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Abstract

Today, powerful programs readily parse English text; understanding, however, is another
matter. In this thesis, I take a step toward understanding by introducing Clarify, a
program that disambiguates words. Clarify identifies patterns in observed word contexts,
and uses these patterns to select the optimal word sense for any specific situation. Clarify
learns successful patterns by manipulating an accelerated Self-Organizing Map to save these
example contexts and then references them to perform further context based disambiguation
within the language. Through this process and after training on 125 examples, Clarify
can now decipher that shrimp in the sentence "The shrimp goes to the store." is a
small-person, not relying on a literal definition of each word as a separate element but
looking at the sentence as a fluid solution of many elements, thereby making the inference
crustacean absurd. Clarify is implemented in 1500 lines of Java.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Introduction

• In this section you will learn how Clarify aids in the attempts to
understand language, and in particular the element of language targeted.

• By the end of this section, you will understand why Clarify is
important. You will also know which parts of this thesis to read for a
more detailed discussion.

1.1 Big Picture: Representations Require an Understand-

ing of the Subjects

Words have power because they represent an underlying concept. A word is not a concept

by itself, but a handle on an underlying model. It allows the concept to be easily packaged,

used and modified. Patrick Winston notes "names give us power." Words allow humans

to share information by passing around finite pieces of meaning.

Consider the word mouse, as in "the mouse ran from the cat." In this sentence, mouse

is given the meaning of an animal, a rodent that is known for its cheese-loving personality.

Hearing the word mouse in this context gives you an image of the literal translation of mouse

and not the word used to refer to it.
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It is interesting that this sense of a rodent is not exclusive to the handle. In your experiences,

you may have tied the concept of a small gray rodent to other handles such as shrew or even

rodent. Hearing any of these handles may have the effect of triggering the same imagery,

depending on the level of specificity warranted through your own language and informa-

tion processing. Other languages use different handles to link to a similar internal sense.

You would hear a Frenchman refer to a mouse as une souris or a Spaniard refer to it as

un ratón. Each of these is just a different handle that leads to a sense of a little gray rodent.

It is also possible for one handle to refer to more than one concept. Consider another

sentence, "the mouse clicks on the folder." This time mouse represents an electronic

object used for pointing, clicking and selecting. Additionally, mouse can refer to different

word-senses sentences such as in "that punch left a mouse under your eye" or "the

mouse ran from the fight."

Despite the fact that sentences possess different senses for mouse, as a fluent English speaker,

you are able to infer the correct representation to use for mouse. This occurs because you

have previously tied the handle of mouse to that representation and are able to retrieve

information on the concept and not the word itself. Homonyms, such as mouse are very

common in the English language, and yet somehow English speakers are able to extract the

correct meaning for mouse, based on the context of the sentence.

In some cases, the correct meaning of a word may be unclear, such as in "the mouse fell

off of the desk." Is this referring to a computer mouse, a rodent, or maybe a shy com-

puter nerd who was screwing in a light bulb? Disambiguation of this phrase would require

reading deeper into the context of the sentence.

Addressing the problem of language comprehension requires a model of the human word

disambiguation process. If a computer is to learn to understand language, as humans do, it

16



needs some way of building this model. If a computer is to model word disambiguation, it

must first understand the subtleties behind the words. Understanding words, however, first

requires understanding the different connotations of a single word.

In developing this model, there are several issues that must be accounted for; how are various

word-senses obtained, how are the examples that tie a word-sense to a particular context

stored, and how can a computer be programmed to make rapid use of these learned examples

to disambiguate new word-senses? Genesis, described in detail in Chapter 2, is a system

that has machinery for satisfying each of these questions. The machinery is capable of pars-

ing English stories and performing higher level story comprehension. The parsing process

requires that Genesis already possess mechanisms for identifying and storing word-senses.

I discuss some specifics of this machinery in Section 2.1.

1.2 Clarify Chooses One Relevant Meaning

When reading a story, Genesis first parses the input, identifying both syntactic information

about the input as well as the words individually. Each of the words processed is queried

to WordNet [Miller, 2006], which provides hierarchical classifications of words, such as a

mouse is a type of rodent which is a type of animal. These hierarchies allow the system

to generate concrete representations for each of the words. I further discuss WordNet in

Section 2.2.3

What happens when a homonym is passed into WordNet? It sends back information for

all the different meanings of that word. WordNet has no way of knowing which meaning

is intended by Genesis and therefore returns all of them.
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1.2.1 Keeping All Meanings Leads to Learning Errors

One solution to receiving all of these words is to save all meanings of the word and not force

the system to decide upon any one. This would give the system some arbitrary grasp on a

word. Unfortunately, this approach risks comprehension errors. For example, imagine de-

scribing a computer mouse to a computer, while the computer is storing the learned qualities

about a generic mouse. It does not matter what kind of mouse the computer thinks this

is, because when later prompted for information about mouse, the computer can return all

the information it was given. The error in its representation is masked from the user by the

duplicity of the abstraction mouse.

A visible problem arises, however, when the user switches to discussing a living mouse.

The computer still assumes the generic term mouse, and so it starts returning information

about computer mice. Because of this overlap, it becomes vital that the two different types

of mice are two different objects and their meanings are kept disjoint. In order for a com-

puter to learn correct information about one type of mouse, it needs to be able to identify

which mouse is being discussed. Clarify enhances the Genesis system by deciding upon

one word-sense over another in ambiguous situations.

1.2.2 Genesis Selected the First Definition and Used it

Currently, Genesis attempts to sidestep the problem of incorrect word-sense choice. It

stores all meanings returned by WordNet in a word bundle, and references it with the first

thread in that bundle. As I discussed, this can result in problems when the meaning of a

word changes. Genesis is fortunate that the first meaning returned by WordNet is the

most probable meaning for the word, meaning that Genesis is right, most of the time.
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1.2.3 Clarify’s Decisions Reflect its Experiences

Instead of selecting the first meaning of a word as the default meaning, Clarify attempts

to deduce the word meaning from sentences it has already observed. For example, seeing

the sentence "the mouse fell off of the desk" would cause Clarify to look at other

sentences that contain concepts of falling off of furniture. It would then choose the meaning

of mouse that best matches with its learned pattern for falling off furniture.

This raises an interesting situation of human imitation. Sometimes, humans are capable of

wrongly disambiguating words. For example, a computer scientist who spends all day at his

computer would more likely interpret "the mouse fell off of the desk" as a computer

mouse than a chef would. This is merely due to the experiences and associated connotations

each finds himself in.

Clarify is no different in this respect. Its decisions are heavily dependent on the things

that it has previously encountered. If it has previously learned a lot about animals climbing

and falling off of things, the algorithm would likely find that a mouse that falls off of a desk

is a rodent. On the other hand, if the system has read many examples of different electronic

objects being dropped, placed or moved, it would likely consider a mouse to be a computer

mouse.

1.3 Self-Organizing Maps Look-up the Best Word for a

Context

The goal of Clarify is to locate a relevant example in memory that closely matches the

sentence under question. In this way it can decide which word sense is the best fit for the

sentence. Using memory raises the issue of how to best store and lookup examples. The

current memory system employed by Genesis is made up of several Self-Organizing Maps

(SOMs) [Kohonen, 2001]. These maps are effective for storing sentence structures, but their
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complexity prevents them from being efficient at making the needed lookups.

1.3.1 An Accelerated SOM Allows Clarify to Perform More Effi-

ciently

Clarify has two phases, a training phase and a disambiguation phase. In the disambigua-

tion phase, it is expected that the selected memory system will be able to quickly determine

the most likely connotation for the provided word. SOMs are a good choice for this task,

but due to slow retrieval times, the mechanism grows clunky as it learns more examples.

