6.UAP Thesis: Story Analogies with Structure

Mapping and Plot Units

Jesse Dunietz

May 20, 2011

1 Introduction

Stories pervade our mental lives. We use stories to explain the state of the world, to
provide context for objects and actions, to persuade others, and especially to predict
the outcomes of our actions. If we wish to build programs that interact with and
think about the world as intelligently as we do, we must allow them to understand
and reason about stories.

For proper reasoning and inference, the ability to make analogies between stories
is also crucial. For instance, political leaders often base their actions on precedent,
inferring from a precedent’s similarity to recent events the likely outcomes of their
actions. To do this, they must be able to spot the similarity, map current entities
and events onto those in the precedent, and hypothesize new events based on the
precedent.

The Genesis group at MIT has developed a software system called Genesis that
implements some of the requisite story comprehension and reasoning. It parses stories

in simple English into a rich internal representation, using a common-sense knowledge



database to make basic inferences such as “If John killed Mary, Mary is dead.” It
can even extract “plot units” — high-level patterns such as revenges, mistakes, and
successes — identifying what elements in the story matched each pattern. However,
once it has this higher-level information, Genesis has historically not done very much
with it. Genesis has also in the past included only minimal tools for comparing stories.

I therefore attempted to implement a subsystem to allow Genesis to take this next
step: to make analogies between stories, using plot units (along with the rest of its
information about a story) to guide the process. My basic approach was to use a ver-
sion of the Structure Mapping Engine [Falkenhainer et. al. 1989], a general-purpose
analogy-drawing system, to extract analogies between two stories. My results demon-
strate that this technique, at least as I implemented it, is not an effective method
for drawing powerful analogies between stories. Nonetheless, they also demonstrate
that plot units contribute valuable information that can significantly improve even a
generally ineffective method of analogy.

In this paper, I describe the components I used in the construction of the system,
the design of the integrated system itself, and the results of my experiments running
the system on a set of test stories. I also include some comments on the contributions
of the work to the story understanding effort, and the implications this work may

have for future directions.

2 Prior Work

My work incorporates two pre-existing software projects: the Genesis system and the

Structure Mapping Engine.



2.1 Genesis

The Genesis system was developed by the Genesis group at MIT to push the state of
the art in human-like story processing. It is designed to parse stories in simple English;
interpret the story text to obtain an internal representation of the entities in the
story, their relationships, and the events they participate in; and, most impressively,
to derive the causal structure of the story and infer unstated facts about it.

Genesis is highly modular, built on a “propagator” architecture, an extension
of the Observer Design Pattern that makes all entities equally publishers and sub-
scribers. The system components communicate via metaphorical “wires” — named
channels over which each object can broadcast, and to which other components may
subscribe. This publish /subscribe-based loose coupling allows new modules such as
mine to be added easily to the system, making it particularly easy to add new hooks
for existing processing events. This feature was essential when attempting to add
analogical processing as an additional step to be performed each time a new story
was read.

Genesis uses an internal ontology consisting of four classes of items:

A Thing is any item with an independent existence. This is the base class for

the other three types of items.

e A Derivative is a Thing that exists only in terms of other Things — e.g., the

top of a table.

A Relation (a type of Derivative) represents a relationship between two other

Things.

A Sequence is a list (not necessarily strictly ordered) of other Things.



In large part, my work consisted of translating objects of these classes into the rep-
resentations that the SME could work with.
An important feature of Genesis’ story-processing apparatus is its ability to pick

Y

out “reflections,” more commonly called “plot units.” These are small patterns of
events within stories that are given names. For instance, “A harms B, causing B
to harm A” is the structure of a plot unit labeled “Revenge.” Genesis can detect
instances of patterns such as these in a story, even when the events that match the

9

pattern were only implicit. It outputs a “reflection analysis,” which consists of a list
of descriptions of the plot units found in the story. Each plot unit description contains
the name of the plot unit, the variable names used in the template that describes it,
and the Things to which those variables have been bound. One of the goals of my

project was to use these pieces of higher-level understanding of the stories to guide

the analogical mapping process.

