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Abstract

In my research, I designed and implemented a system for learning and recognizing
visual actions based on state transitions. I recorded three training videos of each
of 16 actions (approach, bounce, carry, catch, collide, drop, fly over, follow, give,
hit, jump, pick, push, put, take, throw), each lasting 10 seconds and 300 frames.
After using a prototype system developed by Dr. Satyajit Rao for focus and actor
recognition, actions are represented as qualitative state transitions, tied together to
form tens of thousands of patterns, which are then available as action classifiers. The
resulting system was able to build simple, intuitive classifiers that fit the training
data perfectly.

Thesis Supervisor: Patrick H. Winston
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Chapter 1

Introduction

This first chapter introduces an overview of the visuospatial action recog-

nition problem, breaking it down into smaller problems, and making explicit

which of those problems my research focused on.

Chapter 2 discusses previous research done in this framework on visuospatial

action recognition.

Chapter 3 introduces the transition model, and goes over initial experiments.

Chapter 4 details boosting classifiers, and the central results of my research.

Chapter 5 summarizes the findings and contributions of this research.

1.1 Overview

A visuospatial recognition system, subject of my research, is responsible for extracting

and recognizing actions in captured video. The system’s task can be summarized as

follows:

• Capture video input

• Extract frame information

– Identify actors

– Select focus
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– Acquire information about current focus and its relation to other actors

• Modify representation to make relevant elements more explicit

• Learn actions

• Use learned information / test the system

Each of those tasks relies on the output of the previous task; nonetheless, the

dependencies are modular, in the sense that only the requirements at each step are

the format and contents of the output. Another actor recognition algorithm could be

used, as long as it produced the same format of output; other filtering could be done

on that output.

1.1.1 Video capture

Training samples consisted, throughout this and previous research, of 3 sets of videos

for visuospatial recognition: vsr1, vsr2, and vsr3. vsr2 was the first recorded set – the

original set of recorded videos was deemed poorly recorded, and never used. vsr3 was

recorded later, taking into account some characteristics of the program being used to

extract frame information, trying to make events cleaner and contact more explicit;

both vsr2 and vsr3 were used by previous work. I recorded vsr1 myself, wishing to

have yet another set of videos on which to test the data.

Each of the training sets consists of 48 or more videos, 3 for each of the 16 actions

my research attempts to identify: approach, bounce, carry, catch, collide, drop, fly

over, follow, give, hit, jump, pick, push, put, take, and throw. vsr2 also includes some

extra videos for a few of the actions; those extra videos were ignored on my research.

Video samples were recorded as colored video, at 320 x 240 resolution, at a rate of

30 frames per second. Color and image size are only relevant for the actor recognition

stage of the system; for this work, the placeholder component recognizes actors using

colors, and the subjects in the videos wear colored shirts. The frame rate, on the

other hand, affects future steps of the process: the granularity of the frames is related
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to timing considerations – a limit distance of 60 frames, for example, is a timing limit

of 2 seconds between events.

1.1.2 Extract frame information

The processing of information from each frame of video itself was done by previous

research, and its implementation, Blobs, detailed in Chapter 2. At first, reference

frame information is produced for each frame, using the information available from

the frame stream so far (figure 2-2); it contains information about which actors are

appear in the corresponding frame, and their relative positions.

1.1.3 Later stages

The remaining stages of the visuospatial action recognition system were the focus

of my research. Chapter 2 will explain previous work used for this part of the pro-

cess, in particular filtering qualitative descriptions out of reference frames, via Att,

and a previous translation of that qualitative description into hardcoded actions, via

RFTell. RFTell was also responsible for providing inspiration for my transition-

based models, discussed in chapter 3 and also used in chapter 4.
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Chapter 2

Previous work

This chapter discusses previous work done in this framework for visuospatial

action recognition. It describes Blobs and Att, components of the system

used previously and still used for my final results; it mentions previous work in

recognition, and details RFTell, a demonstration of action recognition that

contains key ideas for my research.

When done with this chapter, the reader will be familiar with early stages

of the system, actor and focus recognition, what information is received by the

components I wrote for my research, and the motivations for having created a

new representation.

The initial parts of the system, focus and actor recognition, and filtering, were

implemented by Dr. Rao as the Blobs and Att programs, and are not the focus of

my research. They are used in the initial stages of the visuospatial action recognition

system, past video capture, and detailed in this chapter.

This chapter will also briefly touch on two previous approaches for the later recog-

nition stages of the system: using hidden markov models, and using hardcoded tran-

sition rules.
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(a) take1, frame 029 (b) catch0, frame 095

(c) bounce1, frame 025 (d) hit1, frame 041

Figure 2-1: Sample captured frames

2.1 Blobs

Blobs is responsible for processing video frames, as png files (see 2-1) and producing

reference frames for each of them, based on the stream seen so far (figure 2-2). In the

process, it does actor and focus recognition.