Fortunately, the data within an SOM is naturally clustered. Clusters make it feasible to

hill-climb through the map, following a gradient of likeliness to the target example. Using

gradient traversal isolates the target more rapidly than the traditional method of lookup.

1.4 What is Next?

• Relevant Technology discusses the machinery that uses WordNet to create repre-

sentational word-senses using threads. It also discusses the Self-Organizing Maps that

make up the primary model of Clarify’s memory system.

• SOM Acceleration describes the algorithm used to modify SOMs in order to speed

up the lookup process.

• Word Disambiguation walks through the process by which Clarify disambiguates

word-senses using its training examples.

• Results discusses the effectiveness the disambiguation process.

• Contributions lists the main contributions of my thesis.
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Chapter 2

Relevant Technologies

• In this section you will gain a basic understanding of the various tech-
nologies used by Genesis to model stories. These technologies include
threads, WordNet, and event models.

• By the end of this section, you will understand how these technologies
can be integrated with a Self-Organizing Map memory system, to later
be used for word disambiguation by Clarify.

2.1 Genesis

The Genesis system is an ongoing research project of MIT’s Genesis group. The mission

of the project is to interpret stories written in common English. For this purpose, Genesis

must first parse the English sentences and build internal representations. It is this initial

parsing which Clarify assists.

Once the representations are constructed, the system looks for places where it can apply

common sense knowledge, drawing contextual conclusions from the story. An example of

a common sense rule is that murder results in death. If Genesis reads "Macduff kills

Macbeth," it can apply this murder rule to conclude that "Macbeth is dead."

In addition to applying contextual common sense knowledge, Genesis possesses appara-
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tus to isolate higher level plot units such as revenge, successes or pyrrhic victory [Nackoul,

2009]. It locates the plot units by looking for patterns of events characteristic to each. For

example, to identify an instance of revenge, Genesis looks for the pattern [("xx harms yy")

causing ("yy harms xx")]. After Genesis has applied all common sense rules and isolated

all plot units, it outputs a "Reflection Analysis" describing each of the plot units identified.

2.1.1 Genesis is Modular

Genesis is easily expanded. It makes use of a propagation architecture allowing different

components to communicate through the use of a wire paradigm [Winston, 2008]. These

"wires" connect various components with one component publishing information on one

end, and a subscribed component "listening" on the other end. Within this architecture it

is therefore easy to add or remove components to the system by merely connecting a few

wires.

In order to connect Clarify to the Genesis system, Clarify listens to trajectories (2.3.3)

and broadcasts disambiguated threads (2.2). If Clarify is un-wired from the system, Gen-

esis continues to perform without any problems.

2.2 Threads Store Word-Sense

Individual words can be related via a hierarchy of specificity. For example, a mouse is a

type of rodent, which is a type of mammal, which is a type of animal, etc. Note the use of

the phrase is-a. This phrase defines a word in terms of something more general than itself

within certain specificities inherent to that individual context. If you recurse, climbing up

several is-a relations, you will eventually reach some root of generalization, such as thing

or action. The resulting path of is-a relations, from the word to the root, is called a thread

as defined by researchers of the MIT AI Lab [Vaina and Greenblatt, 1979]. Threads can

serve as a representational word-sense of a word, defining any situation in a given context
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and through a specific set of understood patterns previously discovered and learned by the

program.

Figure 2-1 – A sample thread for the word mouse demonstrating how is-a relations can
result in a distinct word sense.

2.2.1 Threads are Easily Comparable

Because words higher up the thread are more general than the word itself, it is often the case

that these ancestors are also part of other threads. For example, a mouse is a descendant

of animal, but so is a cat or a parrot. With these thread commonalities, it is possible

to superimpose different threads obtaining a classification tree. When comparing multiple

threads, the two threads with the lowest common ancestors are said to be most alike. In

Figure 2-2, you can see the threads for mouse, cat, and parrot superimposed into a hierar-

chy. While mouse and cat have a common ancestor of mammal, mouse and parrot only join

at animal. With this example it is clear that mouse and cat are more closely related, due

to their lower ancestral root.

Using this intuition, it is possible to devise a way of computing how different two threads are.

To compute the distance, we add up how much work it is to get from one word to another

through their threads. A simplified approach counts the steps in the joined tree along the
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Figure 2-2 – Threads for mouse, cat and parrot combined into a classification tree of
animal

shortest path between nodes. If using this approach, the distance between between mouse

and cat in 2-2 is four.

Because ancestors higher in a tree have exponentially more descendants, climbing higher

up the tree should incur exponentially higher cost. The metric used for this thesis follows

a base two incrementing approach starting at power 0. When examining the mouse thread,

to go from mouse to animal, the tree must be climbed three steps and therefore the cost

of climbing to animal is 23−1 = 4. This is computed for both threads up to the common

ancestor and the scores added together. To complete this example, the new distance between

mouse and cat is four, while the distance between mouse and bird is five.

Note that for threads with 0 steps to common junction, the score is 2−1 = 1
2
, which is

clearly wrong. I account for this by always taking the floor of the distance, defining the

distance between two identical threads as 0 rather than 1
2
without disturbing any of the

other distance scores.

2.2.2 Threads Make Multiple Word Senses Possible

When a word is observed, it is possible that it can take on one of several meanings. The

word mouse can imply either a rodent mouse or a computer mouse. Threads support this

24



quality of multiple word senses because each word sense is characterized by a unique thread.

In Figure 2-3, you can see that two threads for mouse are different, even though the word at

the bottom is the same.

Figure 2-3 – two different word senses for the same word - mouse

2.2.3 WordNet Enables Thread Construction

The Genesis system obtains thread information by making queries to the WordNet

database. The database stores various word relationships - homonyms, antonyms, synonyms,

hyponyms and hypernyms. The hyponym relationship is particularly useful because it stores

the is-a relationships discussed earlier. When Genesis queries the database it is able to ob-

tain the complete hyponym information for the queried word and use it to construct a thread.

When words have multiple word senses, WordNet returns hyponym information for each

of the various word senses. Genesis processes the information to create each of the threads

and stores them in a thread bundle.
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<bundle>
<thread>thing entity physical-entity object whole living-thing

organism animal chordate vertebrate mammal placental rodent
mouse</thread>

<thread>thing entity abstraction attribute state condition
physical-condition pathological-state ill-health injury bruise
shiner mouse</thread>

<thread>thing entity physical-entity object whole living-thing
organism person mouse</thread>

<thread>thing entity physical-entity object whole artifact
instrumentality device electronic-device mouse</thread>

</bundle>

Figure 2-4 – sample thread bundle for mouse. These threads reflect the is-a relationships
stored by WordNet

2.3 Event Models Represent Thread Relations

Threads are useful for representing word-senses. They are not however capable of capturing

deeper concepts that exist in phrases and sentences. For example, a thread cannot model the

event between mouse and cheese in "the mouse eats the cheese." To handle concepts

like this, Genesis implements a frame architecture similar to those defined by Minsky [1974],

to wrap concepts of varying complexity in higher abstracted concepts.

2.3.1 Semantic Nets Frame Threads

Threads are at the base of frame abstractions and are used as building blocks in the con-

struction of higher level more sophisticated concepts.
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Figure 2-5 – Internal representation of each of the two objects - mouse and cheese

Directly above thread objects are semantic relations. A semantic relation models the cor-

relation between multiple objects. This results in a greater understanding of each object in

the relation.

Figure 2-6 – Semantic Relation Modelling the Relation between Joe and laptop in Joe’s
laptop.

Using simple semantic relations, Genesis is able to compile a semantic net, modelling the

various relations between many objects.

