current goal, i.e. [Which application inteIface for WING?]. Of the four subgoals shown

in Fig. 4.3. two of them. [Highly portable] and [Support WYSIWYG], UTe already

matched to the current goals, namely [Is portable] and [Implement direct manipulation].

Both of these goals are already subgoals of [Which application interface for WING?].

Hence, SIBYL need to or'y ask about the other two subgoals, [Uniform interface] and

[Support over network].

For ead. of the subgoals presented, the user indicatr;s whether:

(1) it matches one of the existing goals

(2) it does not match any of the existing goals but should be made a subgoaI of the

matched current goal, or

(3) it does not match and is irrelevant.

The user indicates that [Unifonn interface] does not match any of the goals, but is relevant

for the current decisioll. This goal is then installed as a subgoal of [Which application

interface for WING?]. Also if either of the two subgoals prev10usIy matcfie<l, say fHfgfily

portable], was not matched for some reason, t~e PM would have asked whether it should

be a subgoal, and the user would indicate that it should be and that it should also match the

appropriate current goal, i.e. [Is portable].

As long as this process yields a subgoal in the first two cat~gories, i.e. as long as there is a

subgoal that is to be incorporated into the current decision, the PM recursively performs

this process depth-first until there is no more subgoal matched or relevant. In that case. it

96

pops back to the higher level list, and asks about the next goal in the list. To continue our

example, given that [Uniform interface] does not have any subgoa\, the PM now asks

about the next subgoal, [Support over network]. The user indicates that it is not relevant

for the current decision. However, if it made its way into the current decision, the PM

would go on and ask whether its subgoals, [Efficient communication], should be a subgoal

of the current counter-part of its parent goal, [Support over network]. This process

terminates after exploring all the subgoals of any goal which matches any of the current

goals or has been incorporated into the current decision.

Once it has been decided which of the goals are to be incorporated into the current decision,

all the objects (such as claims, counter-claims, questions, and answers) that are linked to

those goals and their relations (e.g. Is A SubgoalOJ, Suggests) are marked as potentially

relevant because they tell us something about the goals that have been matched to the

current goals.

Type II Rationales: Alternatives, their relations, and argwnents about them

Once additional goals have been matched and introduced, the PM helps the user retrieve

relevant alternatives. Again, assuming that the PM is proceeding from the top-ranked past

decision, all the alternatives in the past decision currently being considered are shown to the

user. The underlying assumption is that if the past decision had enough requirements in

common to be considered, the alternatives considered for that decision might be potentially

relevant for the current decision. In our example, the alternatives considered in the past

decision are: [User Interface Management System], [Extensible Interaction Manager], and

[NeWs style].

97

For each of these alternatives, the user can indicate that:

(1) the alternative matches one of the alternatives in the current decision,

_______ (2)_the-3.ltemativ.e_does--flOLmatc~any_oLthe~xisting_altemativ~s,~utJ~r.elc¥ant,jn " __ _

which case it is incorporate into the current decision,

(3) the alternative is irrelevant

Continuing with our example, the user examines the three alternatives and decides that

[User Interface Management System] mat~hes the current alternative, [IM], at least enough

to want to see the rationales about it. Furthermore, although [Extensible Interaction

Manager] does not matching any of the current alternatives, the user finds it an intriguing

possibility and marks it as relevant.

For each of the alternatives to be incorporated into the current decision (Le. the case 1 and 2

above), the PM tries to determine whether its sub-alternatives should also be a sub

alternative of the matched current alternative. The algorithm is essentially the same as that

used for determining whether subgoals of a matched goal should be a subgoal of the

current goal that it matches. After all the alternatives judged to be relevant are deternlined

this way, all the objects linked to the matched alternatives and their relations are marked as

relevant because they are arguments, questions, answers, or procedures used to produce

the answers about the alternatives matched to current alternatives.

Type III Rationales: Evaluations of alternatives with respect to goals, and arguments about

them

Once the goals and the alternatives to be included in the current decision have been

determined, the PM brings with them all the objects such as claims, questions, and

procedures, that are linked to the Achieves relations between chosen alternatives and

98

chosen goals. These objects represent the deliberations in the past decision about how well

a given alternative achieves a given goal. In Fig. 6.8, the claims shown in bold boxes are

all potentially relevant rationales of Type III because they are all linked, directly or

indirectly, to the achieves relation between the matched alternatives and the matched goals.

Type W Rationales: Decision Problems, Their Relations, and Arguments about them

After having extracted potentially relevant parts from a past decision, the PM presents the

user with a larger picture of how that decisIOn was related to ~ther decisions. This larger

picture would be useful only if the past decision itself, as an instance of Decision Problem,

matches the current decision problem, not just when some of its goals match some of the

current goals. If they do match, they should appear in the match list for the goals between

the two decision problems because Decision Problem is a subtype ofOoal (cf. Chapter 3).

In our example, the two decision problems, [Which interface for NEXUS?] and [Which

application interface for WINO?] appear in the match list.

If the past decision problem matches the current decision problem, the PM presents each of

the subdec"isions of the past decision to the user, and asks if they should be subdecisions of

the current decision. Again, the user can indicate that:

(1) the subdecision should match one of the existing subdecisions

(2) the subdecision does not match, but should be made into the subdecision of the

current decision

(3) the subdecision does not match and is irrelevant.

99

Extensible
Interaction

Manager

NeWs style

achieves ----..-

rl"b

ProgramfT1lllr can
neglect a clean
separation btw

his customlzatlon
code and the

application

CJ""""""'c::::J ~

achieves

Jf
.uppart.

achieves

denl •• /

Some 1M's
support direct

rnanlpulatlor: this
way,o.g.
MacApp

quail fl ••

allow
application
to define
Its own

datatypes

achieves achieves

rI~ ,"--:/
CJ/"" ~ ,......., ~

achieves

c!J/
,

achieves

a,)

oS
C .-
~

rIl
a,)

~
>-
~
a,)

..c
C .-
C

~
..c
rIl
~ ---8-a

'0 8 rIl _
a,)

t;
C
o
·E
.....
CII')
t':S •
>\0
a,) •
-Oil
~ti:
~C -.-~~ . .= a,)
c;.::::: £a
8.~
a,) ~

~~
rIl

00 ·c \0 a,)

~1S :su ;a

If the sutxlecision matches a current subdecision (case 1), the PM records the match so that

the PM can later help the user to retrieve useful rationales from the matched subdecision to

the current subdecision. In the second case, the PM simply makes the subdecision a

subdecision of the current decision. In the third case, the subdecision is ignored. As long

as this process yields a subdecision in the first two categories, i.e. as long as there is a

subdecision that matches or is to be included as a subdecision of the current decision, the

PM recursively performs this process depth-first until there is no more subdecision

matched or relevant. In that case, it pops back to the higher level list. and asks about the

next decision problem in the list.

Adapting and Linking retrieved structures to the current decision

So far. I have described how the PM helps the user extract potentially relevant rationales

from a past decision. These rationales, however, may contain information that are nutdated

or too context-sensitive that they would not be relevant to the current decision as they are.

The PM helps the user to adapt them for the current decision in the following way.

The PM places the rationales judged to be relevant in a new viewpoint. Viewpoints are

discussed in Section 6.3. In the present context, a viewpoint can he considered as a

working space into which copies of the objects are placed. Hence, copies are made of all

the objects in the current decision. The objects that make up the extracted rationales are

also copied. and related to the copies of the current decision objects.16 For example, the

16 Although this stage is described separately for conceptual simplicity, a fair amount of adapting and
Hnking actually already took place while in the course of the extraction process described above. For
example, when the system presents a subgoal of a matched goal and the user confirms that it should be a
subgoal of the matched current goal, the subgoal is linked to the current goal. Hence, what is described
below is the final adaptation and linking process, not to imply that they do not take place before.

101

goals from the past decisions that were detennined to be the subgoals of a current goal are

copied, and these copies are made subgoals of the copy of the current goal. The user then

examines this copy of the current decision augmented with the extracted rationales,

modifies some of them, rearranges them, or deletes them. For example, the claim, [Mike is

familiar with the interaction manager], that supports the claim, [1M achieves the goal

Reduce development cost], is deleted because Mike is not a member of the current group.

Also, the claim, [Clean separation between wm and application], that supports the claim,

[1M achieves Is portable], is made also to support another claim, [1M achieves Common

user interface]. After the editing is done, the user installs this viewpoint as the current

version, using the version mechanism of Object Lens discussed in Section 6.3. Figure 6.9

shows the final result of incorporating into the current decision the adapted rationales from

the past decision.

102

... ..

Is a good
alternative

for

Is a good
alternative

for

1
Toolbox

/
Is a kind of

I
Extensible
Interaction

Manager

Requl
appllcaUon to
work a' • low

l4iilv'lil~

achlavliI&

Oltlleu" 10 ~ d&n~/
;f supports.

aupports /
1/ e I;0 0 ·1

create • Ie.o'bo.
t"an an 1M

I

achlavaM

!
danlas

I
i ;hlav ..

denl ...

/'
Cue.amIZ.llon

Introduce
varlaCiona

achlave.

A
eupport .. ,

No. _ry good
bacauaas:ha
.ba.r.cllon

leval h_ nOi
~I_n much

~1~~ 0EaL ~

achlavoa

.;r
auppons

/'
Provldo. the
1I ... lblllly '0

Implement
direct

manlpu .. tlon

achieves

c.n halnclle
_mantic

I_bee" h
low overhead

A
euppona

~

~ auppon.

Appllca.lon
progr.mm
can ovet'rlda
IMo. declalona

~ ~

.£5
t'!:I--
~ ~
0--

-::: ~ e"tl
..... c

~§
,£U e 0
o-E
~~
0'1 --\Qas
CI,)~ sllb
bO~

,;'" C ---

t<1 o -

Path:
bloom-picayune.mit.edu!bloorn-beacon!gatech!swrinde!mips!spool.mu.edu!cs.umn.edu!aslakson
From: aslakson@cs.umn.edu (Brian Aslakson)
Newsgroups: comp.sys.mac.comm
Subject: Re: Looking for Mac mailservers ...
Message-ID: <1991Sep19.182226.24739@cs.umn.edu>
Date: 19 Sep 9118:22:26 GMT
References: <1CE00001.p050ub@avalon.caladan.wa.com>
Organization: :noitazinagrO
Lines: 33
Cc: minnella@acsu.buffalo.edu

stui@avalon.caladan.wa.com (Stuart Burden) writes:
>In article < ... >, minnella@acsu.buffalo.edu (Todd V. Minnella) writes:
> I Hey! My father recently got BITNET access at his college. Does anyone have
> I a list of Macintosh-related mailservers accessible through BITNET?
> I (Ideally, the list would include instructions and addresses.)

Get Eudora get Eudora get Eudora get Eudora get Eudora!!

Try it, you'Ulike it. You will need a POP3 server, say popper from
berkeley. Unfortunately I'm not sure how to get things via e-mail,
but do this:

"One way to get access the archives is through the BITFTP server
at Princeton. Send a message to bitftp@pucc.bitnet with the body of
the message containing the single word HELP. This should get you
more information, and give you access to any archive site on the
internet." --jwright@cfht.cfht.hawaii.edu from comp.virus

Eudora is available from ux1.cso.uiuc.edu in the directory mac/eudora,
popper is available from ftp.CC.Berkeley.EDU in the pub directory
popper-version.tar.Z, there is also IUPOP3 from Indiana University.
You can get it from the /pub/iupop3/v1.6a directory at logos.ucs.indiana.edu.

popper is a unix implementation of the POP3 protocol, iupop3 is a VMS
implementation of the POP3 protocol based in part on popper.

I think this is what was being asked for???

Brian Aslakson
brian@cs.umn.edu (mail)

aslakson@cs.umn.edu (talk)
mac-admin@cs.umn.edu (thru 9/22/91)

6.2 Dependency Management

In decision making, as in other tafKs, it is important to maintain the dependencies among

the objects being deliberated. The importance of the goal, portability, for example,

depends on the outcome of another decision about whether to turn the software into an

external product. Or, as in the scenario, whether an alternative should be seriously

considered at all depends on how well it achieves the goals which are necessary to achieve.

A rationale management system must be able to represent such dependencies in decision

making and manage their consequences.

6.2.1 The Scope

A dependency relation in its most general fonn can be characterized as a pair, (State 1, State

2), which is to mean that when State 1 is true, State 2 should be true. Thus, the

dependency relation in our first example above can be characterized as (the decision has

been made to make the window manager an external product, the importance of portability

is high). The second example is characterized as (the chance of an alternative achieving a

necessary goal is low, the evaluation of the alternative is below the threshold). Hence, the

most general way of managing dependency is to have the system enforce the relation

between the states specified as a pair.

104

However, this most general form of dependency specification is computationally expensive

if the system is not given further information about how to look for a state or how to

achieve a state specified. The sy;.::tem would have to constantly watch out for a set of states

and would have to be intelligent enough to know how to produce the consistent states. The

following describes three ways in which this job is made easier. One is described

immediately below. Two others are described by discussing the two versions of the

dependency manager in SIBYL.

One way to manage dependency is to restrict the scope of dependency management to a

specific kind of dependencies. A Truth Maintenance System [de Kleer 1986; Doyle, 1979;;

Lubar 1991] is an example. The job of a TMS is to make sure that when a claim is true, the

other claims have truth values that do not produce a contradiction. Thus, the dependency it

has to maintain is restricted to that among the truth value attributes of the claims. This type

of dependency management, where possible, is clearly desirable for several reasons. The

tasks of monitoring a state and producing a consistent state become easier because of the

restricted scope. Secondly, a reduced scope often allows us to discover more invariant

dependency relations that the system can support. For example, the invariant relation that a

TMS supports, i.e. logical consistency, makes sense only among the truth values of

claims. Thirdly, such invariant relations, if found, can be hardcoded into the system and

can be more efficiently managed. In the present research, there was an attempt to build an

evaluation manager, whose job is to maintain the dependencies among the evaluations of

claims. Although this attempt produced more research issues than results so far t7, J hope

to continue exploring ways to produce dependency managers of restricted scopes.