2.2 Structure Mapping Engine

The Structure Mapping Engine is a general-purpose analogy-drawing system, built
by Falkenhainer and Forbus [Falkenhainer et. al. 1989] to implement Gentner’s
[1995] model of human analogical reasoning. Gentner’s model characterizes people’s
preference for certain analogical mappings over others in terms of relational structure.
When drawing an analogy between a “source” system A and a “target” system B, a
mapping between an A item and a B item is considered good when those entities play
similar roles in the larger relational structures of A and B. Inter-system mappings
with higher degrees of “systematicity” — interconnectedness between relationships,
such as relations between relations — will be preferred.

Forbus’ SME is an implementation of this model. Forbus’ mapping algorithm takes



)

as input two “description groups,” or “dgroups” — graphs describing the entities and
relationships of the two systems between which an analogy is to be drawn. The goal
of the SME is to find a subgraph of each input that can consistently be mapped
onto an identically structured subgraph in the other input. The algorithm attempts
to maximize the systematicity of these subgraphs, as well as their size. Structure
mapping theory has been widely accepted in the cognitive science community as at
least a good approximation of the process of analogical reasoning, and the Structure
Mapping Engine has been successfully applied in a variety of applications.

The SME’s ontology is remarkably similar to that of Genesis. It allows for four

types of items to appear in a dgroup:

An Entity is any item with independent existence.

A Relation represents a relationship between any two items.

An Attribute is a feature of some item, and as such is inherently linked to the

item; it cannot exist without it.

A Function is essentially a unary relation. Conceptually, it is very similar to
an Attribute, but the SME treats it slightly differently when performing a

matching.

The SME will only map a relation, function or attribute from the source onto
one in the target if they share a type, which is defined by a string (e.g., a son-of
relationship in one system can be matched to a son-of relationship in the other, but
not to a daughter-of relationship). Entities will be matched regardless of their name.
Another important restriction that the SME algorithm imposes is that mappings
between the source and target must be one-to-one; a mapping in which a single item

in one system plays the roles of two items in the other is deemed inconsistent.



While Forbus’ original SME implementation was written in LISP, I used a java
port of it by Mark Finlayson. Debugging previously undiscovered problems in this

implementation comprised a significant portion of my efforts.

3 System Design and Implementation

The design of my integrated system is fairly simple. My new module receives two
inputs from the main Genesis system for each story read: a Sequence object con-
taining the complete story and all the inferences that have been made about it, and
an object containing the reflection analysis for the story. The primary tasks of my
module are: to translate this information for each story into a dgroup which it can
pass to the SME; to recover the original Genesis Things from the SME output; and
to display the mappings between Things in some reasonable fashion.

To keep this project simple, analogies were restricted to be between the last two
stories read. Initially, the system was intended to compare each newly read story
against each of the previous stories and select the best match. However, the mappings

output were of sufficiently poor quality that this would not have been a useful feature.

3.1 Building Dgroups from Genesis Output

To construct a description group for each story being compared, the system first
iterates over all of the Things in the story output by Genesis. For each Thing ¢,
it first recursively converts all of t’s children to a set of dgroup items, then adds ¢
itself. (A child in this context is either the subject of a Derivative, the subject
or object of a Relation, or the elements of a Sequence.) The dgroup items are
stored in a hashmap that maps Things to dgroup items. This allows the system to

avoid adding the same Thing twice and to retrieve the same dgroup item each time



the corresponding Thing appears in the story graph. The actual dgroup object is
constructed from the value list of the hashmap.

The actual Genesis-to-SME conversion process is straightforward. An undifferen-
tiated Genesis Thing corresponds naturally to an SME Entity with the same name.
Relations likewise map directly to SME Relations (with the caveats that, unlike an
SME Relation, a Genesis Relation cannot have more than two arguments and its
arguments are never commutative). A Genesis Derivative (that is not a Relation)
is slightly harder to map: conceptually, it could translate either to an SME Function
or an SME Attribute. The semantics of Attributes are that they are properties
inherent to a specific object, whereas Functions represent quantities that happen to
be linked to a specific object but need not be. The semantics of Derivatives seem
to match those of Attributes more closely, so this translation was selected.