Figure 2-7 – A Semantic Net Modelling Relations Between Several Objects
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2.3.2 Event Models Also Frame Semantic Relations

On top of the semantic net layer, Genesis frames together concepts that have been modelled

by semantic relations. This layer relates concepts by the events that can occur between them.

An event consists of a verb that often takes an array of concepts as arguments. For example

in Figure 2-8, the verb eats relates mouse and cheese, a subject and a direct object. The

verb is depicted spanning both of its arguments. In this case, the concepts are both threads,

the simplest form of a semantic relation, but the event eat would handle, in the same fashion,

the relation Joe’s mouse as a subject.

Figure 2-8 – mouse and cheese are the arguments in the event eat

Because both event models and semantic nets take concepts as their arguments, and concepts

have varying levels of complexity, the result can be a complicated arrangement of events and

relations used to model an overall concept. This result is also a concept, and so you can

imagine an unbound recursive model of nested concepts. Figure 2-9 shows the model for

"the mouse eats the cheese on a plate."
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Figure 2-9 – "the mouse eats the cheese on a plate." shown as a recursive event
model.

2.3.3 This Thesis Handles Only Trajectory Events

Through the use of semantic relations and events, Genesis is capable of modeling many

different structures. The most complicated of these is a trajectory, which involves some

object, moving along some path. An example trajectory is shown in Figure 2-10. I restrict

Figure 2-10 – Sample Trajectory: "The mouse falls off the desk" action: fall, ob-
ject: mouse, path: off the desk

my scope to deal only with examples of trajectories for two reasons. First, trajectories
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are complex enough to provide an adequate representation of all other semantic structures.

Second, the solution I propose for word disambiguation would require a different memory

system for each semantic structure. As a result, handling different structures does not

enhance the proof of concept for my proposed memory system. The system I propose learns

from observed trajectories, in order to make informed word-sense disambiguation of words

in future trajectories.

2.4 SOM’s Store and Cluster Observed Objects by Sim-

ilarity

In order to learn from observed trajectories there needs to be a memory system capable of

storing the trajectories in a useful fashion. SOMs satisfy this requirement by simplifying the

process of saving and organizing observed trajectories.

2.4.1 Nodes Implement Distance Metrics

SOMs work by converting objects into nodes and placing them into a map. Nodes implement

a distance metric through which various nodes are compared. Nodes with smaller distances

between them are considered to be more alike than nodes with larger distances. As a result,

it is possible to use this distance metric to organize the SOM such that similar nodes are

clustered close to each other, by connecting them as neighbors.

The metric for computing node distances depends on the contents of the SOM. Because

the SOM used by Clarify stores trajectory objects, which are composed of threads, I

elected to make use of the distance properties of threads discussed in 2.2.1. You can think

of a trajectory as being composed of three main parts - the verb, the subject, and the path

object. To compute the distance between two trajectories, you compute the distance be-

tween each of the thread pairs: verb/verb, subject/subject, path/path and add them together.

Whereas the subject and path are arguments of the verb, the verb is considered the most
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critical aspect of the trajectory, and thus holds a larger weight than the other two thread

pairs.

Table 2.1 – Sample Distance Computation Between Nodes A and B with Weights(w):
verb-50, subject-5, object-2

Steps to Junction Steps to Junction Distance Total
(w) (a) (b) (t = 2a−1 + 2b−1) (t ∗ w)

Verb 100 2 2 4 200
Subject 5 4 3 12 60
Object 2 5 4 24 48
Node
(Sum) - - - - 308

2.4.2 Inserting Looks for Most Similar Neighbors

When a new node is to be inserted in the SOM, it must first be compared to every other node

in the map, looking for the nodes with the most similarity. There are two SOM styles that

implement this task in different ways. One SOM implements a two dimensional grid to store

nodes (Fig. 2-11). A new ’seed’ node is inserted at the point in the grid where the currently

residing node has the smallest distance from the seed. All of the nodes surrounding that

location are assigned as the seed’s neighbors and are modified slightly, causing them to more

closely resemble the seed. The downside of this approach is that the system is restricted to

a static SOM with finite size. It replaces existing nodes with new nodes. As a result, I chose

not to implement this type of SOM for Clarify.

The alternative is to create a dynamic SOM that has no fixed size. Each node is inserted

in an arbitrary location but remains linked to the nodes with the smallest node distance,

thus becoming its neighbors (Fig. 2-12). This is done by iterating through all the nodes in

the map, keeping track of the n nodes with the smallest distance from itself. The variable

n is the maximum number of allowed neighbors and has a predefined value. After iterating

through the entire map, two-way neighbor links are established thereby creating a network

of interconnected nodes. n limits the branching factor of my hill-climbing search (3.2.1).
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Figure 2-11 – Portion of a 2D grid SOM. The green is a newly inserted node

Figure 2-12 – View of a dynamic SOM where new nodes can be easily added and connected
to their neighbors. Red is the current node, green are its neighbors.
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In both SOM’s, inserts occur in O(n) time, where n is the current size of the map. For the

first SOM, n is a large constant, whereas in the second case, n starts small, but increases on

every insert.

Note - though Clarify uses a dynamically resizing SOM, points regarding SOMs will be

depicted using a 2D grid in future sections. This is done for the benefit of the reader, because

it makes neighbors, paths and clusters clearer.

2.4.3 Lookup Takes as Long as Insert

When a node is looked up in the SOM, a very similar procedure to insertion is followed. The

SOM searches through all of its nodes looking for a node that most closely resembles the

seed. After looking through the entire map computing distances between the target node

and each of the existing nodes, the SOM returns the single node with the shortest overall

node distance. This procedure is the same in both versions of an SOM mentioned in the

above section. Because the entire map must be examined, the SOM retrieval time runs in

O(n) time, similar to inserts.

In some instances, an O(n) lookup time is acceptable. Consider however a case where the

map is very large and the system seeks to use the SOM for some computation that requires

a large number of lookups. The result is a very long processing time. In the next chapter, I

propose a modification to an SOM to speed up the lookup time, allowing a trained SOM to

be used to aid in the task of word disambiguation.
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Chapter 3

SOM Acceleration

• In this section you will learn about the clustered nature of SOM’s and
how this feature can be manipulated in several ways to speed up look-ups
in dynamically resizing SOM’s.

• By the end of this section, you will know enough about the acceleration
mechanism to implement your own SOM look-up.

3.1 Disambiguation Preview

Imagine a situation where you have a collection of trajectories. Among those trajectories

are some demonstrating falling actions, others demonstrating swimming actions, etc. At

some point you receive a new trajectory that describes a leaf falling from a tree. You know

that a leaf can be one of several things: a part of a plant, a part of a table, or a piece of

paper. In your uncertainty, you decide to compare this trajectory to your overall collection

of trajectories, hoping to find some clue of what definition is the best fit. The comparison

strategy involves looking for a trajectory that looks most like your new trajectory.

As you begin to examine the collection, you are unsure of how to search for the trajec-

tory that is the best match. In a naïve approach, you could search through every single

trajectory in the collection, but you realize that your collection is huge and you instead
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decide to find a speedier way of locating the trajectory. One way involves manipulating the

nature of your collection, thereby only searching relatable trajectories in the map.

3.2 SOMs Facilitate Nodal Gradients

By design, neighbors of any node in an SOM share some similarity to the node. As a result,

if one node is a neighbor to two other nodes, there is a high chance that the other two nodes

also share similarities. If they share enough similarities, then there is a good chance that

they also are neighbors. This organization usually results in clustered groups of similar nodes

in various positions around the map. Nodes that lay outside other clusters are different from

those clusters and are often an intermediary on a path between clusters. These intermediary

nodes also have neighbors that are in some way similar to themselves. As a result the node

clusters can be considered to be connected by a gradient path, where the gradient captures

how neighbors are similar.