Blobs was implemented as a prototype for the initial stage of action recognition;

it supports at most 3 actors on a scene, who must be color coded with configurable

colors (usually red, blue, and green, for best detection). Nonetheless, it supports

real world video in real time. Current research by Dr. Rao is working on the harder

problem of actor recognition and segmentation in real scenes, without the aid of

color-coding.
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2.1.1 Actors

An actor is a point of interest on the scene, that tends to change almost continuously

with time.

The implementation used for this stage, Blobs, uses calibrated colors to identify

up to three actors in a scene. Blobs was implemented by Dr. Rao [Rao, 1998] and

used throughout this research, because my focus of it is not on the actor recognition

problem itself.

Two main issues are relevant about actor recognition: first, only moving objects

can currently be identified as actors. Other points in the scene could be of interest: a

point around which other objects orbit, or even a background, for example. Occlusion

could also be an issue here: ideally, this stage of the system should be able to keep

tracking an actor as it goes behind an obstacle.

The second issue, segmentation, becomes more evident given with more complex

actors. Since Blobs represents a person as a single actor, information is never cap-

tured, such as the relative arm position to the body, or what part of the body made

contact with another actor.

2.1.2 Focus

Focus selection [Rao, 1998] is also handled by Blobs. At any point in time, the system

can be focused on one of the actors, or nowhere, if there are no actors in scene. The

criteria used for focus change is simply assigning focus to the fastest moving actor;

this part of the system could be informed by higher stages of the cognition to instead

pay attention to or look for a specific actor, in future work.

2.1.3 Actor recognition

The raw output from the first stage of video processing, done by Blobs, produces a

reference frame for each frame of video. This reference frame contains very precise

information, such as location of the current focus on the frame, its current vertical

and horizontal speed, the relative location of other actors with relation to it in the
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frame, and contact flags on 12 angle sectors. Each of the frames, called a reference

frame, is built as the sample in figure 2-2.

frameid: 4

nm=3 foaid=1 foaSize=0.044219 tracking=1 dx=0.000000 dy=0.005000 R=0.005000 Theta=1.570796

[0] R=0.405123 Theta=-0.024686

[1] R=0.000000 Theta=0.000000

[2] R=0.300666 Theta=-0.066568

ContactIds[12]= -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 2-2: Sample reference frame produced by Blobs

The first line identifies the video frame from which this reference frame was con-

structed. The second line contains the following variables described in table 2.1.

Table 2.1: Definitions for reference frame

field description
nm number of actors recognized in the scene
foaid id of the actor currently on focus, from 0 to nm - 1, or -1 if none
foaSize size of the actor currently focused
tracking whether the actor is being tracked (1 if yes, 0 otherwise)
dx, dy actor’s movement in the horizontal and vertical axes since last frame
R, Theta actor’s position in polar coordinates

The following lines contain the position in the scene for each of the actors, in polar

coordinates, relative to the actor currently being focused on. If the actor is not in

the scene, the line referring to it does not appear.

The last line indicates whether the actor currently in focus is in contact with other

actors. For each of 12 arcs of 30 degrees, the values can be -1 is there is no contact

on that arc, or an actor id if there is contact with that actor.

2.2 Att

The backbone of the system is the previous work done by Dr. Rao for processing a

video stream into attention traces. The key idea is that it is sufficient for a system to

be focused at only one actor of a scene at a time, the properties of that actor, and its
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relations to other actor. This approach greatly reduces the complexity of the data,

makes the system more scalable to a larger number of actors.

2.2.1 Attention frames

Reference frames then have their information filtered into attention traces, by Att.

The finely-quantified, almost continuous information in reference frames is trans-

formed into discrete changes; significant changes can be detected and assigned to a

specific frame – as soon as the change goes over a detection threshold. A fragment of

an attention trace is shown in figure 2-3.

Inst 49 [- 48 47 46 45] id=2 ddx=-1 [0] dR=1 dTheta=0

KF 49 [- 35] id=2 [0] dR=1 dTheta=0

Inst 50 [- 49 48 47 46] id=2 ddx=-1 [0] dR=1 dTheta=0

KF 51 [- 11] id=1 [2] dR=-1 dTheta=0

Inst 55 [- 54 50 49 48] id=2 [0] dR=1 dTheta=0 [1] dR=-1 dTheta=0

Inst 57 [- 56 53 52 51] id=1 [2] dR=-1 dTheta=0

KF 58 [- 26] id=0 [2] dR=1 dTheta=1

KF 59 [- 49] id=2 dmarkerContact[1]=1

Inst 60 [- 59 55 54 50] id=2 dmarkerContact[1]=1

Inst 61 [- 60 59 55 54] id=2 [1] dR=0 dTheta=1 dmarkerContact[1]=1

Figure 2-3: Sample fragment of attention frame log, produced by Att

Any meaningful changes, after filtering, are assigned to specific frames. Each of

those frames can be of one of two types: instantaneous frames, and key frames.