There is no equivalent in the SME to Genesis’ Sequence objects. Treatment of
Sequences is further complicated by the fact that the actual meaning of a Sequence
in Genesis depends on the tag associated with the Sequence — it may indicate a
conjunction, an ordered sequence of events, or a variety of other meanings. To obtain
the correct behavior, the system creates an Entity representing the entire Sequence,
and creates a new SME Relation whose type is given by the Sequence’s tag. This
has the effect of ensuring that the Sequence will only be matched against others of
the same type.

The next step is to convert the plot unit descriptions into elements of the dgroup.
The procedure for this is similar to that for converting Sequences. Each plot unit was
instantiated from a template — for example, the Revenge template might look like: XX
harms YY. XX’s harming YY causes YY to harm XX. The variables in this tem-
plate have been instantiated to actual Things in the process of finding a match in

the story for the plot unit. If Macduff takes revenge on Macbeth, we might say that



Macbeth is this particular revenge’s XX — in other words, that there is an XX relation
between Macbeth and this revenge. Following this line of reasoning, for each plot
unit, the system creates a new Entity, and for each bound variable in the plot unit,
a new Relation is added relating the plot unit entity to the variable’s value, where

the Relation’s type is given by the variable name.

3.1.1 Expected Effect of Plot Units on the SME

At first glance, it may seem that allowing each plot unit to be regular Entity like
any other does not take full advantage of the plot unit. After all, plot units are
supposed to be higher-level knowledge; intuitively, it would make sense to give them
extra power in directing the mappings.

The expectation that led to the current translation mechanism was that a bias
toward mapping the plot units well would simply fall out of the SME’s algorithm.
As elaborated above, the SME prefers analogies with dense networks of interrelated
entities and relations. Each plot unit, when translated into dgroup items, is the
nexus of a large cluster of relations between it and the items corresponding to its
variable bindings. Each plot unit and its cluster therefore ought to be one of the

most appealing subgraphs to be matched: it exhibits a high degree of systematicity.

3.2 Recovering Genesis Mappings from SME Output

The SME matching function returns a list of mappings between source items and
target items. These objects are, naturally, drawn from the set of those provided
as SME inputs. The project goal, however, was to produce a mapping of Genesis
objects to Genesis objects. To facilitate translation of the mappings back into Genesis

objects, I implemented derived classes for each of the relevant SME object types. The



new Entity, Relation, and Attribute objects store the Genesis objects from which
they were generated, so that when these objects are included in a mapping, the

corresponding Genesis object mapping can be immediately derived.

3.3 Displaying Results

In a more fully developed version of this project, it would make sense to include a
full-fledged GUI to display the mappings. For the purposes of experimenting with
the effectiveness of this mapping technique, however, simple text output sufficed.
Indeed, the low quality of the mappings indicates that it probably would not have

been worthwhile to produce a GUI for this system.

3.4 Greedy Algorithm Implementation

Performing an exhaustive search over all possible mappings is computationally infea-
sible for inputs of any reasonable size. Forbus therefore included in his original SME
package a greedy algorithm that uses a beam search as it looks for the best ways to
combine small groups of mappings into larger groups. This variant of the algorithm
was not available in the Java SME library on which this project relies, but it had
been in a previous version of the Java library. Part of my task, then, was to port over

the algorithm from the old version of the SME package to the new version.

4 Results

The system was tested on several sets of stories from Genesis’ story database. The
most basic test was seeing what happened when a story was compared against itself.

I also tried comparing several relatively similar stories against each other to see if



interesting mappings were produced. I tried the comparison with and without plot
units.

Although the SME is technically capable of proposing inferences to be made about
the target, it did not do so in any of my tests.

I present the data first; a discussion of their significance follows. For the sake of

brevity, I have only retained the top three mappings from each output.