3.2.1 Difference Network Between Nodes Allows for Faster Gradi-

ent Traversal

The gradient layout of the nodes of an SOM makes several search methods reasonable. The

first of these methods is hill-climbing. When looking for the most similar node in the map

to a specific seed, hill-climbing would begin by selecting an arbitrary node. This node would

be compared to the seed node and a score computed. Next the program would examine each

of the neighbors of the current node, computing distance scores with the seed node. If a

neighbor has a smaller distance, hill-climbing would advance to the location of that neighbor

and continue the search, forever ignoring the other neighbors of the previous node. In cases

where multiple neighbors have a smaller distance to the seed node than does the current

node, the neighbor with the smallest distance is selected. Hill-climbing follows a heuristic to

always select a node with the most matching improvement.
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Figure 3-1 – Sample hill-climb of an SOM starting at green and ending at red. The values
in each node are the distances of the node from the seed node. Note that the neighbors of
all traversed nodes have also been examined.

There are two downsides to hill-climbing. The first, local maxima, is discussed in Section

3.2.3. The second downside is the way in that hill-climbing heuristics are evaluated. For

an SOM that handles trajectories, every time a node is traversed, the distance between the

seed and each of the node’s neighbors must be computed. The distance computation as

described in Section 2.4.1 runs in linear time to the size of the trajectories. This is because

each thread pair must be iterated over in order to find the common junction. Only after the

common junction has been found can the distance between nodes be computed. That final

computation occurs in constant time.
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Because SOM look-ups occur during the runtime of Clarify’s testing phase (Section 4.1.2),

some time can be saved by moving a portion of this computation to training time. To ac-

complish this, I implement the concept of a Difference Network as described by Winston

[1970]. This network examines each neighbor pair, creating a difference object containing

thread junctions for each of the thread pairs in the nodes. Additionally, the object contains

the indexes of those junctions for each of the threads as well as the total thread lengths. All

of the difference objects are constructed before look-ups take place. With these difference

objects, look-ups no longer need to compute distances between nodes, but instead compute

changes in the distances by comparing the differences.

Difference Network traversal still follows a hill-climbing algorithm. When a seed is passed to

the SOM for look up, a difference object is created between the seed and the current node,

which is then used to represent the overall distance between the seed and current reference

node. When deciding where next to move along the gradient, each of the difference objects

with the current node’s neighbors is compared to the difference object of the current node

and the seed. By comparing the common junctions and their indexes, it is possible to tell if

one of the neighbors is more or less similar to the seed node compared to the initial node.

Consider the nodes containing these trajectories:

Seed: the mouse fell off the desk
Current Node: the professor goes to the meeting

Figure 3-2 – Sample seed and current node trajectories

Looking at the verbs for each of these trajectories, we can see that the threads possess a

common junction of travel at a zero-based index of one.
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<thread>action trajectory travel fall</thread>
<thread>action trajectory travel go</thread>

Figure 3-3 – The two verb threads fall and go have a common junction at travel

Looking next at the subjects of the trajectory, the threads have a common junction of

organism at index six.

<thread>thing entity physical-entity object whole
living-thing organism animal chordate vertebrate mammal
placental rodent mouse</thread>

<thread>thing entity physical-entity object whole living
thing organism person adult professional educator
academician professor</thread>

Figure 3-4 – The subject threads mouse and professor have a common junction at
organism.

Lastly, the place objects for these two trajectories have a common junction of entity at

index two.

<thread>thing entity physical-entity object whole artifact
instrumentality furnishing furniture table desk</thread>

<thread>thing entity abstraction group social-group
gathering meeting</thread>

Figure 3-5 – The object threads desk and meeting have a common junction of entity

Let us compress this information to a difference object, in a form that is easier to use:

Table 3.1 – Difference Object Between Trajectories in Figure 3-2

Junction Index Length of Current Length of Seed
Verb travel 1 4 4

Subject organism 6 13 14
Place entity 2 7 11
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Now imagine two other difference objects that exist between the current node and two of its

neighbors:

Table 3.2 – Difference Object Between Current Node and Arbitrary Neighbor 1

Junction Index Length of Current Length of Neighbor 1
Verb travel 1 4 4

Subject person 7 13 10
Place abstraction 6 7 9

Table 3.3 – Difference Object Between Current Node and Arbitrary Neighbor 2

Junction Index Length of Current Length of Neighbor 2
Verb go 2 4 3

Subject adult 8 13 9
Place gathering 5 7 15

When comparing two difference objects comparing a|b and a|c, the junction occurring higher

in the tree, or with the lower index is the junction that is carried over to the difference object

between b|c. For example, if you have differences between the following pairs of threads:

1. <thread>action trajectory travel fall</thread>

2. <thread>action trajectory travel go</thread>

and:

3. <thread>action trajectory travel fall</thread>

4. <thread>action trajectory travel fall fall-into</thread>

Figure 3-6 – Thread Comparisons for Two Difference Objects

(1) and (3) are the same thread, so the common junction between (2) and (4) is travel,

which is the higher junction of the two differences. Using this principle, it is possible to

quickly predict the difference objects between the seed and each of the neighbors.

If the common junctions in two difference objects are the same, it is possible that the com-

mon junction in the new difference object is further down the tree. dog and cat both differ

40



from bird at animal, but between themselves they have a common junction at mammal. In

cases such as these, the new common junction is found by starting at the current junction

and stepping down the threads until they differ.

Table 3.4 – Potential Difference Object Between Neighbor 1 and Seed Node

Junction Index Length of Neighbor 1 Length of Seed
Verb travel 3 4 4

Subject organism 6 10 14
Place entity 5 9 11

Choosing which neighbor to go to, is a matter of comparing length of the threads along with

the indexes of the common junctions. These values can be used to quickly compute the

overall distance and test if the distance of a neighbor is less than the distance of the current

node, thereby resulting in constant speed-up of the hill-climbing algorithm.

3.2.2 Gradient Traversal Eliminates Extraneous Searching

The primary motivation for using an algorithm that uses a gradient traversal search is to

avoid searching many unnecessary nodes. If the distance between some node and the seed

node is five, it would make no sense to move to a node whose distance from the seed is ten.

Recall that traditional SOM look-ups search an entire map. For each node in the map, the

distance between the node and the seed is computed and the node with the smallest distance

is saved. By using a gradient approach instead, I make the assumption that the clustering of

the map is well formed. Once a gradient is followed to the top of a peak where none of the

neighbors possess a smaller distance, it does not make sense to climb back down the peak

looking for other nodes. Hill-climb searches make it possible to locate the best match for a

seed, while often searching only a small fraction of the map.

41



Figure 3-7 – A successful hill-climb that eliminates the need to search a large portion of
the map.

3.2.3 Gradient Traversal has Local Maxima

As with other hill-climbing applications, it is possible that the clustered nodes in the SOM

contain local maxima. As a result, hill-climbing can get stuck at a local maxima mistaking

it for the best match for a seed when there are better options elsewhere (Fig. 3-8).

In order to protect against local maxima, the hill-climbing algorithm I implement uses mul-

tiple random samplings. There is a predefined number of searches to be performed on the

map for a single seed. For each search a starting node is chosen at random, and the gradient
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Figure 3-8 – A failed hill-climb, where the traversal ends at a local maximum. The true
maximum is highlighted with a distance of ’5’.

traversal is executed until some maxima is reached. The algorithm is then repeated several

times with different starting nodes, each time looking for a new local maxima. The best

of the local maxima is then returned as the overall maxima. Unfortunately, re-sampling is

a trade-off between accuracy and efficiency, and thus the number of re-samplings must be

adjusted through experimental trials.