17 SIBYL at one point provided an interface for using existing belief management schemes such as Baycs
[Duda et al. 1976] or Dempster-Shafer [Shafer & Logan 1987; Shafcr J976] , to manage dependencies
among the evaluations of the claims. However, subsequcnt attempts to us~ thi!l inLcrface havc revealed
many problems that this part of SIBYL has not been scriously used. F(ir (~~ample, the assumptions
underlying the existing methods -- such as the mutual exclusiveness and exhcluslivcncss of the hYPOlhcscs
and the conditional independence of the evidence under a hypothesis -- were of/en nol satisfip.d in the

105

Although it is desirable to provide dependency managers for specific kinds of

dependencies, we also need a general purpose dependency manager that allows the user to

maintain dependency relatlons that are not instances of the specific kinds. For example, the

dependency relation, "if the price of 1 M SIMM goes down below $40, then the importance

of the goal "keep the memory requirement below 4 Meg," is too specific ,0 be hardcoded

into the system. The user may also want to enforce a dependency relation sometimes but

not all the time, e.g. inactivating an alternative that does not satisfy a goal which is

necessary to achieve. The dependency manager of SIBYL, described below, helps the user

to maintll.in dependencies in a general way by allowing him to specify explicitly the kinds of

dependencies to be maintained and how.

There are currently two versions of dependency manager in SIBYL. One makes use of a

slightly extended version of the Object Lens rule system. It provides a high level interface

for the user, but is limited in many ways. The other version is more powerful, but does

not provide as nice an interface. In the next two subsections, these two versions are

described in terms of what kinds of states they allow the user to specify and produce.

decisions that we worked with. Another problem was the difficulty of computing the evaluation of an
alternative with respect to a goal from its evaluations with respect to the subgoals of the original goal when
the subgoals can be related to the parent goal in innumerable ways, e.g. exhaustive, partially overlapping,
or mutually exclusive. EliciHng such information from the user seems to require the precision that the user
does not have or finds it ~oo expensive to produce. There were other problems such as eliciting an
evaluation measure for a claim in the first place, ensuring consistency among the evaluation measures
produced by different users, and convincing users to accept automatically computed evaluations. These
problems made me focus on the qualitative ways in which SIBYL can help the user assign evaluations, for
example by allowing them to make an evaluation in terms of a series of local evaluations through the use
of submatrices (cf. Section 7.4), rather than on the autonomous management of evaluations.

106

6.2.2 Implementation I

One version of dependency management is implemented using a slightly extended version

of the Object Lens rule system.

The Object Lens rule system provides the following features [Lai et al.1988].

• agents which can monitor certain types of changes and invoke rules associated with

them. The kinds of changes that can trigger an agent include:

NEW ITEM: a new item appears in the folder specified in its Apply To field, i.e.

in a given collection of objects. For example, a new question object is

created.

CHANGED ITEMS:: an item in the folder specified in its Apply-To field changes

its attribute, i.e. the evaluation of a claim changes

AT MIDNIGHT, AT NOON: the clock hits the specified times

STARTIJP, QUITTING: when a session with Object Lens starts or ends

• rules which car. be invoked by an agent or by the user.

The if-condition of a rule is specified as a description of an object which can embed

other descriptions. Figure 6.10 shows an example. A description stands for all

the instances which satisfy the description. Hence, an embedded description

allows the user to specify all the instances whose attributes are filled by any

instance that in tum satisfy embedded descriptions (e.g. any achieves relation

whose associated goal, in tum, has the Importance attribute value, Necessary).

The then-actions that can be executed when the if condition holds are the following.

MOVE: moves all the objects that satisfy the description in the if condition to a

folder,

107

COPY: copies all the objects satisfying the if description to a folder COPY ITEM:

copies all the objects in the specified field of the objects satisfying the

description to a folder

CUT: deletes all the objects in the specified l1eld of the objects satisfying the

description to a folder

ADD VALUE: adds the specified value to the specified field of the objects

satisfying the if description

SEND: sends a message to the snecified addresses containing all the objects

satisfying the if description

SEND ITEM: sends a message to the specified addresses containing all the

objects in the specified field of the objects satisf) ing the description

U sing these features, the user can specify certain kinds of dependencies easily. For

example, Fig. 6.10 shows the specification of the dependency that any subgoal of a goal

whose importance is low should itself has the importance low. The features of the rule

system also make it easier to manage dependencies because both the state to be monitored

and the state to be enforced are highly restricted. The state to be monitored is specified in

the triggering condition of the agent and the if part of the rule associated with the agent.

The triggering condition specifies when to iook for a change, the Apply To field specifies

where to look for the change, and the if-condition of a rule specifies what types of change

to look for. The state to be enforced is specified by specifying the action that will produce

the state.

108

Figure 6.10 The specification of a dependency between the importance of a goal and the
importance of its subgoals, which is set to low when the importance of its parent goal is
low.

However, because of these restrictions, there are many dependencies that cannot be

expressed, including our examples above. The first example, "if the chosen alternative of

the decision problem, [Should we make the window manager an external product1, is

[External Product], then set the importance of the goal [Is portable] to HIGH", is not

possible to maintain because the only "then" action that can change an attribute value. ADD

VALUE. requires that the object whose attribute value is modified be the same as the object

that satisfies the if-description. To overcome this limitation, the Object Lens rule system

)09

has been extended by adding the action, SET VALUE, which allows the specified attribute

of the specified object to be set to the specified value. With the SET V ALUE action,

managing the dependency such as that in our first example becomes possible, as shown in

Fig. 6.11.

SfrIdJ

r&1 Ch<rIged i tellS

OAt noon

DOuittlng

If Then

Others (Others

d 1M! Nt! the II j ndoe
Cli'I ex ler-ila I o.""Oduc t?

SETURLUE

Figure 6.11 The importance of the goal [Is portable] is specified to be HIGH when the
window manager is decided to be an external product.

However, thr ; version of dependency manager stiH has many limitations. In particular, it

cannot manage dependencies that involve a state whose specification requires comparison

of two objects. For instance, the dependency in our second example cannot be maintained

110

because in order to say "if any achieves relation whose goal has the importance, Necessary

and whose evaluation is Low, then the Is A Good Alternative For relation between its

alternative and its decision problem should have its Evaluation set to Low", the system

needs to map the alternative and the decision problem in the second state to the alternative

and the decision problem of the achieves relation in the first state. This version of the

dependency manager does not allow us to do that because the rule system does not allow

variable binding. Furthermore, it cannot manage dependency whose state involves

monitoring a conjunctive presence of values in a given field of an object. Those states that

involve disjunctive presence of values in a given field of an object can be expressed, but

only awkwardly by creating a separate rule for each disjunctive condition.

6.2.3 Implementation II

In order to overcome these limitations, another dependency manager has been implemented

that uses a full-fledged rule system.18 This rule system allows the user to specify states

involving comparison of objects, conjunctive and disjunctive specification of values for a

given attribute, as well as change or add attribute values of any object that are bound to

variables from the if condition. In particular, Fig. 6.12 shows the way in which the

dependency in our second example is represented. Although the states that can be specified

in this version of the dependency manager are quite general, the system is helped in

managing them by the specification of the types of the objects involved in the if-condition.

Unfortunately, this version of dependency manager achieves these features by allowing the

user to use, in effect, any Lisp construct, although some syntactic sugars are provided to

18 This version of dependency manager is implemented by extending a rule system built by Kum-Yew Lai.

111

make the specification easier. Thus, to specify these depender.~ies might require

knowledge of Lisp from the user. Also, agents have not been implemented in the version

of SIBYL that implements this version of the dependency manager. Therefore, the rules

have to be invoked manually by the user. The dependency managers currently

implemented in SmYL are temporary solutions that fulfill the minimum requirement. A

future version of dependency manager is planned that integrates the features of the current

two versions based on the paradigm of query-by-example [Zloof 1978].

(AND (TYPE ?X ACHIEVES)
(TYPE ?Y IS-A-GOOO-ALTERNATIVE-FOR)
(IS (VALUE-OF (VAlUE-OF?X 'GOAL) 'IMPORTANCE) 'NECESSARY)
(IS (VALUE-OF ?X 'ALTERNATIVE) (VALUE-OF ?Y 'ALTERNATIVE»
(IS (VALUE-OF ?X 'EVALUATION) 'LO~»

ITHE~ (SET-VALUE?Y 'STATUS 'INACTIVE)

.' '.,. .' • ~ ~ .' ~ _. '. ,...... ~.' ~. • • ..: .. • , • ... ,. •• I. l' . • ~. ..,: •

Figure 6.12 Specification of the dependency that if the chance of an alternative achieving
a necessary goal is low, the alternative should be inactivated.

112

6.3 Viewpoint Management

In decision making. it is important to represent multiple decision states and compare them.

The following characterize some of the situations that require representing multiple decision

states. In the parentheses are example questions that illustrate why representing decision

states in that category would be useful.19

• decision states that have the same set of objects but with different attribute values.

(e.g. What if we reduce the importance of portability? What if we consider this claim

more plausible?)

• decision states that have sets of objects that are subset or superset of the others. (e.g.

What if we leave out the goal of supporting naive users? What if we include this

alternative? What if we did not consider any claim that depended on this fact?)

• decision states that have overlapping sets of objects. (e.g. What if we assume this

answer rather than that one? What difference would it make if we assumed this set of

subgoals rather than the other?)

19 These categories are based on two dimensions along which decision states can differ, one temporal and
the other a sort of spatial. The spatial dimension refers to the set-theoretic relation among the objects in
the decision states. There are three possible relation between two decision states: the same, superset (or
subset), intersecting. and disjoint. The disjoint case is not very interesting. Along the time dimension, a
decision state can precede (or follow in time) another. That distinction not very interesting per se, but only
when combined with the set-theoretic relation. For example. if a decision state is a superset (or a subset) of
another and follows it, the first elaborates (or simplifies) the second.

113

• decision states that are historically related, i.e. ones that have been generated from

another in the class. (e.g. What were the decision state last month? Can we revert

back to what we had before we introduced this alternative?)

In SffiYL, these multiple decision states are represented as Viewpoints. The Viewpoint

Manager in SIBYL helps the user to create, store, retrieve, compare, and merge

Viewpoints.

6.3.1 Representation

A Viewpoint is a first class DRL object with an additional attributes, Elements and

Viewpoint Relations. The attribute, Elements, points to the objects that are in the

viewpoint. Since the goal of a viewpoint is to capture a decision state, it usually points to

_______ the..decisioaproblem, whichlatllffi-points_Jo the objectsJniLsuch..as....goals • ..Bltemafu.res. _____ _

and arguments.

The field, Viewpoint Relations, points to the relations that link this viewpoint to other

viewpoints. So far, I am experimenting with the following relations among viewpoints 20:

20 When I say "experimenting" with these relations, I mean that these relations are not DRL types yet, but
implemented as instances of the general type,ls Related To. They are not built into DRL yet, because it is
not clear yet whether they are the right sel of relations for the task of managing rationales. One way to find
out is to experiment at the level of instance.s That is, when we want to represent the relationship Is A
Subset O/between two viewpointg, we create an instance of the more general built in type, Is Related To,
and but fills its Keyword field with the keyword Is A Subset Of. This way, we can try with different sets
of relations easily without prematurely committing ourselves. Also, we can change it more easily
because it is easier to change keywords than types. On the other hand, we lose some computational
opportunities, like having additional attributes if needed. However, we can still define much of the
computational operations to the extent that it is still an instance of the closely related type, Is Related To
and to the extent that they can be defined on the keyword (e.g. collecting allIs A Related To relations
whose keyword is Is A Subset Oland which is related to the current viewpoint)

114

Is the next version of (historical)

Is a subset of (subset)

Has different weights on goals (same structure with different attributes)

Has different evaluations on claims (same structure with different attributes)

Has alternative assumptions (overlapping structure)

Since the goal of viewpoints is to represent and compare multiple decision states that often

share objects, it is important to make clear in what sense objects are shared among

viewpoints. On the one hand, objects shared by different viewpoints (e.g. the goal,

portability), need to preserve their identity across the viewpoints. Otherwise, viewpoints

cannot be compared because they are about different objects. On the other hand, an object

shared by multiple viewpoints should be able to have different attributes in different

viewpoints. Otherwise, viewpoints would not be able to capture situations of the first kind

above (e.g. different weights on the importance of portability) nor the last kind (Le.

historical versions). Furthermore, given that in situations of the third kind (e.g. argue

under an assumption), a viewpoint is used to confine the changes to an object to the local

context, an object shared by multiple viewpoints needs to have different manifestations.

Hence, in SIBYL, an object shared by multiple viewpoints is represented as a copy in each

of these viewpoints, but all the copies of a shared object share the same identifier. The

implementation of this representation is discussed in the next subsection.

Because viewpoints are first-class objects, we can relate them and browse through them.

Figure 6.13 shows several viewpoints and their relationship. Furthermore, viewpoints can

appear as alternatives in a meta-decision problem. Figure 6.14 shows a decision problem,

"Which weights on goals?" In this example, viewpoints 1 and 2 capture the same decision

state except that the importance assigned to the goals are different. The goals for this

decision include meta"level concerns such as "Err on the safer side" and "Consistent with

115

our corporate policy" that may be important in deciding how important the object-level

goals (e.g. "Support window manager over a network", "Implement direct manipulation")

should be.

6.3.2 User Interface

When the user wants to create a new viewpoint, he creates a new instance of Viewpoint, as

USIV ' by double-clicking on the type in the type window, and inserts a link to it in the

Viewpoint attribute of the decision problem. The user can also relate the new viewpoint to

other viewpoints by inserting in its Viewpoint Relation attribute links to other instances of

the Is Related To relation. For example, if the user wants to indicate that the new

viewpoint has different weight assignments on goals from the one in the viewpoint that the

decision problem was previously associated with, then he inserts in its Viewpoint Relation

attribute, a link to an instance of Is Related To which relates the two viewpoints and has its

Keyword attribute with Has different weights on goals.

FOLDER: Dlewpolnts Browler
(Say.) L S.nd) (O\4l11oat •.••) LOttItr"')

~. IUlupolnb Browser ~

~ontent3 Insrlistlnq'. night ,-Uiewpolnt R. ~ ~as dl rrerent .. elahts on DOals: .. ~.~. ·"···Patlent
"1;.1- ._ •

Initial UD\ Ilr ···'·!Engl.D!!rs · night I .,
, -----.. - - .. 19' tbout PortGb' II tu I -

<> 0
. .

FIgure 6.13 A browser dlsplaymg vIewpomts and their relatIonshIp

116

DECISION PROBLEM: Which wei~hts on ~o61s1
(Show Matrix) (Say •) (S.nd) (Oth.,.s :].

IlNallle • ~ich .eights on goals?