4.1 Comparing Stories with Themselves

Below are the mappings produced when the standard “Julius Caesar” plot from Gen-
esis’ story database is compared against itself without plot units (each SME run
produces several proposed mappings, separated by blank lines):

Derivative: object-9906(anthony-9438, ) <--> Derivative: object-4957 (brutus-4391, )
brutus-9429 <--> brutus-4391
Relation: harm-9904(roles-9905, brutus-9429, )

<--> Relation: harm-4955(brutus-4391, roles-4956, )

Relation: murder-9634(roles-9653, cassius-9435, )

<--> Relation: murder-4551(brutus-4391, roles-4584, )
Derivative: object-9654(caesar-9432, ) <--> Derivative: object-4585(caesar-4394, )
cassius-9435 <--> brutus-4391

Relation: want-9570(cassius-9435, appear-9571, )
<--> Relation: want-4532(cassius-4397, appear-4533, )
cassius-9435 <--> cassius-4397
Derivative: appear-9571(property-9572, ) <--> Derivative: appear-4533(property-4534, )
dead-9573 <--> dead-4535
caesar—-9432 <--> caesar-4394
Relation: property-9572(caesar-9432, dead-9573, )
<--> Relation: property-4534(dead-4535, caesar-4394, )

The same comparison with plot units:
Relation: murder-9634(roles-9653, cassius-9435, )

<--> Relation: murder-4551(brutus-4391, roles-4584, )
cassius-9435 <--> brutus-4391

Derivative: object-9654(caesar-9432, ) <--> Derivative: object-4585(caesar-4394, )

Derivative: object-9928(brutus-9429, ) <--> Derivative: object-4679(anthony-4400, )

10



Relation: harm-9926(anthony-9438, roles-9927, )
<--> Relation: harm-4677(cassius-4397, roles-4678, )
anthony-9438 <--> cassius-4397

cassius-9435 <--> cassius-4397
Relation: property-9572(caesar-9432, dead-9573, )
<--> Relation: property-4534(dead-4535, caesar-4394, )
caesar-9432 <--> caesar-4394
Derivative: appear-9571(property-9572, ) <--> Derivative: appear-4533(property-4534, )
dead-9573 <--> dead-4535
Relation: want-9570(cassius-9435, appear-9571, )
<--> Relation: want-4532(cassius-4397, appear-4533, )

A similar self-comparison for the story of Macbeth, without plot units:

Relation: property-9966(dead-9967, lady_macbeth-9251, )

<--> Relation: property-4766(sane-4608, lady_macbeth-4064, )
dead-9967 <--> sane-4608
lady_macbeth-9251 <--> lady_macbeth-4064

Relation: has-mental-state-9834(happy-9835, macbeth-9257, )

<--> Relation: has-mental-state-4450(happy-4420, duncan-4061, )
happy-9835 <--> happy-4420
macbeth-9257 <--> duncan-4061

Derivative: appear-9750(position-9749, ) <--> Derivative: appear-4563(position-4562, )
lady_macbeth-9251 <--> lady_macbeth-4064
Relation: want-9702(appear-9750, macbeth-9257, )
<--> Relation: want-4515(macbeth-4070, appear-4563, )
Relation: persuade-9701(lady_macbeth-9251, want-9702, )
<--> Relation: persuade-4514(want-4515, lady_macbeth-4064, )
king-9441 <--> king-4254
Relation: position-9749(king-9441, macbeth-9257, )
<--> Relation: position-4562(king-4254, macbeth-4070, )
macbeth-9257 <--> macbeth-4070

The same comparison, with plot units:

Relation: position-9747 (macbeth-9255, king-9439, )
<--> Relation: position-4560(king-4252, macbeth-4068, )
path-10263 <--> path-5099
Derivative: object-9785(duncan-9246, ) <--> Derivative: object-4598(duncan-4059, )
king-9439 <--> king-4252

11



Derivative: appear-9748(position-9747, ) <--> Derivative: appear-4561(position-4560, )
duncan-9246 <--> duncan-4059
Relation: murder-9767(roles-9784, macbeth-9255, )
<--> Relation: murder-4580(roles-4597, macbeth-4068, )
macbeth-9255 <--> macbeth-4068
Relation: want-9693(appear-9748, macbeth-9255, )
<--> Relation: want-4506(appear-4561, macbeth-4068, )
dead-9813 <--> dead-4626
Relation: property-9812(dead-9813, duncan-9246, )
<--> Relation: property-4625(dead-4626, duncan-4059, )
path-10263 <--> path-5099
Derivative: appear-9811(property-9812, ) <--> Derivative: appear-4624(property-4625, )

macbeth-9255 <--> macbeth-4068
happy-9833 <--> happy-4646
path-10272 <--> path-5115
Derivative: appear-9831(has-mental-state-9832, )