Though multi-sampling costs more time than a single gradient traversal, it can be guaranteed

to take at most as long as a traversal of the entire map. Hill-climbing has a deterministic

quality. If a node is ever examined in a search through the map, the path out of that node
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will be the same for each subsequent search. Because of this, if a node has already been

traversed it can be flagged to prevent re-entry. Additionally, a neighbor is examined but not

selected it is not part of an ideal, and therefore all examined neighbors are flagged as well.

If all nodes have been examined, each will be flagged and thus the search will be forced to

quit, having not searched more than in the traditional SOM look-up.

3.3 Highways Speed up Difference Network

Another enhancement I introduce for SOM look-ups is the concept of hub nodes. Hub nodes

follow with the metaphor of airline hubs. Imagine traversing the country, driving from one

city to the next. In some cases, such as traveling between Boston and Plymouth, it is best to

remain in a car and drive. In other cases, such as traveling between Boston and Palo Alto,

it is significantly faster to first drive to Logan Airport, a hub, and fly to SFO, another hub,

before resuming local travel by car. This back-gate ’hub traversal’ bypasses a large chunk of

time that would have been spent traveling across country in an automobile.

In my SOM, I follow this pattern, designating certain nodes as ’hub’ nodes and allowing

a single step traversal between any two hub nodes (Fig. 3-9). This implies that if, during

a look-up, the gradient traversal lands on a hub node, it can proceed to either that node’s

regular neighbors, or any of the other hub nodes.
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Figure 3-9 – An SOM enhanced with hub nodes (blue), providing accelerated jumps across
regions of the map.

3.3.1 How to Select Key Nodes

Hub nodes can be selected according to various metrics. Each metric possesses its own pros

and cons. For example, one metric would choose to connect nodes that are most different.

This approach would provide the largest speed up for samplings that initiate very far from

their target nodes. However, this method is not easily adapted to handle multiple nodes.

Because the nodes are so different, it is possible that the hubs are located on sparsely con-

nected regions of the map, implying that the gradient traversal may never find them.
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An alternate metric selects the nodes with the most neighbors. Because these nodes have

the most neighbors, there is a higher probability that the traversal of the difference network

would arrive at the hubs. Unfortunately, due to the clustering in SOMs, it is common for

the nodes possessing the most neighbors to also be neighbors to each other. This would

require an additional metric that checks to make sure all hubs are some specified number

of steps apart. Having two neighbors both be hubs reintroduces search complexity to the

graph, without providing any significant benefits. Additionally, with any SOM, it is common

for many nodes to all have the maximum number of neighbors, and so it would likely result

in many hubs.

The metric I chose to implement for Clarify seeks to find a specified number of hub

nodes evenly spaced around the map. The number of hub nodes I use is equal to the square

root of the size of the SOM. Because the hub nodes are fully connected, it is ideal to have

just enough hubs to represent the map. Having too many hubs, however, could result in a

complexity comparable to examining each individual node in the map.
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To initialize the hub nodes, I implemented an algorithm that begins by randomly selecting

the specified number of hub nodes in the map.

Figure 3-10 – Initial random selection of hub nodes
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Each hub is then compared to each of the other hubs, using a Breadth-First Search to ex-

amine the shortest path between them. If a hub possesses a neighbor that is not part of

a shortest path to another hub, that neighbor takes its place as a hub, thus extending the

shortest paths between hubs.

Figure 3-11 – A single iteration of shifting hubs apart by moving to further neighbors
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This algorithm is looped over until no hub can be pushed further out. At this point the hubs

are considered to be well dispersed.

Figure 3-12 – A possible ending hub configuration, after all hubs are pushed maximally
apart

Once all hub locations have been fixed, another stage of hub processing occurs. In this stage,

every node in the SOM performs a Breadth-First Search looking for the nearest hub. The

distance to that hub is stored and is later used for an alternate gradient traversal, described

in the next section.

49



3.3.2 Markov Rewards Encourage the Use of Hub Navigation

One risk of the hub enhancement is that traversal may never reach the hub nodes at all.

This would be unfortunate if the hubs actually provide access to the true maxima and the

gradient traversal is caught up in local maxima. A partial solution to this problem was

inspired by Markov Transition Reward Models [Russel and Norvig, 2010]. Following with

these models, I introduce incentive to the gradient traversal, encouraging it to access the

hub network. In addition to looking for the most similar node to a seed node, the look-up

process now has a back-off option that compares the seed to the hub nodes.

At the start of an SOM look-up, the system begins by first comparing the seed to each

of the hub nodes. It locates the hub with the smallest difference and stores it. By knowing

the best hub, the seed can gauge how well the gradient traversal is performing. For example,

if the difference between the seed and the hub is significantly less than the difference between

the seed and the current node, the system might decide that it would be more beneficial to

look for a maximum around the hub, than around its current position. Additionally, if the

system arrives at a maximum with a node distance larger than that of the best hub, it can

identify its position as a local maximum and continue searching.

If, in gauging effectiveness of locating a target node, the search decides that the hub is

a better destination than the nearest maxima, it is possible to traverse to the nearest hub

using a different gradient traversal. This new gradient, the distance of nodes from the nearest

hub, is much simpler. Because every node in the map knows how far it is from the nearest

hub, the gradient traversal can step along the difference objects, following the differences

with a positive gain towards a hub. At any point, the search may land on a node that would

once again make local traversal a better option, and therefore the search for the hub will be

placed on hold.

The decision of whether to climb the local gradient, or to search for a nearby hub is de-
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pendent on the Markov based reward computations for each transition. In my adaptation of

the reward mechanism mechanism, the gradient search computes two separate reward scores.

The first score is the improvement in the node distance from the seed that is achieved by

moving to a neighbor of the current node. The second score is the positive gain in the node

distance from the seed that is achieved by relocating to the best hub that was determined

at the start of the search. Each of the scores is then multiplied by a reward value, equal

to the reward factor raised to the number of steps required to achieve the relative gains.

The reward factor is bounded by 0 and 1, because its purpose is to make far away targets

less appealing. After computing the reward based scores, the target with the higher score is

selected as the best destination to pursue via a gradient traversal.

Table 3.5 – example reward computation using a reward factor(f) of 0.85.

Target Gain of Target Steps to Target Reward Score:
(g) (s) (g ∗ f s)

Neighbor 1 15 1 12.75
Best Hub 45 4 23.49

3.3.3 Establish Highways Before Runtime

The process by which hubs are selected is a slow process, requiring numerous Breadth-First

Searches to obtain shortest paths between nodes. Fortunately, during look-ups, the struc-

ture of the SOM remains constant. This allows the highway implementation to be completed

immediately after all the inserts have been made to the map, but before the look-ups begin.

For the purpose of the rewards system, it is important that all nodes know how far they are

from the closest hub. This results in even more Breadth-First Searches for every node in the

map. Fortunately, these values also never change and so they additionally can be computed

before the lookups ever commence.
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3.4 Acceleration Works for Look-ups but not Inserts

There are two reasons why the enhancements described in this chapter are not adapted to

support faster inserts. First, inserts using the dynamic SOM, look for several nodes that

have small differences from the seed node. These nodes are selected as the seed’s neighbors.

Unfortunately, the issue of local maxima make it more difficult to locate the several best

nodes via gradient traversal than it is to locate the single best. This is because during the

training phase it is ideal to create a well-formed SOM and there is little tolerance for errors.

Errors in inserts could trickle down resulting in errors for look-ups.

The second reason why these enhancements do not support inserts, is that several com-

putations are performed after the inserts but before the look-ups. Without some SOM in

place, there would be no hub network to manipulate. Additionally, modifying the SOM

results in a need to update the hub network, to ensuring that the hubs are well located.