~reator ~j in I
~ate ~6/20/91 19: 1S:SS I
!Ako ~ I
I~oals I [Err on the saf.,. side] [Consistent wi th corporate

DOl leu)

IlfU ternatlvesB [Marketing's .eights] [Engineers' weights]

Istatus II]
Cells are showlno: Evaluation

~Qtrlx I fliGHT: Goal [Ccnsi5tent with c[Err on the sQfer Q
POUN: Alternative

\

[Engineers' weight H

U1arket I ng' s we I g~ ~- L

K)

~iewpoint llll~.III.1 1IIIIIIIIiIUHI I
ISubdec I s I ons~ I
~eywords ~ I
IText I So far. the engineers and the ~Qrketing depart~ent have

assigned different laportances on goals. The
differences are captured in the two viewpoints shown as
alternative,; here: [Engineers' weights) and [Marketing's
weightJ. ,41ich weights should we adopt? Can lie COllIe
up with an alternQtive that is a co~promlse?

Figure 6.14 A meta-decision problem about which of the viewpoints,
[Marketing's weight] and [Engineers' weight], to adopt as weights
on the goals.

117

~

With a link: to the new viewpoint in the Viewpoint attribute of the decision problem, the

user executes the action, Save Viewpoint, from the menu. The viewpoint manager then

makes a copy of the decision problem as well as of all the objects that it contains while

preserving their id's. This new copy of the decision problem would be the same as the

current one except the new viewpoint that its Viewpoint field points to. Any change or

addition made to this viewpoint would not be visible to other viewpoints, and the objects

that belong to different viewpoints, including the decision problems themselves, can be

examined side-by-side. as well as saved and loaded independently.

I will illustrate this process by going through how the example in the scenario is actually

implemented. Suppose that the user wants to consi~er the decision problem without

portability. First, if he has made any change in the current viewpoint since the last time that

it w~,s saved, he saves it again. Then he deletes the goal, portability, from the current

decision, which will automatically delete the corresponding column in the decision matrix

as well. Then he creates a new instance of viewpoint, specifies its name to be "Without

portability", and inserts a link to it in the Viewpoint relation of the decision problem. Then

he chooses the Save Viewpoint action to save the now current viewpoint. Figure 6.15

show the viewpoint and the relation created, and the two decision problems under the old

and the new viewpoints. Now the decision problems in the twe> viewpoints can be

compared, added to, modified. and saved independently of each other.

118

Sa"e

I Creator

L2!!te I

IElg ... t.

I Vl.mlnt fI.lations

IK!I,!.ords

I Creator

IDat. I
1].21 •••

!Evaluation

IAGent]

IPatl.nt

[Keyuords

IT.xt I

OUier.

lo-.ator

[Dat.::J

~1~~~I~~~~;;~II;~;tUI;~;===~"I~IS I
Interfac. for UIHO? 21

k...,ln

05/30/91 14144/23 5/26/g, 11/32/12

lReductI INp t cos t HSupport
IICInU UI stu I_I

(Is a sublMt ofl IAI t_matlves lIHI (Toolbox I

Thill viellpOint
the r..ult of
the goal, (Is
fr'Oll the 01" I!ill
.aclslon probl

lUI u-.t portablll till

lin tial vptJ

1 SubOeclslons

(status I unresolved

~------------------~ II. A SUbdllCl.l~ Of] Itbu best design "'IHO, our
window lIanaor? J

T_t this dllClsl~ Is dlfferMl
fr'Oll IUhI~ ~11~tion
Int_fac. for LlltIO? 1 I In
Its del.tion of the gool,
lis portable!.

~... • ~ • :. .' • • " Ill' _ " • " .~:, ••• •• ~. ..' •

. . ~ , ' '. , . : " : : ~. : ' .' ."
r,. • _ • -" '. • .' •• ~ .',', ~ " '. I

, - ,," "~"o • " • "

. .' ~.,' . ". .
DECISION PROBtEI'4. Which II IICIIUOR loterl

SM. ttatrix Sa". Ot:.~. ;:

I Creator ol-J In

l@iO] 5/24/91 23/37/22

IGoals I

••••••• .. Cfllternallv ..

II s portab I. JlReducI8 dvpt
costl ISuooort IICInU UI
IInJ (Toolboxl

SaYe' Otllows I SUbOec I sl_

1':Crea=:t:or=~====~o='-~J~'~n~~~~~~::;:I! Status I

100t.::1 OS/24/91 12/02/14 lis fI Subdeclslon Of

IE I Menu IiliiUhhili;;ehhcapp;p;iliil;ca;itUI on;;-==I"I K.",..".ds
Interface for l.IIrtO? 1 I

!VI!!polnt Ralatlons lis a subs.t ofl IText

IKyords

£i!XD

unresolved
IHow but design LlIHO, __
.Indov ... noaer?l

There ere dl H_t NIlS to
IIGkI8 the 'aatur .. of a
.1 ndov .anag4Ir CI\IQ II Db I. to
appllcaU_. For-pl.,
tnr. could be a strict
obstracUon ICIIJ*" or I."

Figure 6.15 Two viewpoints, one of which is a subset of the other. The ftrst viewpoint,
[Without portability], contains the decision problem that is derived from the original
decision problem by ignoring the goal, [Is portable]. The latter dt>dsion problem belongs
to th~ viewpoint, [Initial vpt], of which the viewpoint, [Without portability] is a subset.

119

6.3.3 Implementation

As discussed above, an object shared by viewpoints needs to be both the same and yet

different in some sense. This is done by using two identifiers, object id and version id. for

an object, as consistent with the Object Lens mechanism.

In Object Lens, associated with an object are two jdentifiers: object id and version id. The

object id is created when the object is created, it is assigned a unique id that is a

concatenation of a time stamp and a machine name. The object id does not change

throughout the lifetime of the object. At the same time, it also gets a version id which is a

timp stamp. The version id changes every time the user modifies the object and is saved or

sent to other users.

This version mechanism is extended so that when a new viewpoint is created, all the

objects in it, i.e. those pointed to in its Element field, keep the object id's as they have in

the current viewpoint. When the viewpoint is saved using Save Viewpoint, however. all

the objects get new version id's whether they have changed or not. Hence, an object

shared by multiple viewpoints has the same object id but different version id's. This way,

an object is able to maintain its identity across viewpoints through its object id while it can

be changed locally within a viewpoint without affecting its counterparts in other

viewpoints.

120

6.4 Other Services

In this section, I describe the services of SIBYL that are not captured by the three

categories described in the previous sections. The services described below, except the last

(Summary and Explanations at various levels), use the various features of Object Lens

unmodified, some of which have been di!tcussed in the previous two chapters. The

purpose of the following discussion is to categorize and make salient Ihe services "hat these

features are put to use in the specific context of SIBYL.

Bookkeeping

smYL helps the user to keep track of the rationales across sessions (Problem Category

WI) by retrieving relevant objects of interest. Using the Object Lens rule system described

earlier, SmYL can show the user things such as:

• all decisions that are yet to be resolved

• all decisions that the current decision depends on

21 These Problem Categories refer to the taxonomy of the problems discussed in Chapter 1 that arise in
group decision making: reusing rationales across decisions (Type I). managing rationales across sessions
(Type 11). sharing rationales across groups (Type III). and qualitative support within a session (Type IV).
The Precedent Management address the Type I problems. The section below on sharing objects through
electronic mail (6.4.3) and the Viewpoint Management (6.3) address the problems of Type III. The
dependency and the viewpoint management address the problems of Type IV.

121

• all the arguments that have been created since the last time the user examined the

decision

• all the claims that support this claim

• all the objects that have been created by a specific person

• all the questions that have not been answered

• all the goals whose importance is HIGH

Furthermore, the user can examine them in different ways, using the display fonnats

provided by Object Lens. The user can see them as a table, as a network, as a matrix, or

as a calendar (if the objects include the Date field). Figure 6.16 shows a set of claims in

these dispiay formats. The user can specify which of the atoihutes should t~ ~hown in

each of these displays. For exa"lple, instead of or in addition to showing the claims lhat

each claim supports and denies as shown in Fig. 6.16a, the table could also display the

creator and the modification dates of the claims. Also, in the network display, the user can

specify any other relation to be shown, instead of or in addition to the Supports and Denies

relations among the claims as shown in Fig. 6.16b.

Monitoring and Notification

As described in the section on dependency management, the actions of the rules that an

agent can trigger include Send. This feature can be used to automatically send a message to

the users satisfying a specified description when a change of certain type occurs. For

example, the members of the current decision making process can be notified when any

decision that the current decision depends on changes or when an urgent question is raised.

Figure 6.17 shows a rule that illustrates our first example.

122

FOLDER: RII Clllims

I S.n) I Send J C~lto.I •... , I OIMr. I
I~ IAII Clal .. ~ Db.et T~ "- Is S-t..:l l1li :.0..1..:1 Ely PraS\oWOs ..

p..,'.,,3 iDi;~s ~~~,'tOO:Ia;s ... i~~ ~~:" .;I:',~ iO;':;ic:u~' to~l Q
ACHIEVES I" ACHIF.V£S ~I\I ICI...." _tlan f h.t..., doasn·t It _ Icr)
ACHIEVES Toolbox ACHI S HI lL.oa _troc:tlon I.
CUlIM this I. _ U .. CD

CUll" CI-. ~Uon fr
CUlIM Loa _troc:tlon 1..-
CUll" ~I"," to build
CUlIM Appllc:atlan dupt U lOnl\l If 1M provide<!
CUlIM Onl" If 1M prov'des
CUll"

TIIk ... 1 .. __ to
CUI 1M Difficult to ... ["-quI _ at ,
D.P.IM Requl C>OI"k at 10

RJ ~ IS OEHlm IIY Exp_lve .. OEHIES IThI. I " .. c

_IV

(a) Table Vlew showmg claims wuh the other claims that support, deny, or presuppose
them

FOLDER: RII Claims

I S.tv.) (Send) (0..;,110.' •...) I O'.hor. ~

I~ IAI' 1:1"· pd
OL. ec l TUMI ItaoN Creator w

iE!'3 ~~s"· ~~iEVE$ ~: ~i. e :I:j I~ 3n2/01 l:ol::t2. I, IQ 3/25/90 22:43:52
ACH I EVE!> Toolbox ACHIEVES ..-.ca d ol-j In 3/25/111 22:43:53
RCH I EVES I" ACHIEVES ~I\I pcrlGb ol-j In 3/25/111 22:43:53
fIOilEVES Toc.lbox f'JCH1 S Hlghl\l P ol-j In 3/25/111 22:13:53
CUlIM irl '0 build Susan 3129/111 12:40:4
CUll" T .. I ... _ to c:reat. Susan 3m/lli 12:41:~
CLAI" Oi fflc:ull to use i(ol"v 4/01/111 12:42: I
CUll" ~IICa\lon dupt lI .. red Hcnrll 4/02/11 I 12:40: II
CUlIM Is Is one tl .. c:osl tilchael 4/02/11 I 13:21:11
CUlIM Onl\l I f I" provides John 4/04/111 12:40:52
CUll" Requl _ al I ... 1_ Susan 4/04/11 I 12:42: 17

CUll" ODS ... OC .. oro - men", .. "/UG/,, ."': : 10
10

(b) Table view showing claims with their creators and modification dates

FOLDER: All Clllima

I Say. , (Stnd I I D\5IIIclI' I (O\Nrs I
t- IAII Clales I rQ

~ ·IZSRICII !t! I bEHlEs ~""""?fP!MiYS \e bUila1 _.,,':: =l~ ~ IB" -~~ -Pr .. _ses
.• >' .---.. {ffi I! ! I 90! tin SOil' -F'"tlent ,

~ a

~.I)iifjFVI t to H" 1----;.. "'qulr., iOdi pt IO! I,v.' I

~aku less --"

I" ACHII a ~:
,:

. Hlmlu DOI"tabl • .,;.--121 iZlttiUiiitliD Iml I ..

~

(c) Table VIew showmg claIms With therr relatIons

Figure 6.16 Different display formats displaying all the claims in a given decision problem

123

Figure 6.17 An agent with a rule that monitors the statuses of subdecisions and notifies a
person when they are decided

Sharing Objects through Electronic Mail

The users of SIBYL can send any collection of objects through electronic mail. As

described in Chapter 5, the users of SIBYL can use this feature to participate in the decision

making process through electronic mail by sending SIBYL objects, such as goals and

claims, to others. The user can also use this feature to send relevant rationales to other

124

people who are not participating in the decision. To illustrate with an actual example, after

SmYL has been used to discuss how to implement a feature in Object Lens (e.g. whether a

particular command should appear in the field menu or in the window menu), somebody

who was not aware of this discussion raised the same issue. At that point, the person was

sent the rationales that captured this discussion. Similarly, this feature of sending objects

can be used to support sharing rationales across different groups (Problem Category III).

Summary and Explanations at Variable Levels

SIBYL provides a summary of the curr("~t evalnations of the aiternillives at variOli~ levels

using its features such as decision matrix, submatrices, and argument browsers.

The topmost level summary, i.e. the overall ranking of the alternatives, is shown in the

order in which the alternatives appear in a decision matrix. This ranking is detennined by

the evaluation measures of the Is A Good Alternative For relations associated with the

alternatives. The alternatives whose evaluation measures have not been assigned yet appear

after those which have been fully evaluated, thus conveying the infonnation about the

ranking among the alternatives. The next level summary is the evaluation of the alternatives

with respect to each of the goals at the top level, i.e. immediate subgoals of the decision

problem. This summary is shown by the evaluations in the cells of the decision matrix,

which represents how well a given alternative achieves the goals shown at the top of the

matrix.

The evaluations at this level of summary are explained by presenting the user with the

rationales underlying each of these evaluations, which is shown by either a subgoal matrix

or an argument browser. If the user wants to know why an alternative has the current

----------- ._-- ------

125

evaluation with respect to a given goal, SIBYL displays the submatrix associated with the

goal. A submatrix shows the evaluation of the alternatives with respect to the subgoals of

the goal if any (Fig. 6.18). The evaluations in a submatrix explain the evaluation of an

alternative with respect to a goal in tenns of its evaluations with respect to the subgoals.

G081s High y portabl.