<--> Derivative: appear-4644(has-mental-state-4645, )
Relation: position-9747(macbeth-9255, king-9439, )

<--> Relation: position-4560(king-4252, macbeth-4068, )
Relation: has-mental-state-9832(happy-9833, macbeth-9255, )

<--> Relation: has-mental-state-4645(happy-4646, macbeth-4068, )
king-9439 <--> king-4252
Derivative: appear-9748(position-9747, ) <--> Derivative: appear-4561(position-4560, )
path-10272 <--> path-5115

king-9439 <--> king-4252
duncan-9246 <--> duncan-4059
Relation: position-9497(duncan-9246, king-9439, )
<--> Relation: position-4310(king-4252, duncan-4059, )

4.2 Comparing Different Stories

Caesar and Macbeth were compared against each other, with Caesar as the source
and Macbeth as the target:

Derivative: object-14983(cassius-14679, ) <--> Derivative: object-9699(duncan-9099, )
Relation: harm-14981(roles-14982, anthony-14682, )

<--> Relation: harm-9697 (macbeth-9108, roles-9698, )
anthony-14682 <--> macbeth-9108

Derivative: object-15239(brutus-14673, ) <--> Derivative: object-9699(duncan-9099, )

Relation: harm-15237(roles-15238, brutus-14673, )
<--> Relation: harm-9697 (macbeth-9108, roles-9698, )

12



brutus-14673 <--> macbeth-9108
cassius-14679 <--> macbeth-9108
The same comparison, with plot units:

Relation: property-9665(duncan-9099, dead-9666, )

<--> Relation: property-4534(dead-4535, caesar-4394, )
duncan-9099 <--> caesar-4394
dead-9666 <--> dead-4535

Derivative: object-9706(macduff-9105, )

<--> Derivative: object-5015(cassius-4397, )
macbeth-9108 <--> cassius-4397
Relation: harm-9704(macbeth-9108, roles-9705, )

<--> Relation: harm-5013(roles-5014, cassius-4397, )

macbeth-9108 <--> cassius-4397

4.3 Analysis

This project was essentially an experiment attempting to answer two questions:

1. Is the Structure Mapping Engine a robust means of generating analogical map-

pings between stories?

2. Do the mappings produced by the SME improve as expected when plot units

are included?

4.3.1 SME as a Story Analogizer

The above outputs demonstrate that the answer to the first question is unambiguously
“no” — at least not when the SME input is generated by the method described above.
Even when comparing a story against itself, in which case the algorithm should have
produced a mapping of each element in the story onto itself, the mappings were very

sparse, and contained largely useless mappings. For instance, several of the mappings

13



contained Derivatives whose names were simply “object” (plus some ID number).
Upon closer inspection, the elements being mapped here have no role in the story; in
fact, it is not entirely clear why Genesis generated them in the first place. Whatever
their purpose, they are certainly not part of any overarching relational structure
central to the story.

In addition, the highest-ranked mappings between stories and themselves usually
fail to map entities onto themselves correctly. These correspondences do sometimes
appear in mappings with lower rankings, but never with more than a few story ele-
ments; in fact, in several cases, a few mappings contained correct correspondences, but
for complementary subgraphs of the input. Clearly, the mappings the SME produces
are woefully inadequate.

In the case of the inter-story comparison, the SME generally picked up one or
two useful correspondences per mapping; it did not fail completely. For instance,
it correctly noticed that Duncan and Caesar both become dead. However, it did
not then extrapolate and associate the rest of the associated correspondences — for
instance, that the killers should then be placed in correspondence, as well.

Part of the underlying problem becomes apparent if we examine the outputs that
included mappings of items whose names contained roles. Closer inspection of these
cases revealed that Genesis was not using quite the representational scheme expected.
Instead of the object of a murder being, for example, Caesar, the object of a murder
was a “roles” Sequence containing the murdered person. This sort of indirection
seems to be common in Genesis representations, and seems to prevent the SME
matching algorithm from properly mapping the objects of relations.