The act of building this network takes longer than the time to perform a traditional SOM

look-up and thus it would not be a reasonable trade-off. It is best to wait and initialize the

hub nodes after all nodes have been inserted to the SOM.
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Chapter 4

Word Sense Disambiguation

• In this section you will learn how, with the aid of an accelerated SOM
lookup, Clarify is able to select the best word meaning for a word.

• By the end of this section, you will understand how Clarify learns from
examples to disambiguate words. You will also see how the training data
effects the persona of Clarify’s decisions.

4.1 Clarify Matches Similar Structures

Up to this point, I have discussed machinery that is used by Clarify and the mechanisms

I used to make the machinery faster. That machinery however was not the principle goal of

this thesis, but was instead motivated by the goal of word sense disambiguation. In order

for my approach to word sense disambiguation to be effective, it is important to have a

corpus representative of each pattern. The potential corpora that can be used run the risk

of growing very large and so I was therefore motivated to seek out a machinery capable of

effectively handling a large corpus.

Word sense disambiguation is challenging problem that can be resolved with a simple idea.

The idea is to find word pattern similarities and choose the word-sense that is most similar

to a learned example.
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4.1.1 Training Stores Known Trajectories

Clarify is a learning program that runs in two phases. The first phase, the training phase,

populates the underlying accelerated SOM with a corpus of trajectory examples. These

trajectories are specified with the correct word-senses for the words involved. For example,

the trajectory "the dog ran to the house" would be specified with additional parame-

ters referring to the appropriate WordNet threads to use from the returned bundles. The

parameters [1, 0, 0] would indicate that the first thread for dog, the first thread for run and

the second thread for tree should be used in creating the trajectory node.

the cat ran to the tree. - 0 0 0
the monkey climbs to the banana. - 0 0 1
the bread goes in the oven. - 0 15 0

Figure 4-1 – Sample Training Data Used by Clarify

It is important that the sample trajectories themselves are unambiguous. Imagine the am-

biguous word hawk. Hawk has several word-senses, a bird, person, or object. By default the

primed thread of hawk is a bird. Without thread specification that a hawk is a person, the

trajectory "the hawk goes to the store" would cause Clarify to learn that animals go

to stores. Later when disambiguating "the cat went to the club", Clarify would rec-

ognize the pattern of animals going to establishments and disambiguate cat to be the animal

and not the man. Overall, it is important that we teach Clarify the precise patterns we

want it to follow, otherwise it is capable of finding incorrect patterns.
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<bundle>
<thread>thing entity physical-entity object whole living-thing organism

animal chordate vertebrate bird bird-of-prey hawk</thread>
<thread>thing entity physical-entity object whole living-thing organism

person adult militarist hawk</thread>
<thread>thing entity physical-entity object whole artifact sheet board

mortarboard hawk</thread>
</bundle>

Figure 4-2 – Thread bundle for hawk

<bundle>
<thread>thing entity physical-entity object whole living-thing organism

animal chordate vertebrate mammal placental carnivore feline
cat</thread>

<thread>thing entity physical-entity object whole living-thing organism
person male man guy cat</thread>

<thread>thing entity physical-entity object whole living-thing organism
person communicator gossip cat</thread>

<thread>thing entity physical-entity causal-agent agent drug stimulant kat
cat</thread>

<bundle>

Figure 4-3 – Thread bundle for cat

4.1.2 Testing Searches for the Best Word Sense

The second phase of Clarify is the test phase. During this phase, the system is given sam-

ple trajectories, whose word-senses are ambiguous. Namely, the word-senses are represented

as the bundles that have been returned by WordNet, and the goal is to select the appropriate

threads to best represent the words in the trajectories.

Clarify attempts to select the correct word-senses to populate a trajectory, by trying

each of the different word-senses and then testing to see which trajectory makes the most

sense. How much sense a trajectory makes is decided by how alike it is to a trajectory in

the SOM. Consider again the trajectory "the mouse climbs onto the cheese." Here, the

word mouse is ambiguous and could be represented by one of several threads.
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<bundle>
<thread>thing entity physical-entity object whole living-thing

organism animal chordate vertebrate mammal placental rodent
mouse</thread>

<thread>thing entity abstraction attribute state condition
physical-condition pathological-state ill-health injury bruise
shiner mouse</thread>

<thread>thing entity physical-entity object whole living-thing
organism person mouse</thread>

<thread>thing entity physical-entity object whole artifact
instrumentality device electronic-device mouse</thread>

</bundle>

Figure 4-4 – Thread bundle returned from WordNet to represent mouse (same as Figure
2-4)

In order to decide which thread best suits mouse, Clarify constructs different trajectory

nodes with each of the various threads. One at a time, these nodes are looked up in the

SOM of observed trajectories, as seed nodes. Using the acceleration described in the previ-

ous sections, a nearest node is returned and the distance between the seed and the nearest

node is saved. After each of the mouse trajectories has been looked up in the SOM, the

trajectory containing the smallest distance to its corresponding nearest node is said to be

the true trajectory. The thread for representing mouse in that trajectory is therefore the

chosen word-sense.

After training Clarify with valid trajectories, it disambiguates mouse to be a rodent and

not one of the other threads. This disambiguation results from a pattern in the training data

where animals climb for food.

In addition to deciding on the word-sense of a single word within a trajectory, Clarify

can be adapted to determine each of the word-senses within a trajectory. This can be done

by creating trajectory nodes representing each of the possible permutations of the word-
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senses. If there were four threads for the subject, two threads for the verb, and five threads

for the place, then there would be 40 (4 × 2 × 5) different trajectory nodes. Each of these

permutation trajectories would then be looked-up in the SOM following the algorithm used

in the single word disambiguation. The trajectory with the best match would contain the

appropriate word-senses.

4.1.3 Words can be Inherently Ambiguous

There are some cases where several word-senses could fit semantically well within the con-

text of a sentence. The trajectory "the mouse fell off of the desk" is one of these.

It is highly possible that given this trajectory, Clarify would return rodent, person or

electronic-device as the valid word-sense. As humans, we can imagine any one of these

fitting into the sentence. This is because the word mouse in this example is inherently

ambiguous. The only way to more accurately identify the intended meaning would be to

examine the surrounding context of the trajectory, which is outside the scope of my work.

It would be an interesting research opportunity to see what context clues can be used to

enhance Clarify’s disambiguation process.

4.2 Clarify Mimics Human Disambiguation

One interesting effect of Clarify can be seen in the way that it currently handles inherently

ambiguous words. As would be expected, the selected word-sense is heavily dependent on

the training data. What this means, however, is that Clarify is capable of developing its

own persona based upon its experiences.

Considering the example above "the mouse fell off the desk". If Clarify had never

seen a person fall off of a desk or other piece of furniture, there is very little chance that the

disambiguation would choose person as the correct thread for mouse. Likewise, if Clarify

knows absolutely nothing about electronic objects, there is very little chance it would con-
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sider a computer mouse. However, if Clarify has observed that electronic devices are often

located on desks, and rodents are often on food, it would select a computer mouse over a

rodent.

This quality is representative of human disambiguation processes. A person’s personal back-

ground and experiences have the ability to influence the way in which words are disam-

biguated. It is not uncommon for two people to be having a conversation, only to realize

that they have been talking about two completely different things. Consider a farmer re-

laying the message "the mouse fell off the desk" to a software developer. The farmer,

who probably spends minimal time on a computer, is most likely discussing the pests that

terrorize his barn. On the other hand, a software developer is often at his desk and likely

knocks things onto the floor. It is probable that with no additional context, the developer

would assume the farmer is talking about a computer mouse.
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Chapter 5

Results

• In this section you will learn about an experiment, comparing the effi-
ciency of the accelerated SOM, to a standard SOM for the purposes of
word disambiguation.

• By the end of this section you will know how well Clarify is able to
disambiguate a series of test trajectories.