.• nportance H+

Rlternatiues
Interadlon M H

~oolbolc t1 H

GoeSs 11IIp1 nt direct IICWllpulatlon Support fOrlll-based UI

Importance ttECESSRRY H

Rlternntiues
Interaction M

ToolboH r1

to the subgoals for a higher level goal

H

H

The user can also ask SIBYL to display the argument browser associated with a given

evaluation in a decision matrix (Fig. 6.19). An argument browser shows all the claims,

questions, or answers, that have been cumulated and used to arrive at the current

evaluation. If the subgoals specify their parent goal exhaustively, that is if achieving all of

the subgoals is exactly equivalent to achieving the parent goal, then the evaluation of an

alternative with respect to the parent goal would be entirely specified in tenns of the

126

evaluations with respect to its subgoals. In that case, only those goals which have no

subgoals would have argument browsers associated with them. However, in general, a

goal is not specified exhaustively by its subgoals. For example, the goal (Suppon many

UI styles] is not achieved fully by achieving its subgoal [Implement direct manipulation].

In that case, the argument browser associated with a cell in a matrix displays those

arguments relevant in evaluating the alternative with respect to the goal which are not

covered by its subgoals. This way, SIBYL provides summaries of evaluations and

explanations of the summary at multiple levels of detail~

I Which application Interface for WING?
" Slao.. ~ • ..,lat"- Say. I S •• d 1 OU •• rs

Goals Is portable Reduce dvpt cost

Importance ~+ H

Rlternatiues

1M ~ ~ J
ToolboH rt /H

I
&

FOLDER: Rrguments IIbout IIM)lIcbieuing (Reduce dupt cost)

I Sm) (SeIIII) I D\f1icittM') (otIMrs)

I~ frguIcnts _t lin) aitving IReOa ~t cost!

~tentsl "lIt's cne tile cost I -RIIises
ies "

-lsSl4lPorted[l,!

illl to lxIi Id I -lsDenled~
-Is I)Ialified

In aiMS ReQ.te IMIt cosll1.§ lxIi I t cne befcre I -ls/MJered ,
hi' 5 the budClet for til i 5 JrO leel? JIioftIout I 4IIJ

Figure 6.19 An argument browser that displays the arguments responsible
for the evaluation of an alternative with respect to a given goal.

127

~

~

Chapter 7

Comparison to Related Work

Studies abound on decision making, ranging over multiple discipline such as management

[DeSanctis & Gallupe 1987; Huber 1984; Nunamaker et al. 1988; Sol 1987], computer

science [Duda 1976; Kraemer & King 1988; Pearl 1988], and psychology [Kahneman et

al. 1982; Kleimuntz 1990; Pitz & Sachs 1984; von WinteIfeldt & Edwards 1987]. Most of

these studies are relevant to the research on rationale management system. They all tell us

about some aspects of decision making which could be incorporated to improve the design

of a rational management system: a better representation, a better environment for capturing

the rationales, and better decision support.

While acknowledging the vast amount of potential research on decision making, the

comparison here will be restricted to the research on tools that support decision making.

128

The Ixxiy of related research is further restricted to the tools that capture both the problem

solving process and the rationales about the problem solving process. This restriction

leaves out, for example, tools such as expert systems that do not keep a trace of their

reasoning, but leaves in those expert systems that can explain their decisions [Davis &

Lenat 1982; Swartout 1986].

7.1 Systems that Capture Rationales

The tools in this category represent explicitly the process that they went through in making

a decision or in solving a problem in general. Presumably the rationales are captured to

provide some service, and have to be managed. Therefore. the tools in this category are

rationale management systems in the widest sense.

There are many dimensions along which these RMS's can be compared. For the purpose

of contrasting the present work with others, two dimensions are useful: the extent to which

an RMS requires formalization of the domain knowledge and the extent to which the

rationales it manages can be reused. By domain knowledge. I mean the knowledge of the

subject about which the decision is made. For example, if the decision is about a window

manager design, then the domain knowledge includes the knowledge about the objects

(window managers, applications, the components of a window manager such as graphics

toolkit), their properties, and their relations. Some RMS's require that this knowledge be

completely formalized. others are based on completely informal knowledge (i.e. natural

language text). and yet others allow mixture of formal and informal knowledge. The

difference in this dimension results in a difference in the range of tasks an RMS can

support and the services it is able to provide. RMS's can also differ in the extent to which

the rationales they manage can be reused.

129

Figure 7.1 shows four major categories of RMS's placed with respect to two dimensions;

each of them is discussed in more detail below.

Decision
Process

Support Tools

infonnal

Semi-Formal Rationale
Management Systems

Derivational
Analogy
Systems

Expert Systems
with Rule Traces

fonnal

Formality of the representation required

Figure 7.1 Classification of existing rationale management systems along two
dimensions: formality of the representation required and reusability of the captured
rationales

The first category includes systems that are usually labelled as group decision support

systems [DeSanctis et al. 1987; Kraemer & King 1988; Nunamaker 1991]. The primary

goal of these systems is to support and structure the process of group decision making.

Some of these systems, for example, provide better communication and presentation

support for group decision making, such as tele-conferencing facilities, large shared

displays, vote tabulation and display. These systems often record the sessions of their use,

either in form of audio or video output or natural language text. Other systems help users

130

.

to structure their ideas by providing support for brainstorming or allowing them to use

modeling techniques such as decision analysis or social judgement analysis. In these

systems, the representation of the rationales is more structured. such as in decision trees.

Although in either case, the recorded rationales can be reused if we are willing to spend a

lot of time and effort identifying the relevant parts of the rationales, the cost is often too

prohibitive to be justified by the resulting benefit. Nor is reusing rationales a goal of these

systems.

Then there are systems that capture rationales in completely formal language. Expert

systems that keep traces of their rule invocation are examples. The dOIr.ain knowledge is

captured by these rules and the objects that are referred to in their if and then conditions.

__ The trace~these1Ules are rationales in the sense th~y_ embodYihe reasons for the

decisions that the systems made. In fact, these traces are used to answer questions that the

user might ask, such as Why a certain action was taken or How an action was implemented

[Davis & Lenat 1982]. However, again, reusing these rationales is not a goal of these

systems, and their reusability is quite limited because reuse requires understanding of the

goals and the plans, not just a sequence of actions.

The third category includes systems that have been labelled as derivational analogy systems

[Huhns & Acosta 1988; Mostow 1989; Steinberg & Mitchell 1985]. Their primary goal is

to reuse the rationales captured in the process of solving problems such as design or

implementation of artifacts. Hence, these systems explicitly address the issues that arise in

reusing rationales such as adapting them to new context, and provides techniques for

resolving them. Although these systems allow the user to interactively guide the reuse

process, the rationales are generated and captured by the system in formal representations.

131

I

The reusability of the rationales in these systems are limited in several ways. First, the

rationales that they capture are limited primarily to the goal space. That is, the rationales are

usually captured in the fonn of plans executed or rules fired, hnd are indexed by the goals

that they achieve. They are reused when the goals that they achieve arise in the new

context. Few systems capture the rationales about the alternative, the evaluation, and the

issue spaces, that is the different alternatives that they considered in solving their probiems,

the evaluation measures that they used to choose an alternative among them, and the

relation between this decision and other decisions. That is not to say that these systems do

not consider different alternatives; in fact, rule-based systems use various conflict

resolution strategies to choose among the alternatives. Also, the backtracking that these

systems often do in the course of deciding which plans to apply constitute the issue space

aspects of rationales. However, these rationales are not captured explicitly, and therefore

cannot be reused. Finally, the rationales about the argument space is missing altogether

because these systems do not produce evaluaticns of the alternatives by arguing, but by

simply following an algorithm that is fixed and built into them.22

Another way in which the rationales of the derivational analogy programs are limited is that

the tasks that they support are fairly narrow in scope. First of all, these systems, or more

generally their approach, would not be applicable to domains whose knowledge cannot be

currently fonnalized. Even in domains where such formalized knowledge exists, such as

generation of grammar-driven tools (POPART [Wile 1983]) and a circuit redesign

(REDESIGN [Steinberg & Mitchell 1985], BOGART [Mostow & Barley 1987], ARGO

[Huhns & Acosta 1988]), the representations and the techniques used limit the use of these

systems to fairly narrow subset of these tasks. For example, ARGO, which is designed as

22 These limited rationales are not inherent in these systems, but are true of the current systems. We can
certainly imagine a system in this category that captures and reuse the rationales of the other kinds.
The reason why the existing systems do not points to the second reason why their reusability is
limited, namely the degree of formalization that they require.

132

=

a "domain-independent system for applying analogical reasoning to the design process". is

applicable to domains where strictly top-down refinement is possible. Also, in general,

automatic replay and reuse of rationales have yet to solve many problems such as missing

preconditions, the reference problem, localization, and context-sensitivity [Mostow 1986].

Furthermore, as Mostow notes in his survey of these systems, "Conspicuous deficiencies

[of these systems] include insensitivity to higher-level aspects of redesign problems [such

as environmental criteria or the cost consideration], and the lack of a retrieval method that

scales up efficiently to larger designs and design libraries." [Mostow 1989, p.172-173]

This limited reusability of the rationales produced by these systems stems from their goal of

providing as much automated support as possible, and the problems that they raise and

address are important ones relative to that goal. The fact nevertheless remains that there are

many problems for which managing rationales is important and that this approach taken in

the derivational analogy systems is not currently applicable to this task.

Another approach to exploring automated support is through incremental formalization,

namely to start with a base system that is practically useful and then gradually automate

parts of it as we in fact use the Eystem. The next category. which is labelled as semi-formal

rationale management systems and includes SIBYL, groups the tools that take this

approach. These systems use semi-formal representations, which allows informal

descriptions to coexist with or within the fonnal constructs that they provide. By letting

some parts of the rationales to be described informally and interpreted by human users,

these systems gain in the scope of the tasks that they can support and avoid the brittleness

in their support. As a result, the rationales they captDlc are general and highly reusable.

Since the tools in this category are most closely related to SIBYL in their goal and

representations, ~ley are discussed separately in the next subsection.

133

7.2 Semi-Formal Rationale Management Systems

The systems described in this section are most similar to SmYL in their goals and

representations. They all aspire to be practically useful and capture rationales in semi

formal representations. However, at the next level of detail, they are different in each of

the three components of a rationale management systems: representations, methods

proposed for using them, and computational services that are defined on the captured

rationales. These differences, in tum, lead to the differences in the reusability of the

rationales that they manage. The following discussion presents these systems and then

compares them to SIBYL.23 In particular, their representations are discussed and

compared in terms of the models developed in Chapter 3. Doing so makes clear what

components they decided not to represent explicitly and what the resulting consequences

are. The discussion is quite detailed not only because their comparison to SmYL requires

elaborating their details, but also because the discussion illustrates the rationales underlying

the design of DRL.

IBIS (Issue Based Information System)

IBIS was developed in [Kunz & Rittel 1970] to represent designers' argumentation

activities. One mIS variation is that used by gIBIS [Conklin & Begeman 1988], "a

hypertext tool for exploratory policy discussion. II Because gIBIS is most well-known and

23 An expanded version of the following discussion, which includes some other related representations,
like Toulmin's [Toulmin 1958], appears in [Lee & Lai 1991].

134

has demonstrated "industrial strength" [Yakemovic & Conklin 1990], we discuss glBIS

first. Other variations of IBIS include PHI (Procedural Hierarchy of Issues) [McCall

1987] and the one used by [Potts & Bruns 1988] for the rationale module in their

representation. They are discussed briefly following the discussion of gIBIS.

giBIS (Graphical Issue Based Information System)

Figure 7.2 shows the objects and relations that fonn the language of gIBIS. Figure 7.3

shows an example representation, in which someone rcilses an Issue such as where to put

the window commands. Positions are created that Responds-to the issue. Argwnents are

created to Support or Object-to a Position. An Issue can be related to other objects.

Generalizes

Specializes

Questions
Is-Suggested-by

Generalizes

Specializes

q J Supports
rosmoN " ... -----1

Objects-to

Figure 7.2 The vocabulary of gmIS

135

Replaces
Questions

Is-Suggested-by

Any node
type

OTHER

]) Gene~.ires
Spectahzes

ARGUMENT

CISSUE :::>
(POSmON)

I ARGUMENT I

responds-to

suggests

Expensive to build

Although U's expensive
objects-to to build, it is one time

Extensible
Interaction

Manager

./
cost. Once buill!, it will
reduce application

supports dvpmt coslll

We built one before,
though for a different
pladonn

Oean separation btw WID

and appliQtion makes the
WID highly portable

lis interaction ~tyle is
too rigid to implement
direct manipulation

Takes less work to create
a toolbox than an 1M

supports
. .--f Usually difficult to use I

obJKt5-to

supports

Low portability because the
abstraction level has not risen much

Requires application to
work at law level

Provides the Iliexibility to
implement direct manipulation

Figure 7.3 An example rationale represented in gmIS

suggests

Portability aaoss
devices, esp ..••

Hu not been
finalized yet,
but around

$40K

To support
manyUl

styles

The scope of the gIBIS representation depends on what an issue is. If we take an issue in a

very general sense to mean any question that takes a set of positions, then the

IssuelPositionlArgwnent structure can represent a fairly large part of the design rationale

spaces. The internal structure of these spaces, however, is not well differentiated in gIBIS.

136

The alternative space is repr=sented in gffiIS by Positions and the relation among them.

Since multiple Positions can be created for a given issue, gIBIS allows the representation

of multiple alternatives, thus offering at least the richness of our model 2. The only

relation, however, among the Positions that we can represent in gIBIS is the

Specializes/Generalizes relation, although there are other relations that can connect a

Position to objects of other types (e.g. Questions or Is-Suggested-By).

This relatively poor expressiveness in the argument space in gIBIS has several

consequences.24 First, you cannot qualify an argument. For example, we cannot indicate

that an Argument A is valid only if another Argument B is valid. Furthermore, since

relations are not claims, as in DRL, there is no way of saying that we agree with A and B,

but not that A Supports B. This is because Supports is not explicitly represented as an

object in gmIS and is not something that we can argue about. Being able to argue about

relational claims is important. One may agree with a claim but not that the claim denies

another claim. For example, the user may agree that the interaction manager is expensive to

build but not that this claim denies the claim that interaction manager reduces the

development cost because he believes that the reduction in the application development cost

will more than compensate for the initial cost.

There are also some things that gIBIS can say but only awkwardly. For example, in order

to express the relationship that one Argument supports another Argument, we have to

create an Issue that Is Suggested By the Argument to be supported. This issue is about

24 Whenever we say that a representation cannOl express some information or has limited expressiveness,
we do nol mean that people cannot infer that information from the representation. For example, we
keep a detailed enough record in natura1language of what happened, or even a video recording of the
whole design process, we can always retrieve the information that has ever been expressed if we work
hard enough. When we say that a representation cannot express some infonnation, we mean that the
representation does not provide constructs that make the information explicit in such a way that help
people easily see the structure or make it amenable to computational manipulation.