Several other factors may be contributing to the poor match quality:

e The SME algorithm had a number of bugs which needed to be fixed. It is

14



entirely possible that there are still subtle problems with the implementation

that are actually preventing it from producing good mappings.

The greedy algorithm, by its nature, throws out potentially legitimate mappings
in the name of execution speed. It is possible that it is throwing out the best
matches. This seems unlikely, however, given that adjusting the beam width
for the beam search over a wide range of values appeared to have no impact on

the analogy results.

My translation scheme does not accurately reflect the semantics of Genesis and
SME objects. This seems to be the most likely cause: misunderstandings (such
as that mentioned above with respect to “role” objects) of what the various
sorts of Genesis objects mean in different contexts. It is quite likely that the
“one-size-fits-all” approach to Sequences, for instance, is too naive, and likewise

for the uniform treatment of relations and their objects.

The SME’s one-to-one mapping restriction seems rather draconian in some
cases. We humans are certainly willing to make analogies that allow one-to-
many mappings, particularly with respect to stories. This seemingly ill-suiited
restriction may be part of what prevented the SME from drawing correct analo-

gies from Genesis-derived inputs.

It may be that the SME’s graph-based algorithm is simply not well-suited to
story information. This would be somewhat surprising, given the generality of
the SME, but perhaps that generality is also a weakness in the sense that the
SME refuses to let itself exploit domain-specific information or representations

that would help it compare stories more effectively.

15



4.3.2 The Effects of Plot Units

One positive result of these experiments is the strong effect of plot units in improving
the match quality in some cases. Plot units did not always matter much; in the inter-
story comparison, for instance, they simply caused a different set of weak mappings.
In the Macbeth self-comparison, however, plot units made the mappings far richer
(the number of correspondences per mapping shot up drastically), and their accuracy
and relevance improved as well. In fact, with plot units, around half of the important
entities and relations in Macbeth were correctly matched against themselves in the
top mapping. In no case did adding in plot units decrease the quality of the match.
Thus, although the positive effects were not as strong as hoped for, we can still
say with some confidence that plot units add potentially valuable information to the

analogizing effort.

5 Contributions and Future Directions

Despite its shortcomings as a useful implemented system, this project makes several
contributions to the story-understanding effort. First, it suggests that the SME may
not be a good tool for the purpose of story comparison. Second, it highlights the
significance of plot units as potentially crucial information when drawing analogies
between stories; if plot units can cause even as unreliable a story analogizer as the
SME to improve dramatically in some cases, they can certainly contribute to more
sophisticated analogy efforts. Finally, it demonstrates the difficulty of attempting to
translate between even superficially similar representation schemes; it is important,
it seems, to make sure that one’s story representations are properly matched with
story-processing algorithms, and it is a mistake to assume that translation between

separately developed systems with very different capabilities will be a simple task.

16



In the future, several improvements could make the system more viable:

e Hand-crafting a comparison algorithm for stories may be necessary; it is at least
worth experimenting with complete replacements to the SME for the purpose

of story analogies.

e A more sophisticated translation scheme, with more careful attention to the
precise meanings of variations in representation on the Genesis side, could dras-

tically improve the matching results.

e A possibility that I began to explore but did not have the opportunity to develop
fully is using the SME on a much smaller scale: aligning plot units to suggest
potential mappings, then using the SME to propose more mappings consistent
with those suggested by the plot units. This more explicitly gives greater power
to plot units, which would likely be an improvement, and would mean that the

SME would be working on smaller inputs, on which it seems to perform better.

Ultimately, the SME may prove to be at least a useful auxiliary tool in the story
analogizing process. Plot units, meanwhile, will almost certainly be essential. Lever-
aging these tools, computer programs may soon be able to draw complex inferences
from past stories and bring them to bear on more current ones, bringing the computers

one step closer to human-like intelligence.

References

Gentner, Dedre. “Structure-Mapping: A Theoretical Framework for Analogy.” Cog-
nitive Science, 7, 1995, pp.155-170.
Falkenhainer, Brian, Kenneth Forbus, and Dedre Gentner. “The Structure-Mapping

Engine: Algorithm and Examples.” Artificial Intelligence, 41, 1989, pp.1-63.

17