5.1 SOM Look-up Efficiency

After implementing the SOM enhancements, I conducted tests to verify look-up acceleration

was in fact accomplished. Based on tests run on SOMs of three different sizes, I am able to

conclude that the enhancements do indeed result in a smaller asymptotic growth for SOM

look-ups.

5.1.1 Efficiency of a Standard SOM Look-Up

As has been mentioned in several places throughout this thesis, SOMs traditionally perform

node look-ups by examining each node in the map. At every node, the SOM compares the

distance between the current node and the target seed and keeps track of what node has

the smallest distance from the seed. Only after examining the entire map does the SOM

return the node that best resembles the seed. Because SOMs have to compute a distance
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calculation on every node, the look-up method operates in O(n) time with respect to the

number of nodes in the map.

5.1.2 Efficiency of an SOM with Accelerated Look-up

The accelerated SOM look-up method possesses two factors that contribute to the over-

all runtime. The first of these factors is the initial comparison of a seed node to each of

the hub nodes in the map. This comparison, unlike the comparisons performed in the stan-

dard look-up, includes only a fraction of the nodes in the map. This is on the order of O(
√
n).

The second contributing factor to the accelerated look-up’s runtime is the gradient traversal

performed on the SOM. Because at each node, all of neighbors are checked and only one

extended, paths through the other neighbors become discredited. With a maximum number

of neighbors (b), I expect the system to make logb n steps through the map before arriving

at a local maxima and as a result the expected traversal runtime is O(logb n). It is possible

to devise worst and best case situations that do not follow this trend. For example in the

best-case, it is possible to achieve a local maxima after a single step. In the worst case, it is

possible to discredit a neighbor, only to later traverse all the way around and to the other

side of the neighbor before arriving at a maxima. In the worst case, the traversal could take

as long as O(n).

The expected running time of the accelerated look-up would be O(
√
n) in most cases, be-

cause the
√
n is the dominating factor. However, in the worst case scenario, the n factor in

the traversal dominates, resulting in an O(n) runtime. This is consistent with the traditional

SOM lookup.
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Figure 5-1 – Worst-case gradient traversal. All neighbors of traversed nodes are also
examined, implying in this case an O(n) traversal.

5.1.3 Experimental Results

When testing the overall performance of the accelerated look-up, I used a max neighbor load

of 4. Keeping this parameter constant, I trained the SOM to various sizes and recorded how

long both the standard and accelerated look-up processes took to execute (Table 5.1).

Comparing the times, it seems as though the standard lookup method is more affected by

the increased SOM size than is the accelerated. The accelerated SOM starts off performing

worse than the standard performance. This is likely due to higher multiplicative constants
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Table 5.1 – SOM performance results averages ordered by the size of the SOM for
Standard(S) and Accelerated(A) look-ups.

25 Nodes 50 Nodes 75 Nodes 100 Nodes 125 Nodes
Steps - (S) 25 50 75 100 125

Time(ms) - (S) .400 .911 1.33 1.66 2.13
Steps - (A) 22 33 42 44 54

% Traversed - (A) 88 66 56 45 42
Time(ms) - (A) .861 1.174 1.292 1.33 1.54

of the computation. Note the dip in the curve of the accelerated look-up (Fig. 5-2). The

fluctuation likely occurs as a result of the constant mutation that occurs to the layout of the

SOM as each additional node is added. This means that adding 25 new nodes to the SOM,

will disrupt the structure of the first 25 nodes, thus affecting the performance values at that

size.

Figure 5-2 – Average time of SOM look-ups given an SOM size for each look-up method

It is also worth noting that the size of the SOM and the percentage of the SOM traversed,

during a lookup, have an inverse relation. Increasing the size of a map but keeping all con-

trols constant results in a notably smaller portion of the map being traversed.
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It would be interesting to test the performance of this SOM on a much larger scale. How-

ever, the training data is manually constructed. As a result it was impracticable to expect

to create significantly more training data.

5.2 Clarify’s Accuracy

Aside from testing the acceleration of SOM traversals, I also tested the accuracy of Clar-

ify’s word disambiguation. I trained Clarify on all 125 training trajectories and then

performed word-sense disambiguation on each of 10 test trajectories. The training data, test

data and display of Clarify’s returned word-senses can be found in the Appendix (A).

After training Clarify on 125 trajectories, the system was able to successfully disam-

biguate all the words in nine of the test trajectories. In the failed trajectory, "the glass

goes in a window." (Table 5.9), it correctly identifies the subject but fails to disambiguate

the verb and path. This likely would be remedied with more training examples.

5.2.1 Interesting Disambiguations

Clarify’s performance is impressive, considering each of the trajectories contains a homonym

whose word senses are substantially different. I am including a list of the interesting test

examples, along with the results returned by Clarify.
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Table 5.2 – Results for: "the mouse climbs onto the tree"

Subject <thread>thing entity physical-entity
object whole living-thing organism animal
chordate vertebrate mammal placental rodent
mouse</thread>

Verb <thread>action trajectory travel rise
climb</thread>

Object <thread>thing Tree tree</thread>

Table 5.3 – Results for: "the shrimp goes to the store."

Subject <thread>thing entity physical-entity
object whole living-thing organism person
small-person runt shrimp</thread>

Verb <thread>action trajectory travel go</thread>
Object <thread>thing entity physical-entity object

whole artifact facility depository storehouse
store</thread>

Table 5.4 – Results for: "the shrimp swims in the water."

Subject <thread>thing entity physical-entity
object whole living-thing organism
animal invertebrate arthropod crustacean
decapod-crustacean shrimp</thread>

Verb <thread>action trajectory travel swim</thread>
Object <thread>thing entity physical-entity

body-of-water water</thread>
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Table 5.5 – Results for: "the hawk flies to the oak."

Subject <thread>thing entity physical-entity object
whole living-thing organism animal chordate
vertebrate bird bird-of-prey hawk</thread>

Verb <thread>action trajectory travel fly</thread>
Object <thread>thing entity physical-entity

object whole living-thing organism plant
vascular-plant woody-plant tree oak</thread>

Table 5.6 – Results for: "the hawk runs to the finish line."

Subject <thread>thing entity physical-entity object
whole living-thing organism person adult
militarist hawk</thread>

Verb <thread>action trajectory travel
travel-rapidly run</thread>

Object <thread>thing finish-line</thread>

Table 5.7 – Results for: "the jet flew to spain."

Subject <thread>thing entity physical-entity object
whole artifact instrumentality conveyance
vehicle craft aircraft heavier-than-air-craft
airplane jet</thread>

Verb <thread>action trajectory travel fly</thread>
Object <thread>thing Spain name spain</thread>
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Table 5.8 – Results for: "the jet goes into the tank."

Subject <thread>thing entity physical-entity matter
substance fuel fossil-fuel coal lignite
jet</thread>

Verb <thread>action trajectory travel go</thread>
Object <thread>thing entity physical-entity object

whole artifact instrumentality container
vessel tank</thread>

Table 5.9 – Results for: "the glass goes in a window."

Subject <thread>thing entity physical-entity matter
solid glass</thread>

Verb <thread>action trajectory travel go</thread>
Object <thread>thing entity physical-entity object

whole artifact instrumentality device
electronic-device display window</thread>

Table 5.10 – Results for: "the glass falls to the floor."

Subject <thread>thing entity physical-entity object
whole artifact instrumentality container
glass</thread>

Verb <thread>action trajectory travel fall</thread>
Object <thread>thing entity physical-entity object

whole artifact structure floor</thread>
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It seems as though Clarify is learning higher level concepts through its pattern match-

ing. For example, the test sentence shown in Table 5.3. "the shrimp goes to the store"

disambiguates the subject and place to small person and establishment as opposed to

crustacean and reserves or some other permutation of those meanings. This demonstrates

an understanding of the pattern describing people going to businesses. Because traversing

up a thread applies exponential weight, the patterns between general words end up holding

a stronger invariant than the patterns between specific words. The above example demon-

strates that people go to businesses, animals do not. This is a condition that is well

represented in my training corpus.