137

whether the Argument is right We next create appropriate Positions (e.g. "Yes" or "No")

that respond to the new issue, and then argue about these Positions. This way of

representing argument relations may lead to proliferation of objects. We might be able to

reduce the proliferation with an interface that hides the intermediate details. However, a

more serious limitation of this way of representing, as opposed to allowing claims to be

directly responded as in DRL, is that we cannot answer questions such as "Show me all the

arguments that respond to this argument." We might try to answer the question by

following the Is Suggested By link that connects the original argument and the many issues

that might be responding arguments. However, the Is Suggested By link is too general for

this purpose because it does not distinguish the issues that contain responding arguments

from that do not.

The criteria space is beyond the scope of gIBIS. This is a serious limitation for a design

rationale representation language. Since criteria are not explicit, we cannot argue about

them; we cannot represent the reasons for having these criteria; nor can we indicate any

relationship, such as mutual exclusiveness, among the criteria. Further, when criteria

change, there is no easy way to accommodate the changes. It is more difficult to isolate the

real disagreements among people because the criteria they use in their arguments remain

implicit The reusability of the rationales is also reduced because goals are important bases

for judging relevance, as discussed in the section on the precedent manager. The explicit

representation of goals can also provide modular representations of arguments (6.4) and

multiple viewpoints (6.3).

The evaluation space used by glBIS consists of some nominal categories such as

"Rejected" and "Chosen" assigned to the Positions. We could use finer categories, such as

"Waiting for More Information" to give more detailed information about the status of

Positions, Arguments, or Issues. However, a more sophisticated evaluation management

138

might require information that gIBIS is not able to provide because of its limited

expressiveness in the other spaces, such as how the criteria or the arguments are related,

how important each criteria is, and whether a claim is denied or only qualified.

The unit of the issue space in gIBIS is an Issue, and gIBIS provides several constructs for

describing the relations about issues. An Issue can Generalize, Specialize, Replace,

Question, and Suggest another Issue. In particular, as an issue or a decision often gets

reformulated and differentiated, the relations such as Replace and Specialize seem essential.

It would be nice, however, if we can somehow show whether a given set of relations is

complete or adequate.

DRL and gmIS have similar structures at least at a high level. Issue in gIBIS corresponds

to Decision Problem in DRL, Position to Alternative, and Argument to Claim. However,

as we have discussed above, gIBIS is limited in expressiveness. Therefore, DRL can be

viewed as extending gIBIS in several ways: an explicit representation of the criteria space,

a richer representation of the argument space, and the provision of an infra-structure for

derming evaluation measures. The gIBIS structure has the advantage of being simple, and

it is an empirical question what this simplicity buys us. The foremost criteria for a

language is not whether it is simple, but whether it is helps users accomplish their tasks.

An expressive language can be made easy to use with an appropriate user interface, but it is

impossible to make a usable language more expressive. Therefore, it seems that a good

starting point is to design an expressive language that is capable of providing more useful

services rather than one that is simple to use.

The method of using the gmIS representation is simple. All the nodes and relations that

have been created, such as shown in Fig 7.3, are displayed as a network in a window. The

user augments this network by examining this network, adding new nodes, and linking

139

them to the existing nodes. The system provides many features that make it easier for the

user to do so, such as a zoom window that shows a small part of the network in detail, an

IPA node that aggregates all the nodes about a given issue into a single node, a pop-up

menu on each node that informs the user of the legal actions available on that node. Since

this process of augmentation resembles using the representation with a paper and a pencil,

but much easier, glBIS is easy to learn. In SIBYL, on the other hand, the mapping

between the user interface (e.g. decision matrix, argument browser) and the underlying

r:presentation is not as straightforward. As a result, SmYL has more initial learning cost.

The computational services in gIBIS are primarily hypertext features that help the user

navigate through the network, such as those mentioned above. On the other hand, a few

systems have been built that provide interesting computational services using gIBIS. In

particular, [Lubar 1991] has implemented a truth-maintenance system that manages logical

dependencies among the glBIS nodes. fmffilS [Greene et al. 1991] has extended gffilS so

that infonnal nodes can be linked to the fonnal specifications that they give rise to. These

formal specifications can be checked by a theorem prover, and their results can, in turn, be

used as arguments in the glBIS network for supporting or objecting-to a position. These

systems show that a rationale representation language like IBIS can produce interesting

computational services with limited expressiveness, and the tradeoff between

expressiveness and computational selvices offered will need to be explored in the future.

Other IBIS-based Representations

We have seen how glBIS measures against our models. We now measure against other

IBIS-based languages. PHI (Procedural Hierarchy of Issues) [McCall 1987] overcomes

some of the glBIS limitations by allowing a quasi-hierarchical structure among issues,

140

answers and arguments. The semantics of the hierarchical relation is different for the

different spaces. In the issue space, if Issue A is a child of Issue B, that means A "serves"

B - that is, resolving A helps resolving B. In the answer space (i.e. the alternative

space), an Answer is a child of another if the frrst is a more specific version of the second.

In the argument space, an Argument is a child of another if the first is a response to the

second. Hence, unlike in gIBIS, we can respond to an Argument directly by making it a

child node of the Argument. Furthermore, pm is quasi-hierarchical and allows sharing

nodes (i.e. multiple parents) and cyclic structures. While the quasi-hierarchy increases the

expressiveness of pm, the system is still limited by the shortage of relations. An Issue

cannot be specialize another Issue, an Answer cannot server another Answer, etc.

Therefore, the same comments about not explicitly representing relations in gmIS apply to

PHI.

There are many parallels between PHI and DRL. The quasi-hierarchical relation among

Answers in PHI corresponds to the Is a Kind o/relation in the alternative space in DRL.

The quasi-hierarchical relation among Issues in PHI corresponds to the Is a Subdecision 0/

relation. The quasi-hierarchical relation among Arguments in PHI is specialized into the

Supports and Denies relations in DRL. But many constructs in DRL find no

correspondence in PHI. such as Goals, Presupposes, or Is a Subgoal 0/. and Is a Part 0/.

Thus. DRL can be viewed as pushing further the extensions that PHI made to IBIS by

generalizing the hierarchical structure to more complex relations and making explicit some

other elements. especially those in the criteria space.

JANUS [Fischer et al. 1989] is interesting as an attempt to bridge two representations.

One of its components, CRACK, uses a rule-based language for representing domain

specific knowledge, e.g. about kitchen design. The other component, ViewPoints. uses

PHI to represent the rationale for the decisions they make. JANUS integrates the two

141

representations by finding the appropriate rationales represented in PHI for the particular

issue that designers face in the construction phase while using CRACK. Although the

current interface is limited to that of locating the relevant parts of the representations,

bridging a design rationale representation and a domain representation is a very important

topic of research because such a bridge can allow us to represent the relations among the

alternatives or the criteria in more domain specific ways.

[Potts & Bruns 1988] outlines a generic model for representing design deliberations,

shown in Fig.7.4. The model extends the IBIS model to represent the derivation history of

an artifact design. One starts with an abstract Artifact, such as a plan for a fonnatter,

associates with it the Issues that arise in making the plan more concrete, associates with

each of the Issues the Alternatives considered, some of which lead to a more concrete plan,

and so on until we make the plan concrete enough to be implemented. Associated with

each Alternative may be a Justification The internal structure of rationale, as shown in

Fig.7.4, is essentially an IBIS structure, and much of what we said about IBIS applies to

this representation as well. However, by describing a series of progressively more

concrete Arti/acts, and Justifications for its path, this model represents the alternative space

and its argument space better.

To the ~xtent that the representations discussed in this section -- PHI, JANUS, and the

Potts and Bruns system -- rely on IBIS, they inherit several limitations from it. There are

no constructs for representing the criteria used for evaluations; an argument cannot directly

respond to another; and we cannot argue about relational claims. In the latter two cases,

however, the component which uses IBIS or its variant is modular enough that DRL can be

viewed as an alternate representation for the component. In Potts and Bruns', DRL can

be used for representing the rationale component. In JANUS, DRL can be used as the

alternative representation for ViewPoints, i.e. the issue-base module. We believe that

142

DRL can provide a better interface in JANUS with its other component, CRACK, because

DRL is more expressive and can better support knowledge-base operations.

C)
0
IT]

~

Issue

Alternative

Justification

Derives
Rationale

Design
Artifact

Figure 7.4 The schema for the Potts and Bruns representation of design rationales

QOC (Question, Option, and Criteria)

QOC is a representation proposed by [MacLean et a1. in press] for "constructing" design

rationales. A design rationale in QOC is said to be not a record of the design process, but

instead is a co-product of design that has to be constructed alongside the artifact itself.

143

The major constructs of QOC are straightforward and map clearly to the framework

proposed in this paper. Figure 7.5 shows an example represented in QOC.25 The unit of

the issue space in QOC is a Question. The unit of the alternative space is an Option.

Questions and Options roughly correspond to Issues and Positions in gIBIS. However,

unlike gffiIS and like DRL, QOC can represent the criteria space with Criteria. A Criteria

(e.g. "Implement direct manipulation") is said to be a "bridging criteria" if it is a more

specific one that derives its justification from a more general one (e.g. "Support many UI

styles"). The units of the evaluation space are links labelled with "+" and "-",

GUFmOJ)
[OPTION I
~
I DATA I

Interaction
Mmager

I Expensive to build I

""

+

Has !he flexibility
to ~Iement direct
manipulation

Figure 7.5 An example rationale represented in QOC

Takes less work to ----_.J creaIe a toolbox
!han an 1M

~
~

___________________ -4N~v~good

because the
abstraction level
has not risen much

-------1 Their
interaction
style is rigid

25 We could represent only a part of our example because it was not clear to us how to represent the rest
in QOC.

144

corresponding to whether an option does or does not achieve a given cri:erion. The

constructs for representing the argument space are Data, Theory, and Mini-Theory. One

supports the evaluation ("+" or "-") of an option with respect to a criterion by appealing to

empirical Data (e.g. "Expensive to build") or to an accepted Theory. When there is no

relevant data at hand or existing theory to draw on, the designers may have to construct a

Mini-Theory, which is an approximate explanation of part of the domain.

QOC as we understand it has several limitations as a representation language. First, in the

argument space, constructs like Data, Theory, or Mini-Theory do not seem to capture

many aspects of arguments. For example, a claim like "1M can be extended to support

application-defined data types." seems neither a datum nor a theory. Nor is it clear whether

and how we can argue about theories, or individual claims in theories. In the alternative

space, there is a reference to cross-option dependency, but no specific constructs are

discussed for representing it. In the criteria space, Bridging Criterion is described as if it

is a special type of Criterion. If so, that is building a role into a fixed type, which results in

unnecessary inflexibility. That is, being a Bridging Criterion is not a property inherent in

the object itself but in the relation that the object has to another criterion. As such, one

should not have to classify a given object as a Bridging Criterion but only as a Criterion

while indicating that it is a bridging criterion for another object through the relation it has

with the latter. Otherwise, we have to unnecessarily change object types depending on

which object we focus on.

The QOC constructs for the evaluation space are "+" and "-" links. These evaluations are

said to be supported by appealing to empirical data and accepted theories. It is not clear,

however, how we can accommodate changes in evaluation status due to incremental

support. Suppose that the evaluation of the Option, "Interaction Manager," with respect to

the Criterion "Reduce development cost" is initially "-" because of the empirical Data

145

"Expensive to build." Further suppose that we then realize that there is another argument

(which we again represent using Data) in favor of the Option with respect to the same

Criterion (e.g. "Application development time is reduced"). We can at this point augment

the design rationale in one of two ways: (1) create an additional "+" evaluation link between

the same Option/Criterion pair, or (2) keep the origina1link but change its "-" to reflect the

net effect of the two Data (one pro and the other con). The latter option has the

-
disadvantage of losing information about which Data was appealed to support the net

evaluation since the link between any Data and the evaluation link is not labeled (such as

WIth "Supports" or "Obje.cts to"). The first option of keeping two evaluation links avoids

this problem, but we are not sure whether QOC allows multiple evaluation links from one

Criterion to one Option.

QOC is perhaps the closest to DRL at least in its basic structure. Both have the five spaces

clearly delineated, although the constructs for the argument space are less clear. Decision

Problem maps to Question, Alternative to Option, and Goal to Criterion. Claims map

roughly to Data, Theory, or Mini-Theory, depending on whether the claims are empirical

statements or parts of an established theory, or an informal theory. The concept of

subgoals maps to the concept of Bridging Criteria. Also, at least some of the links can be

argued about: e.g. the evaluation link between an option and a criterion can be supported by

Data or Theory.

The method of using QOC has been articulated more than any of the systems discussed so

far. This method is specified partially in the form of the properties that QOC constructs

should have. For example, for something to be a Criterion, it "must be unconditional in the

sense that, other things being equal, the greater the extent to which the Criterion is met, the

better is the design"; it "must be evaluative, i.e. it must be a single-valued measure of some

property of the design, with ;i definite sense of higher values being better" [MacLean et al.

146

in press]. The method is also specified in the form of "heuristics" that tells the user how

to use QOC profitably: for example, "Use Options to Generate Questions," "Consider

Extreme Options," "Identify Options which Generate Dependencies," and "Look for

Emergent Patterns of Options." As it became clear in the course of using SIBYL, the use

of a semi-fonnal representation requires the user to understand many assumptions that are

not captured explicitly in the representation itself. A contribution of the QOC research is to

make clear the importance of making explicit such assumptions underlying the use of a

rationale representation language.

QOC is yet a representation to be used with a paper and a pencil; as such, no compuational

operations have been defined on QOC. Thus, the rationales generated by QOC are

potentially reusable, but there is no discussion of how relevant rationales are to be

detennined and retrieved. In the absence of a relevance metric and the computational

support for its application, reuse be difficult to achieve when the rationales accumulate

beyond a small scale. Given QOC's explicit representation of the criteria, a goal lattice like

the one used for SIBYL can be used for determining relevance. However, it would be

interesting to see how QOC addresses this problem in the future or in general what

computational operations are defined on it, and compare with those for SmYL.

Given the ambiguity about what exactly constitutes the vocabulary of QOC, however, QOC

seems currently more a model rather than a fully-developed representation language. T: ..

is, it seems to be an attempt to understand and categorize the elements of design rationale

without providing yet a specific vocabulary for expressing them. This observation is also

consistent with the authors' warning against premature commitment to a specific

representation [MacLean et al. 1989]. Considering the similarity between QOC and DRL in

the underlying structure, we hope that DRL provides a representation language adequate for

representing most of the elements that the QOC research has been articulating.

147

Chapter 8

Conclusions

This chapter summarizes the contributions of this research and discllsses the topics for

future research.

8.1 Contributions

This thesis has explored the feasibility and the benefits of a system that captures and

manages rationales for decisions, in which the domain knowledge is too expensive or not

possible to fonnalize. This exploration produced the following contributions:

148

• identification and categorization of the needsfor managing rationales. The needs for

explicit ~presentation and management of decision rationales were identified and

classified into four categories (Section 1.1): managing rationales within a session,

managing rationales across sessions, reusing rationales from past decisions, sharing

rationales across decisions.

• articulation of the concept of a decisioll rationale management system. A scenario was

constructed that illustrates ways of managing rationales (Chapter 2). This scenario

was used to identify the components needed for successful rationale management: the

language for representing the elements of rationales, the method for using the

language to capture the rationales, and the services that use the captured rationales to

support decision making. In order to characterize systems with these components,

the concept of a decision rationale management system was proposed. Existing

decision rationale management systems and their scopes were characterized by

categorizing them along two dimensions: formality of the representation used md

reusability (Chapter 7).

• characterization of the structure of decision rationales. In order to design a decision

rationale management system that supports the tasks illustrated in the scenario, I

developed a sequence of models that progressively differentiates the elements of

decision rationales needed to support the tasks (Chapter 3). Decision rationales were

characterized in terms of five spaces: the argument, the alternative, the evaluation. the

criteria, and the issue spaces. Starting with the argument space, each model next in

the sequence makes an additional space explicit. I have discussed what extra tasks

this additional differentiation can support.

149

• the design of DRL, a language for representing decision rationales. In order to

provide a language for rationale management, I have developed DRL (Chapter 4),

which provides constructs for representing the elements in the five spaces that

charactelize the structure of decision rationales.

• the design and implementation of SIBYL, a decision rationale management system

that demonstrates the feasibility and the benefits of capturing and managing decision

rationales without requiring the formalization 0/ domain knowledge.

In particular,

• the implementation of DRL in such a way that rationales can be captured and

managed without the formalization of the domain knowledge. SIBYL achieves

this task by implementing the constructs of DRL semi-fomlally, i. e. as formal

objects whose attributes values can be informal descriptions as well as formal

objects (Chapter 5).

• the design and implementation of an interface that embodies a method/or using

DRL. In order to provide an environment in which DRL can be used to capture

rationales with as little cost as possible, I have designed and implemented the

features -- such as decision matrices, submatrices, argument browsers, and

context-sensitive menus -- that help people easily see relevant parts of the

rationales, examine details at various levels, structure their arguments, and find

out appropriate actions to take.

150

• the design and implementation of a set of computational services that use the

captured rationales to provide decision support as well as the motivation for

people to use SIBYL to represent rationales (Chapter 6). The precedent

management demonstrates that rationales can be reused, through human

interaction, even in non-fonnalized domains (6.1). I have also implemented the

dependency management (6.2) and the viewpoint management (6.3) that meet at

least the minimal needs that are crucial in managing decision rationales:

maintaining dependencies on the one hand and keeping track of multiple decision

states on the other. Also, SIBYL uses the Object Lens features such as agents,

the rule system, and the different display fonnats to help the user to monitor for a

decision state, better grasp the relations among the elements of the captured

rationales.

8.2 Future Research

There are three directions in which I want to push ahead this research. First, I would like

to test and extend the adequacy of DRL as well as the SIBYL environment as a whole by

subjecting them to larger scale uses. Secondly, I would like to explore the different ways

of giving more knowledge to SIBYL, in particular the aspect of incremental formalization,

as discussed in Chapter 8. Thirdly, as a long term goal, I would like to explore ways to

automate the parts of SIBYL and articulate a computational problem solving paradigm

based on arguments through incremental formalization.

151

Test and Extension

I would like to test and extend the adequacy of the current representation and the system by

having it used on larger scale examples. So far, DRL and SmYL have been used by a

small group (4 to 6 people) on small scale problems such as laying out floor space and

designing user interfaces. Several cases, such as designing a window manager or

choosing a hardware platform, have been reconstructed from published cases. DRL has

evolved over time to incorporate lessons from these experiences. It is clear, however, that

a large scale use on more complex problems will bring in additional or different sets of

constraints. These constraints will undoubtedly lead to modification and extension of the

current representations and services. I would like to test how well DRL and SmYL holds

up in larger scale uses.

Before SmYL can be taken to sites, however, there are several steps that need to be taken

beforehand.

• The system needs to be free of bugs and made faster. People are well known not to

put up with any inconvenience when the benefits they get are not clear or immediate.

If there is any hope of getting it used at all, then it must be bug-free and efficient

• The system needs to be integrated with the other aspects of the task it will support.

For example, if the task is decision making by stockbrokers, for example, SIBYL

should be able to interact with the Dow-Jones database. Or if SIBYL is used for

software design, then people should be able to use the requirements collected in the

requirement analysis phase as goals or at least refer to them. Likewise, designers

should also be able to refer to other forms, such as drawings, that they produce

152

throughout out the design process. This integrated environment is important both

because people do not want to duplicate infonnation that they already provic!ed and

also because switching contexts interrupts the work flow.

• The system needs to provide a better support for evolution. In real-life decision

making, goals change, arguments need to be refonnulated, and alternatives need to be

grouped in different ways. SmYL maintains, at least in principle, that no DRL object

can be modified (as opposed to augmented) in order to keep the record of the

evolution as well as to make sure that there is no dangling object, i.e. those objects

whose validity assumes the existence of another object, which is now gone or

different from what it was. Instead. SIBYL deal with these changes is through

Viewpoints. When goals change, for example. we capture the e~isting state as a

Viewpoint, create a new Viewpoint as a copy of the existing state. and then in the

new viewpoint change the goals. The use of these viewpoints allow us to

accommodate changes while keeping a record of the evolution. However, the grain

size of the viewpoint is too large. If we insisted on the non-modifiability principle,

viewpoints would proliferate because changes including ones due to mistakes happen

very often. Hence, there needs to be a balance between non-modifiability and non

proliferation, and it is not clear yet what mechanism would achieve that balance.

Giving More Knowledge to SIBYL

The only kind of knowledge that SIBYL has so far is that generic to the task of decision

making. This task-specific knowledge, furthennore, is either built into the types and their

relations of DRL or built into the routines that manipulated them. SIBYL has no

153

understanding of the domain knowledge, that is no knowledge about the objects and their

relations in the domain except as DRL constructs. For example, SllYL did not understand

what a window manager is except as an instance of Alternatives. Therefore, the reasoning

power of SIBYL was limited.

The decision to give SmYL only the task-specific knowledge was deliberate. A goal of

this research was to explore the possibility and the power of a semi-formal system [Lai et

al. 1988]. That is, I wanted to explore a system which is useful even when its input is

completely informal (i.e. known to the system only as text-strings) albeit combined with

varying degrees of formalized knowledge to be exploited in order to provide more powerful

services. There are at least three reasons why it is important to explore semi-formal

systems. It allows us to capture and manage rationales in tasks for which the domain

knowledge is too expensive for the benefits sought, in tasks for which the domain

knowledge is currently not available, and in tasks for which common-sense reasoning is

needed. Incremental formalization made possible by a semi-formal system would allow us

to formalize the knowledge as the needs arise, as only the benefits of doing so overrides the

cost, and as we gain more understanding of the domain.

In this thesis, I regard my contribution as having laid out a foundation for exploring these

issues, and cannot really claim to have explored all the possibilities and the powers of

incremental formalization. Nevertheless, the experience with SIBYL so far does illustrate

many of these benefits. In particular, I describe three ways";n which to make more

knowledge accessible to SIBYL: formalizing informal into existing formal constructs,

extending the DRL vocabulary, and formalizing the domain knowledge. An example of

the first is given in Chapter 5, where the evaluation of a claim was originally a text string

(HIGH, Susan), but it changed to an instance of a claim, [HIGH] , when there was a need

to formalize, for example to argue about it. An example of the second is given by the

154

extension ofDRL to capture design rationales. This extension is discussed in [Lee 1991].

With a few additional constructs, such as Artifact and Derives, that captures the knowledge

about design decisions and the resulting artifacts, SIBYL can, for example, provide

services that help the user to look for artifacts which use a specified set of alternatives and

see how their design decisions turned out.

An example of the third, i.e. formalizing the domain knowledge, is given by mSIBYL

[Ruecker & Seering 1990], whose goal is to extend SIBYL to the task-domain of

mechanical engineering design. In mSIBYL, informal descriptions of the goals and the

alternatives are turned into formal descriptions using the transition space representation

[Borchardt 1990]. This formal description, still coexisting with other informal descriptions

(such as of claims), provides the system with more knowledge about the behaviors of the

artifact desired and the alternatives available so that it can retrieve more relevant precedents

with less interaction with the user. These examples, however, illustrate only the beginning

of an exploration of incremental formalization. I, in collaboration with others, would like

to continue this exploration. In particular, I would like to study how much formalization is

required in what way to transfer the research on precedent··based learning [Winston 1982]

and case-based reasoning to rationale management research.

Toward a Dialectical Problem Solving Paradigm

One of the motivations underlying the current research, though still far away to be realized,

was to develop a computational problem solving paradigm based on arguments. The

importance of 'deliberate' decision process in automated reasoning -- in the sense of

involving arguments pro and con, evaluating alternatives, compromising and negotiating --

155

has been appreciated only recently by the realization that a strictly deductive approach does

not capture "the openness" of realistic systems. What really happens in real systems and

what needs to be included in artificial systems is that problems are solved through the

dialectical processes involving the interaction among agents with different goals, shared

resources, aild different expertise.

Identifying and articulating the objects and the processes involved in deliberate decision

making, as this work tries to do. is a small but an important step in the study of such

dialectical processes. There is also a good body of research on these topics [Bond &

Gasser 1988; Doyle 1980; Kornfeld & Hewitt 1981; Minsky 1987; Rescher 1977] I hope

that while exploring incremental formalization, I can gain more understanding of how this

research is related to this body of research, and make a contribution toward a dialectical

problem solving paradigm.

156

Appendix: Details of DRL

This appendix is a reference manual for DRL, which provides a description of each of its

constructs, including its semantics. First, I give a brief overview, followed by the

description of the constructs in alphabetical order.

The semantic classes for DRL are:

STATE

ACTION

STATEMENT

QUESTION

PROCEDURE

A Goal represents a desired STATE. An Alternative is a possible ACTION that can be

taken. A Claim is a STATEMENT. A relation in DRL is a CLAIM. For example,

Supports (Cl , C2), where Cl and C2 are claims, is a STATEMENT about the relational

state between two STATEMENT's. Achieves (A, G) is a STATEMENT about the

relational state between the state produced by applying the alternative action, A, on the

current state and the goal state, G.

157

It should be noted that users often give names to DRL objects, such as "Which application

interface for the window manager, WING," or "Interaction Manager," which suggest

wrong semantics. These labels are of course mere text strings for the computer, and their

primary purpose is for human understanding and communication of the rationales. For

computational purposes, though, their semantics do not depend on the labels. To illustrate

this with our example decision, the decision problem, "Which application interface for our

window manager, WINO" is to be interpreted as the desired state of having chosen a good

alternative. Its subgoals, "Highly portable" or "Common interface," are to be interpreted as

the state of having chosen an alternative that helps the window manager to be portable or

that helps the window manager to promote a common interface. And a Is A Subgoa/ Of

(GI, G2) should be interpreted as a statement that the state represented by 01 is a part of

achieving the state represented by 02. For example, "Support Direct Manipulation" is a

subgoal of "Ease of Use for Naive Users," means that the state of having chosen an

alternative that will help support direct manipulation is a part of achieving the state of

having chosen an alternative that will build applications that are easy to use for naive users.

Alternatives, like "Interaction Manager," are to be interpreted as actions, like using

interaction manager as the application interface. An achieves relation, like "Interaction

Manager achieves the goal of being portable," is interpreted as a statement about the relation

between an alternative action taken, e.g. building a window manager using an interaction

manager as the application interface, and the state represented by the goal of being portable.

Thus, the interpretation of the achieves relation is the statement that the action of using an

interaction manager as the application interface for WING achieves the state of having

chosen an alternative that helps the window manager to be portable.

•

In the following, I describe for each construct of DRL its semantics, its intended use, and

the important attributes. For relational constructs, the argument types are shown in the

parenthesis. The attributes, Creator and Creation Date, which represent respectively the

user who creates its instance and the date of creation, are present in all of the constructs and

not discussed further.

Achieves (Alternative, Goal)

Semantic Oass: STA 1EMENT

Supertype: Is Related To

Attributes: Degree, Plausibility, Evaluation

Achieves is a statement about how close the state produced by applying an alternative action

to the current state is to a goal state. Any statement is expressed as a Claim in DRL, which

provides no built-in distinction between facts, beliefs, and opinions (cf. Claim). Achieves

(A, G) is intetpreted as the claim that the alternative A achieves the goal G. As a claim, of

course, it can be argued about. In particular, the arguments for the evaluation of an

alternative are represented as claims supporting, denying, or qualifying (i.e. presupposed

by) an achieves relation between the alternative and an appropriate goal. The Degree

attribute represents the extent to which the alternative achieves the goal. The Plausibility

attribute represents the measure of how plausible that measure is. The Evaluation attribute

of an achieves relation represents the measure of how the alternative achieves the goal,

which is typically the degree modulated by the plausibility measure. (cf. Claim)

159

,

Alternative

Semantic Oass: ACfION

Supertype: DRL Object

Attributes: Status

Alternative represents option in consideration, e.g. "Interaction Manager" or "Toolkit". An

option is an action, e.g. "Using Interaction Manager," although their labels often mention

only the objects involved (like "Interaction Manager"). Alternatives that specialize a given

alternative are related to the latter via Is A Kind O/relations. For example, 'Extensible

Interaction Manager' is Is A Kind Of 'Interaction Manager'. The Status of an Alternative

indicates the CUITent information about the alternative, e.g. Chosen or Inactive. An

alternative is related to each goal via an Achieves relation, representing the claim that the

alternative achieves the goal (cf. Achieves). An alternative is related to the decision

problem for which it is an option via an Is A Good Alternative For relation. The Evaluation

attribute of this relation represents the overall measure of how well the alternative satisfies

the subgoals (or the requirements) of the decision problem (cf.ls A Good AltemaIive For).