Table 5.11 – Results for: "the mouse fell off the desk"

Subject <thread>thing entity physical-entity object
whole artifact instrumentality device
electronic-device mouse</thread>

Verb <thread>action trajectory travel fall</thread>
Object <thread>thing entity physical-entity object

whole artifact instrumentality furnishing
furniture table desk</thread>

To conclude, it is interesting to consider how Clarify has handled the inherently ambiguous

example of "the mouse fell off the desk", shown in Table 5.11, after training on 125

trajectories. Amazingly, the system concludes that a mouse is an electronic device. This is

strongly in part to the general word patterns between subject and object. In the training

corpus, animals tend to fall off of plants or other natural objects. Inanimate objects, or

entities, often fall off of other inanimate objects or entities. This demonstrates that not only

is Clarify disambiguating words, it is inadvertently learning deeper concepts.
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Chapter 6

Contributions

In this section I list my key contributions in this thesis:

• Implemented Winston’s Difference Network as a mechanism for speeding up map

traversal. Rather than comparing nodes within a map at runtime, the nodes can

be pre-compared. At runtime, the search algorithm must only look at the computed

differences.

• Accelerated the look-up operation of SOMs using a combination of Difference Networks

and a Hub Node short-cut system. I introduce a Markov inspired transition rewards

mechanism to integrate these two systems. The resulting acceleration results in a

look-up process with a sub-linear best case run-time.

• Implemented CLARIFY, a program that compares new trajectories to learned trajec-

tories, identifying patterns to disambiguate word-senses. Trained on a corpus of 125

trajectories, CLARIFY successfully disambiguates the words in all but one of ten test

trajectories.
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Appendix A

Training Data

the cat ran to the tree. - 0 0 0

the bird flew to the tree. - 0 0 0

the monkey climbs to the banana. - 0 0 1

the man goes into the house. - 0 0 0

the owl flies behind the mouse. - 0 0 0

the mouse runs away from the owl. - 0 0 0

the woman jogs to the store. - 0 0 0

the tuna swims from the fisherman. - 0 1 0

the television goes on the wall. - 0 15 0

the bills arrive in the mail. - 0 0 0

Jim goes into the mall. - 0 0 1

the plane flies to France. - 0 0 0

the water goes into the tub. - 5 0 0

the water goes down the drain. - 5 0 2

the supplies go in the closet. - 2 15 0

the water goes down her throat. - 0 0 0

the oreo goes into her stomach. - 0 0 0

the shrimp swims in the ocean. - 2 0 0
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the poodle swam to shore. - 0 0 0

the student runs to the finish-line. - 0 0 0

the girl runs away from the girl. - 1 1 1

the convict runs away from prison. - 1 1 0

the student arrives to class. - 0 0 3

the professor goes to the meeting. - 0 0 0

the computer arrives in the office. - 0 0 0

the submarine goes to france. - 0 0 0

the submarine navigates in the ocean. - 0 0 0

the yacht sails to mexico. - 0 0 0

the statue falls to the ground. - 0 0 8

the banana falls from the tree. - 1 0 0

the keyboard falls from the desk. - 0 0 0

dolphins swim in the sea. - 1 0 0

the ball falls from the shelf. - 0 0 0

the eggs go into the batter. - 1 0 1

the chickens fly to the barn. - 1 0 1

the children went to school. - 2 0 0

my mother went to russia. - 0 0 2

joe traveled to africa. - 0 0 0

joe went to the zoo. - 0 0 0

my kitten vanished from sight. - 0 0 0

people vanished in the bermuda triangle. - 0 0 0

the kitten escaped from the cage. - 0 0 1

the convict escapes from jail. - 0 0 0

the prisoner escapes from the police. - 0 0 0

the baby fell from the bed. - 2 0 0

the box fell from cupboard. - 0 0 0
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papers fall to the floor. - 0 0 0

papers go in the folder. - 0 15 0

the bread goes in the oven. - 0 15 0

the mustard goes on the hotdog. - 1 15 2

grapes fall from the tree. - 1 0 0

the apple falls to the ground. - 0 0 8

acorns fall to the ground. - 0 0 8

squirrels climb to the acorns. - 0 0 0

my mother fell down the stairs. - 0 0 0

kittens run in the yard. - 0 0 6

children run in the yard. - 2 0 6

the children run in the kitchen. - 2 0 0

the suspect vanished in the night. - 0 0 0

my son climbs to the cereal. - 0 0 2

joe climbed to the book. - 0 0 2

the sun climbs in the sky. - 3 0 0

joe climbs in Maine. - 0 1 0

joe swims in the carribean. - 0 0 0

sharks swim in the water. - 0 0 1

children swim in pool. - 2 0 0

bats fly in the cave. - 0 0 0

the bat moves in my bag. - 3 0 4

my computer goes in my suitcase. - 0 15 0

my microphone falls from the stand. - 0 0 0

the rabbit climbs down the hole. - 0 0 4

the fish goes in the oven. - 1 0 0

children travel to school. - 2 0 0

the cat flees from the dog. - 0 0 0

73



the books go on the bookshelf. - 1 15 0

the pilgrims traveled to america. - 0 0 1

joe travels in europe. - 0 0 0

john swam to the island. - 1 0 0

the batter runs on the bases. - 0 0 2

the quarterback runs to the goal. - 0 0 2

joe went to the boutique. - 0 0 0

the glass fell in the sink. - 1 0 0

the monitor went on the computer. - 3 15 0

the cat climbed on the post. - 0 0 3

the mail goes in the mailbox. - 0 15 0

the television moves to the livingroom. - 0 2 0

joe moved to hawaii. - 0 0 0

the robot walked down the stairs. - 0 0 0

the droid runs into the room. - 0 0 0

the goldfish swims in the tank. - 0 0 2

joe traveled on a boat. - 0 0 0

The leaves fall from the branches. - 0 0 1

water falls from the cliff. - 5 0 0

the airplane flies in the sky. - 0 0 0

the rocket flies to the moon. - 0 0 1

the dove flew from the ark. - 0 0 0

the hawk flew from my shoulder. - 0 0 0

the deer fled from the hunters. - 0 0 1

the cow walks to the fence. - 1 0 0

the lawnmower goes over the grass. - 0 0 0

the duck dives into the water. - 0 0 1

the cheetah runs in Africa. - 0 0 0
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the swimmer swims in the pool. - 0 0 0

the water goes down the drain. - 5 0 2

the cloud glides on the horizon.. - 1 0 0

the lightning descends to the ground. - 0 0 0

the bus travels across boston. - 0 0 0

the stool goes at the bar. - 0 15 1

the student runs from the principal. - 0 0 0

the computer falls to the carpet. - 0 0 0

the children climb on the rope. - 2 0 0

the sloth climbs in the branches. - 1 0 1

the hat goes on my head. - 0 15 0

the ferry travels to the cape. - 0 0 0

the contractor climbs on the building. - 0 0 0

the air flies in the vent. - 0 0 0

the money goes in the register. - 0 15 6

the leftovers went into the refrigerator. - 0 0 0

the patient falls on the bed. - 0 0 0

the animals flee from the farm. - 0 0 0

the utensils go in the drawer. - 0 0 0

the picture fell from the frame. - 1 0 0

the file goes into the trash. - 0 0 0

the waitress runs into the kitchen. - 0 0 0

the missile flies to the target. - 1 0 2
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