Answers (Claim, Question)

Semantic Oass: STA 1EMENT

Supertype: Is Related To

Attributes: Degree, Plausibility

Answers is a statement about the relation between claim C and question Q. An answer to a

question is represented in DRL as a Claim which is related to the question via this relation.

160

z ..

There may be several competing answers to a question, each of the claims representing an

answer would then be related to the question via the answers relation. One can argue about

which answer is more likely by arguing about the corresponding answers relation. The

Degree attribute represents the extent to which the claim answers the question. The

Plausibility attribute represents the measure of how plausible the answer is.

Claim

Semantic Class: STATEMENT

Supertype: DRL Object

Attributes: Plausibility, Degree, Evaluation

Claim is used to represent any statement, including facts, arguments, assumptions,

answers, and comments. DRL does not provide separate constructs for these categories of

statements; instead, it allows the distinction between them to be captured dynamically. A

fact is a claim whose plausibility is very high, beyond a threshold that can be set by the

user. An assumption is a claim which is assumed to be true hypothetically for the time

being, i.e. within a prescribed context (cf. Viewpoint). Any answer or a comment can be

represented as a claim. What makes a si:atement an answer or a comment is nothing in the

statement itself but its role, i.e. the relation that it has to other objects (cf. Answers,

Comments). The truth of any claim, whether it represents a fact, an assumption, or an

answer, can be argued about, i. e. can be related to another claim through Supports,

Denies, or Presupposes relations.

The Plausibility attribute of a claim represents the measure of how likely the claim is true.

The term, plausibility, is used instead of probability because we do not want to restrict the

161

measure used for the attribute to the mathematical probability. It could be nominal

categories, like Highly Plausible, Moderately Plausible, and Implausible.

The Degree attribute of a claim represents the degree to which the claim is true. For

example, the degree of the claim, "Interaction Manager is expensive to build," may be

represented by a range of money that it will typically cost to build an interaction manager.

The plausibility of a. claim often depends on the degree of the claim. That is, we can only

assess how likely the claim is true when the degree is made explicit. For example, it is

difficult to assess "Interaction Manager is expensive to build" without knowing what the

claim means by being expensive. Strictly speaking, therefore, the degree of a claim should

be an explicit part of the claim, e.g. "Interaction Manager costs around $ 40,000 plus

minus $ 5,000."

Nevertheless, the Degree of a claim was made a separate attribute for the following

reasons. First, the degree of a claim changes as other claims produced in the course of

decision making. For example, the degree of an Achieves relation reflects the extent to

which an alternative achieves a goal, and it changes as claims are produced that support or

deny it. In fact, the degree of any claim is subject to change as claims are produced that

support or deny it. Having Degree as a separate attribute allows this measure to be changed

without having to create a separate statement every time the measure changes. Second, it is

often difficult to specify the degree of a claim at the time that the claim is made. For

example, some claims, like an Achieves(A, G), are created automatically. and it is not clear

what its degree should be. It is not 100% because that would rule out the cases where an

alternative would achieve only some part of the goal and most claims would deny such a

claim. It is not 0% ~~.use any alternative worth considering would likely achieve some

part of the goal.)/ E~en for those claims that the human user produces. specifying their
.. /-

exact 9e-gTees may require too much efforts and much arbitrariness. It seems that a
" ... _.o?

162

qualitative statement such as "1M is expensive to build" has some implicitly agreed-upon

degree so that people can argue about it without requiring its degree to be explicit

Of course, we should make sure that when the degree of a claim changes, other claims that

were produced about it are still relevant because they were responding to a different claim. ,

strictly speaking,. Hence, when the degree or the degree interval that was assumed when

claims were made changes, the decision makers should be notified so that the existing

arguments can be modified accordingly. Of course, there may be practical problems in

doing that. Those who produced the argument may not remember the situation or may be

gone. This would be a serious problem if the evaluation was to be computed automatically,

and this is one of the reasons why it is so difficult to produce automatic evaluations. For

human users, the problem is less serious because the arguments that people put forward

seem mostly qualitative and do not usually depend heavily on the quantitative degree of the

statement they are about. A possible exception is if the degree of the statement goes

radically out of reasonable bounds, e.g. fast hardware means 2000 mips.

The Evaluation attribute is used to represent a summary evaluation measure that typically

combines the effect of the degree and the plausibility of a claim. For example, take the

claim that using a good debugging environment reduces the development cost. Let's say

that its plausibility is 80%, its degree is 40, 000 dollars. Its Evaluation is whatever they

mean overall to the user, e.g. 40,000 * .8. This purpose of this attribute is to provide a

single dimension along which the claims can be compared.

163

Comments (,Claim, DRL Object)

Semantic Class: Statement

Supertype:Suggesu

Attributes: Creator. Creation Date,

Comments is a statement about a DRL object. It is used to represent a statement about an

object, which one does not want to be interpreted as anything more specific, like Supports

or Denies. Comments (C, 0) is always true by the mere fact that it is created, although the

truth of the claim C is subject to arguments.

Decided

Semantic Class: STATE

Supertype: Status

Attributes: Chosen Alternative, Rationales

Decided is the state of having chosen an alternative for a decision problem. It is used to

represent the fact that the decision has been made together with other infonnation about the

decision made. It is a subtype of Status. The Chosen Alternative attribute represents the

alternative chosen. The Rationales attribute represents the reasons for having chosen the

alternative, which may be expressed either in free-text or with pointers to the DRL objects

responsible for the final decision.

164

Decision Problem

Semantic Class: STATE

Supertype: Goal

Attributes: Status, Evaluation

Decision Problem represents the desired state of having chosen the best alternative. A

decision problem is a special kind of Goal representing the goal of choosing the optimal

alternative. At the intuitive level, a decision problem represents the problem of choosing

the alternative that best satisfies its subgoals. These subgoals elaborate in tum what it

means to satisfy the top level goal. For example, "Reduce Development Cost" and "Is

Portable" ar~ two subgoals of the Decision Problem, "Which application interface for our

window manager, WING?" These subgoals are to be interpreted as the desired states of

having chosen an alternative that satisfies the requirement that they stand for.

The Status attribute of a decision problem represents the CUlTent status of the decision, e.g.

Resolved, Unresolved, Waiting for Further Information. The status can be an object of its

own right, for example, Decided is a subtype of Status with a field called Rationale, which

point to the objects that were directly responsible for the final decision outcome. The

Evaluation field records the evaluation of the decision process, e.g. success or failure.

Denies (Claim, Claim)

Semantic Oass: STATEMENT

Supertype: Is Related To

Attributes: Degree, Plausibility, Evaluation

165

Denies is a statement about the relation between the evaluation attributes of the two

statements. It is used to represent an argument that refutes another argument. Denies (Cl,

C2 is true if the evaluation of C2 is a monotonically decreasing function of the evaluation

of Cl. (cf. Claim)

Goal

Semantic Class: STATE

Supertype: DRL Object

Attributes: Importance

A Goal represents a state that one wants to achieve by making a decision. A goal serves as

a criterion for evaluating alternatives. A goal may have subgoals, which are the states,

once achieved, that help bring about the state represented by the parent goal. These

subgoals are related to the parent goal via the Is A Subgoal Of relation (cf. Is A Subgoal

OJ). A goal may specialize another goal, e.g. "Minimize Development Cost," specializes

"MiniIrJze Cost." The specialization relationship is represented with the Is A Kind Of

relation. Other relations among goals, such as whether the subgoals are conjunctive (Le.

all of them have to be satisfied to achieve the parent goal) or disjunctive (Le. (Le. satisfying

one of them makes it unnecessary to satisfy the others in the set), can be represented with

the construct, GROUP. (cf. Group) The Importance attribute of a goal is used to represent

how important the goal is.

166

Group

Semantic Class: A Set of Semantic Class of its Members

Supertype: DRL Object

Attributes: Members, Member Relationship

A Group is used to group a set of objects of the same type among which we want to

indicate some relationship. The attribute, Members, points to the objects to be grouped,

and the relation among them -- e.g. Conjunctive, Disjunctive, Mutually Exhaustive -- are

represented in the Member Relationship attribute.

Is A Good Alternative For (Alternative, Decision Problem)

Semantic aass: STATEMENT

Supertype: Achieves

Attribute: Degree, Plausibility, Evaluation

Is A Good Alternative For is a statement about the relation between the action represented

by the alternative and the goal state represented by the decision problem. It is an assertion

that taking the action achieves the goal state DP. It is a special case of Achieves (A, G)

where G is restricted to a goal of the type Decision Problem. Its Degree attribute therefore

represents the measure of how good the alternative A is with respect to the overall goal of

choosing the best alternative, and its value is a function of the evaluations of the achieves

relations between the alternative and all the subgoals for the decision problem. The

Plausibility attribute represents the measure of how convincing the degree assignment is.

167

The Evaluation attribute represents the overall evaluation of the alternative which takes into

account both the degree and the plausibility. (cf. Claim)

Is A Kind Of (DRL Object, DRL Object)

Semantic Oass: STATEMENT

Supertype: Is Related To

Attribute: Degree, Plausibility. Evaluation

Is A Kind Of is a statement about the relation between two DRL objects. It is used to

represent the specialization/generalization relationship among two objects. Is A Kind Of

(01, 02) is true if the extension of 01 subsumes the extension of 02 (Schmolze ..),

although the automatic classification based on subsumption is not usually possible in

SmYL because of the informally specified attributes.

Is An Answering Procedure For (Procedure, Question)

Sema.ratic Oass: STATEMENT

Supertype: Is Related To

Attribute: Degree, Plausibility

Is An Answering Procedure For is a statement about the relation between a procedure and a

question. It is used to represent a procedure used to answer a question. Is An Answering

Procedure For (P, Q) is true if P is the right procedure for answering the question Q. The

Degree attribute represents the extent to which the procedure is appropriate for answering

168

the question. The Plausibility represents the uncertainty about the appropriateness specified

in the degree attribute.

Is A Result Of (ClIlim, Procedure)

Semantic Oass: STATEMENT

Supertype: Is Related To

Attribute: Degree, Plausibility

Is A Result Of is a statement about the relation between a claim and a procedure. It is

used to represent the procedure used for obtaining the anSWf .. which in turn is represented

as a claim. It is true if C is the assertion that represents the right interpretation of the result

of correctly running the procedure P. The Degree attribute represents the extent to which

the claim C is in fact based on the procedure P. The Plausibility attribute represents the

uncertainty about the extent specified in the degree attribute.

Is A Subdecision Of (Decision Problem, Decision Problem)

Semantic Oass: STATEMENT

Supertype: Is A Subgoal Of

Attribute: Degree, Plausibility

Is A Subdecision Of is a statement about the relation between two decision problems. It is

used to repre&ent a decision problem that needs to be resolved in order to resolve another

decision problem. Is A Subdecision Of (DPl, DP2) is true if achieving the goal state

169

represented by DPI requires achieving the goal state represented by DP2. It is a

specialization of Is A S ubgoal Of (G I, G2) where Gland G 2 are restricted to be of type,

decision problem (cf. Is A. SubgoaIOf). The Degree attribute represents the extent to

which resolving DP2 is necessary for resolving DP2. The Plausibility attribute represents

the uncertainty about the extent specified in the degree attribute.

Is A Subgoal Of (Goal, Goal)

Semantic Class: STATEMENT

Supertype: Is Related To

Attribute: Degree, Plausibility

Is A Subgoal Of is a statement about the relation between two goals. It is used to elaborate

a goal in terms of more specific goals that together will achieve the original goal. It is also

used to claim that a goal needs to be achieved in order to achieve another goal. Is A

Subgoal Of (GI, G2) is true if achieving the goal state represented by G2 requires

achieving the goal state represented by 02. The Degree attribute represents the extent to

which 01 needs to achieved in order to achieve 02. The Plausibility attribute represents

the uncertainty about the extent specified in the degree attribute.

Is Related To (DRL Object, DRL Object)

Semantic Class: STATEMENT

Supertype: Claim

Attributes: Degree, Plausibility

170

Is Related To is a statement about the rela.tion between two DRL objects. It is used to

represent a relation that are not captured by any of its subclasses. It also serves as a parent

of all DRL relations, from which these relations inherit attributes that are specific to all the

relations. It is also a subclass of Claim. Hence, all DRL relations are subclasses of

CLAIM. For example, "GJ Is A Subgoal, Of G2'" is interpreted as the claim that G1

should be a subgoal of G2'. As such, any relation can be supported, refuted, qualified, or

questioned just like any other claims. The Degree attribute represents the extent to which

the two objects are related, and the Plausibility attribute the uncertainty about the extent

specified in the Degree attribute.

Procedure

Semantic Class: PROCEDURE

Supertype: DRL Object

Attributes: Steps

Procedure is used to represent a procedure, for example which has been used to answer a

question. Procedure represented may be executable direcdy or need to be interpreted by

human users. Information about the procedure used can be useful later when the answer

needs to be rechecked or when a similar question has to be answered. The Steps attribute

represents individual steps that make up a procedure. Each of these steps can be a

procedure or an informal description.

171

Presupposes (Claim, Claim)

Semantic Oass: STA lEMENT

Supertype: Is Related To

Attributes: Degree, Plau~ibility

Presupposes is a statement about the relation between two claims. It is used to specify a

condition under which a claim would be true. Presupposes (CI, C7.) is true if Cl is true

only if C2 is true. Sometimes, QuaLifies (eI, e2) is used as an alisas for Presupposes

(C2, Cl). The Degree attribut represents the extent to which the truth of Cl depends on the

truth of C2. The Plausibility attribute represents the uncertainty about the degree specified

in the degree attribute.

Question

Semantic Class: QUESTION

Supertype: DRL Object

Attributes: Deadline

A Question is used to request for more infonnation. An answer to a question is represented

as a Claim, which is linked to the question via a.1l Answers relation. A question may be

also related to a procedure via an Is An Answering Procedure For to indicate a procedure

that can be used to answer the question. The answer produced by executing the procedure

is then linked to the procedure via the relation, Is A Result Of The answer is related to the

172

question via the relation, Answers. The Deadline attribute indicates the date before which

the answer is wanted.

Raises (DRL Object, Question)

Semantic Class: Statement

Supertype:Suggests

Raises is a statement about the relation between a DRL object and a question. It is used to

indicate that L.;e question arose as a result of examining an DRL object. It is a special case

of Suggests (01, 02t), where 02 is restricted to the type, Question.

Status

Semantic Class: STATE

Supertype: DRL Object

Attributes:

Status is used to indicate a state in which an object is in. Many objects in DRL have the

Status field, which provides infonnation about ~he state that the object is in. For example,

Decision Problems may have been Decided, Active, Inactivated, or Archived. Alternatives

may be been Chosen, Rejected, or Inactivated. Questions may have been Answered or

Being Answered. Usually, simple keywords indicating these status are sufficient.

However, in some cases, these status have internal structures. For example, if a decision

problem has been decided, it is important that a record is made of the person who made the

173

,

decision, the date of the decision, and the major reasons for the decision. Or if a question

is Being Answered, it should provide information about who is in the process of answering

the question and how she is planning to do so. In these cases, one creates an instance of

Status, and fill it with appropriate information. An example of a built-in status is Decided.

Supports (Claim, Claim)

Semantic Class: STATEMENT

Supertype: Claim

Attributes: Degree, Plausibility

Supports (CI, C2) is a statement about the relation between the evaluation attributes of the

two statements, CI and C2. It is used to represent an argument that supports another

argument. Supports (CI, C2 is true if the evaluation of C2 is a monotonic function of the

evaluation of Cl. (cf. Claim)

Suggests (DRL Object, DRL Object)

Semantic Class: STATEMENT

Supertype: Is Related To

Attributes:

Suggests is a statement about the relation between two DRL objects. It is used to represent

the fact that an object was created as a result of examing another object. Suggests (OJ, 02)

is true if 02 is in fact created as a result of examining 01.

174

Tradeofls (DRL Object, DRL Object, attribute)

Semantic Class: STATEMENT

Supertype: Is Related To

Attributes: Degree, Plausibility

Tradeoff is a statement about the relation between two DRL objects concerning a given

attribute. It is used to assert that increasing a given attribute value for an object decreases

the value of the same attribute for another object. Tradeoff (01, 02, A) is true if the

attribute A is of an ordinal scale and the value of the attribute A of 01 is a monotonically

decreasing function of the value of the attribute A of 02.

Viewpoint

Semantic Class: STATE

Supertype: DRL Object

Attributes: Elements, View Relations

Viewpoint is used to represent a state of decision making process that needs 0 be captured

for comparison or archival purposes. For example, the decision states that a viewpoint can

represent include those:

• that have the same set of objects but with different atnibutes.

• that have objects that are subset or superset of the objects in the other viewpoints.

• that are historically related, i.e. ones that have been generated from another in the class

175

The Elements attribute points to all the objects as well as their relations that belong to that

decision state. The View Relations tells us all the relations between this viewpoint and

other viewpoints (Cr. Section 6.3).

176

References

Bobrow, D. & I. Goldstein (1980). Representing Design Alternatives. Proceedings of

Artificial Intelligence and Simulatioll of Behavior Amsterdam, Netherlands.

Boehm, B. (1981). Software Engineering Economics. Prentice Hall: Englewood Cliff,

N.J.

Bond, A. H. & L. Gasser (Eds.) (1988). Readings ill Distributed Artijiciallntelligence.

vol. Morgan Kaufmann San Mateo, CA.

Borchardt, G. (1990). Transition space. AI Memo 1238, MIT: Cambridge, MA

Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solving

and expertise acquisition. in Michalski, R. S., J. G. Carbonell & T. M. Mitchell (Eds.)

Machine Learning: An Artificial Intelligence Approach. vol. 2 pp. 371-392. Morgan

Kaufmann: Los Altos, CA

Conklin, J. & K. C. Yakemovic (in print). A Process-oriented Paradigm for Design

Rationale. to appear in Human-Computer Interaction the special issue on design rationale

Conklin, J. & M. L. Begeman (1988). gIBIS: A Hypertext Tool for Exploratory Policy

Discussion. ACM Transactions on Office Information Systems 6(4) pp.303-331

Davis, R. & D. Lenat (1982). Knowledge-Based Systems in Artificial Intelligence.

McGraw-Hill: New York

de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence Journal 28(2) pp.

127-162

177

DeSanctis, G. & R. B. Gallupe (1987). A foundation for the study of group decision

support systems. Management Science 33(5) pp.589-609

DeSanctis, G., V. Sambamurtby & R. T. Watson (1987). Computer-suppoted meetings:

building a research environment. Large Scale Systems 13(1) pp.43-59

Doyle, J. (1980). A Model for Deliberation, Action, and Introspection. MIT Artificial

Intelligence Laboratory,

Doyle, J. (1979). A truth maintenance system. Artijiciallntelligence Journal 12(3) pp.

231-272

Duda, R. 0., P. E. Hart & N. Nilsson (1976). Subjective Baysian methods for rule-based

inference system. in [Webber & Nilsson 1981], pp. 192-199

Faulkenhainer, B. (1989). The structure mapping engine: algorithm and examples.

Arti/iciallntelligence Journal 41(1) pp. 1-64

Fischer, G., R. McCall & A. Morch (1989). Design Environments for Constructive and

Argumentative Design. Proceedings of CHI'89 pp. 269-276. Austin, TX.

Greene, K. J., M. Bouler, S. Gerhart, D. M. Russinoff (1991) Spectra 0.1:

demonstration and research issues. MCC Technical Report STP/EI-329-90 (videotape),

MCC Software Technology Group: Austin, TX

Gray, P. (1987). Group decision support systems. Decision Support Systems 3(3) pp.

233-242

Hall, R. (1989). Computational approaches to analogical reasoning: a comparative

analysis. Artificial Intelligence Journal 39 pp.39-120

Hopgood, F. R. A., D. A. Duce, E. V. C. Fielding, K. Robinson & A. S. Williams,

(Eds.) (1986). Methodology of Window Management. Springer-Verlag: New York.

178

Huber, G. (1984). Issues in the design of group decision support systems. 8(3) pp.

195-204

Huhns, M. & R. D. Acosta (1988). ARGO: A System for Design by Analogy. IEEE

Computer (Fall, 1988) pp. 53-68

Kahneman, D., P. Slovic & A. Tversky (Eds.) (1982). Judgement under Uncertainty:

Heuristics and Biases. Univ. of Cambridge Press Cambridge, England.

Kleimuntz, B. (1990). Why we still use our heads instead of formulas: toward an

integrative approach. Psychological Bulletin 107(3) pp.296-310

Kolodner, 1., Eds. (1988). Proceedings of DARPA Workshop on Case-Based Reasoning.

Clearwater Beach, FL

Kornfeld, W. A. & C. Hewitt (1981). The scientific community metaphor. IEEE Trans.

Syst. Man Cyber. v. 11 pp. 24-33

Kraemer, K. & J. L. King (1988). Computer-Based Systel'"1!') for Cooperative Work and

Group Decision Making. 20(2) pp.115-146

Kunz, W. & H. Rittel (1970). Issues as Elements of Information Systems. Center for

Planning and Development Research U niv. of California, Berkeley, Working Paper 131

Lai, K. (1991). Object Lens: User Guide. MIT Center for Coordination Science:

Cambridge, MA

Lai, K.-Y., T. Malone & K.-C. Yu (1988). Object Lens: A "Spreadsheet" for Cooperative

Work. ACM Transactions Oil Office Information Systems 6(4) pp.332-353

Lane, T. (1990). User Interface Software Structures. Tech Report CMU-CS-90-101

Ph. D. thesis in Computer Science Department. CMU: Pittsburgh, PA

Lee, J. (in press). What's in Design Rationale? to appear in Human-Computer

Interaction (Fall, 1991), the special issue on design rationale

179

Lee. J. (1991). Extending the Potts and Bruns model for recording design rationale.

Proceedings ')f 13th International Conference on Software Engineering pp. 114-125

Austin. TX.

Lee. 1. (1990). SIBYL: A Qualitative Decision Management System. in Winston. P. H. &

S. Shellard (Eels.) Artificial Intelligence at MIT: Expanding Frontiers. vol. 1. Chapter 5

MIT Press: Cambridge, MA

Lee. 1. (1990). SIBYL: A Tool for Managing Group Decision Rationale. Proceedings of

Com/juter Supported Cooperative Work pp.79-92 ACM Press: LA. CA

Lee, 1. & T. Malone (1990). Partially Shared Views: A Scheme for Communicating

among Groups that Use Different Type Hierarchies. Transactions on Information Systems

8(1) pp. 1-26

Lee. J. (1989). Task Embedded Knowledge Acquisition through a Task-Specific

Language. Proceedings ofllCAI Workshop on Knowledge Acquisition Detroit. MI.

Lee. J. & T. Malone (1988). How Can Groups Communicate When They Use Different

Languages? Translating Between Partially Shared Type Hierarchies. Proceedings of

Proceedings of the ACM Conference on Office Information Systems pp. 22-29. ACM

Press: Palo Alto, CA

Lee. J. & K.-Y. Lai (1991). A comparative analysis of design rationale representations.

CCS Tech Report #121 MIT Center for Coordination Science: Cambridge. MA

Lubar, M. (1991). Representing design dependencies in an issue-based style. IEEE

Software (July) pp.81-89

MacLean. A .• R. M. Young & T. P. Moran (1989). Design Rationale: The Argument

behind the Artifact. Proceedings of CHl'89 Austin. TX.

MacLean. A .• R. Young. V. Bellotti & T. Moran (in press). Questions, Options, and

Criteria: Elements of a Design Rationale for User Interfaces. to appear in Human-Computer

Interaction the special issue on design rationale

180

Mark, W. & J. Schlossberg (1990). DesIgn memory. Proceedings of Knowledge

Acquisiti. '1 J -;r Knowledge-Based Systems Workshop Banff, Canada.

McCall, R. (1987). PHIBIS: Procedurally Hierarchical Issue-Based Information

Systems. Proceedings of Conference on Planning and Design in Architecture Boston.

MA. American Society of Mechanical Engineers

McKinlay, J., S. Card & G. Robertson (1990). A Semantic Analysis of the Design Space

oflnput Devices. Human-Computer Interaction 5(2-3)

Minsky, M. L. (1987). The Society of Mind. Simon and Schuster: New York

Mostow, J. (1989). Design by Derivational Analogy: Issues in the Automated Replay of

Design Plans. Artificial I ntelligence Journal 40 pp. 119-184

Mostow, J. (1986). Why are design derivations hard to replay? in Mitchell, T., J.

Carbonell & R. Michalski, Eds. (1986). Machine Learning: A Guide to Current Research.

vol. Kluwer Hingham, MA. (Eds.) .

Mostow, J. (1985). Toward Better Models of the Design Process. AI Magazine 6(1) pp.

44-57

Mostow, J. & M. Barley (1987). Automated reuse of design plans. Proceedings of 1987

International Conference on Engineering Design pp. 632-647. Boston, MA.

Nunamaker, J .• A. R. Dennis. J. S. Valacich, D. R. Vogel & J. F. George (1991).

Electronic meeting systems to support group work. Communications of ACM pp.40-61

Nunamaker. 1. F. 1., L. M. Applegate & B. R. Konsynski (1988). Computer-aided

deliberation: model management and group decision support. Operations Research 23(6)

pp.826-848

Pearl. 1. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann:

San Mateo, CA

181

Pitz, O. F. & N. J. Sachs (1984). Judgement and decision: theory and application. in

Annual Review of Psyc .. logy. vol. 35 pp. 139-163.

Potts, C. & O. Bruns (1988). Recording the Reasons for Design Decisions. Proceedings

of 10th International Conference on Software Engineering pp. 418 -427.

Rescher, N. (1977). Dialectics: A Controversy-Oriented Approach to the Theory of

Knowledge. State Uiliv. of New York Press:

Riesbeck, C. K. & R. C. Schank (1989). Inside case-based reasoning. Lawrence

Erlbaum Associates: Hillsdale, N. J.

Reucker, L. & W. P. Seering (1991). A dialectical reasoning system for design

documentation. Proceedings of the 3rd ASME Conference on Design Theory and

Methodology Miami, FL.

Schmolze, J. O. & T. A. Lipkis (1983). Classification in the KL-ONE knowledge

representation system. Proceedings of IJCA/-83 Karlsruhe, West Oennany.

Shafer, O. (1976). A Mathematical11leory of Evidence. Princeton University Press:

Princeton, N.J.

Shafer, O. & R. Logan (1989). Implementing Dempster's rule for hierarchical evidence.

Artificial Intelligence Journal 33(3) 271-298

Shum, S. (1991). Cognitive Dimensions of Design Rationale. in Diaper, D. & N. V.

Hammond (Eds.) People and Computers VI. New York: Cambridge University Press

Stefik, M., G. Foster, D. Bobrow, K. Kahn, S. Lanning & L. Suchman (1987). Beyond

the Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings.

Communications of ACM 30(1) pp. 32-40

Steinberg, L. & T. M. Mitchell (1985). The redesign system: A knowledge-based

approach to VLSI CAD. IEEE Design Test 245-54

182

Swartout, W. (1983). XPLAIN: a system for creating and explaining expert consulting

programs. Anijic:iallntelligence Journal 21(3) pp.285-325

Toulmin, S. (1958). The Uses of Argument. Cambridge Univ. Press: Cambridge,

England

von Winterfeldt, D. & W. Edwards (1986). Decision Analysis and Behavioral Research.

Cambridge University Press: New York

Webber, B. & N. Nilsson, Eds. (1981). Readings in Artificial Intelligence. Tioga

Publishing Company Palo Alto, CA.

Wile, D. S. (1983). Program developments: formal explanations of implementations.

Communications of ACM 26(11) pp. 902-911

\Vinston, P. (1980). Learning and reasoning by analogy. Communications of ACM

23(12) pp.689-703

Winston, P. (1982). Learning new principles from precedents and exercises. Artificial

Intelligence Journal 19(3) pp.321-350

Winston, P. (1982). Learning new principles from precedents and exercises. Artificial

Intelligence Jow-nal 19(3) pp.321-350

Yakemovic, K. C. B. & J. Conklin (1990). Report on a development project use of an

issue-based information system. Proceedings of Computer Supported Cooperative Work

LA, CA. pp. 105-118

Zloof, M. M. (1978). Query-by-Example:a database language. IBM Systems Journal

16(4) 324-343

183