Changes detected and assigned to an instantaneous frame represent a continuous

change, detected via Att’s thresholds to have started on that frame – like an actor

moving.

Changes detected and assigned to a key frame, on the other hand, represent the

change of a trend: objects that were moving in one direction stopped, or started

moving in another direction, or contact between two objects is broken. Large changes

in an event can be entirely described by the key frames.

Using both instantaneous frames and key frames provides a description of all

changes deemed significant enough by the filtering in Att. Using only key frames
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provides a meaningful description of the event as a whole, because key frames include

only the most significant changes in physical state.

Note that the mapping between reference frames and instantaneous or key frames

is not one-to-one. A reference frame may not be mapped to either, if there are no

changes happening – a reference frame cannot be taken out of context here, because

this processing depends on change across a number of frames. Similarly, one instan-

taneous and one key frame may be produced for a same frame number.

Note also that, due to the nature of filtering and discretization of change, very

small or slow changes are considered to be noise, and ignored. The exact thresholds

are calibrated manually to detect changes at the correct scale.

Note, finally, that while reference frames include floating point numbers for posi-

tion and movement, this representation reports only the change on the vertical and

horizontal axis. Information about trajectory is sacrificed: there is no notion of an

angle of movement, only up and down, left and right, and the combinations of those.

2.2.2 Actions

The concept of a visuospatial action, or pattern, needs to be somehow defined. Con-

cepts represent to something one might assign a verb to, such as give or jump, or a

more complex, specific description, such as hit from the left, then break contact and

fall off the scene.

With supervised learning, the system should be able to infer something common

about all videos repreenting the same action, and extract a model (or models) that

can be used to recognize the action later on. With unsupervised learning, such mod-

els must be extracted from similarity between unlabeled actions. In my research I

proposed such models, how are they extracted, learned, and how they can be used.
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2.3 Previous work on action recognition

2.3.1 HMMs

Prior to the research reported in this thesis, only supervised learning was used: a

Hidden Markov Model (HMM) was extracted from each group of labeled actions,

using a human entered guess as to the number of states. Once a HMM was produced

for each action, a meta HMM, (i.e., a HMM using the state of the others as input)

was used to try to identify which of the actions was occurring at any given time,

being responsible for both recognition and prediction.

The system worked, but presented some weaknesses. In particular, the extraction

of HMMs does not generalize easily to unsupervised learning, without the use of some

non-intuitive similarity measure, and the system was particularly weak with regard to

timing variations. This led me to start looking at another model for representation.

2.3.2 RFTell

RFTell, a perl script, was put together in previous research to show initial parts of

the system (Blobs, Att) working, and demonstrate the potential for visual action

recognition in real time. It processes reference frames and producing a description of

the physical state of the system. Such description had a small number of variables,

listed in table 2.2, each of which could take only one of a very small number of values,

listed in the same table. Hand-encoded rules would check for those variables changing,

or remaining constant, over time, and trigger whenever completed. A triggered rule

would send output to a text-to-speech program (festival), providing audio to be put

along with the video for a demonstration.

A rule would then be handcoded as a sequence of variables changing, or not

changing. Some of the most complex rules are listed in figure 2-4.

For “A1 picked up A0,” at first Y0 changed from 0 to 1, while C01 is 0; that is,

actor 0 starts moving up while not in contact with actor 1. Then, C01 changes from

0 to 1; that is, contact is detected between actors 0 and 1.
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Table 2.2: Definitions of state variables in RFTell

variable description
foaid -1 if not focused anywhere, the actor ID that is the current focus otherwise.
Ei 1 if actor i is in scene, 0 otherwise.
Mi 1 if actor i is moving, 0 otherwise.
Xi 1 if actor i is going to the right, -1 if to the left, 0 if not moving horizontally.
Yi 1 if actor i is moving up, -1 if moving down, 0 if not moving vertically.
Si 1 if actor i is getting bigger, -1 if shrinking, 0 otherwise.
Cij 1 if actors i and j are in contact, 0 if not.
Rij 1 if the distance between actors i and j is increasing, -1 if decreasing, 0 otherwise.
Tij 0 if actor j is to the right of actor i, 1 if to the top, 2 if to the left, 3 if to the bottom.

1000 C0,1=1,0;;Y0=0,-1;;C0,1=1,0 A1 dropped A0

2000 T0,1=0,3;C0,1=0;;T0,1=3,2;C0,1=0 A0 flew over A1

2000 T0,1=2,3;C0,1=0;;T0,1=3,0;C0,1=0 A0 flew over A1

3000 C0,1=1,0;C0,2=0;;C0,2=0,1;C0,1=0 A1 gave A0 to A2

3000 C0,2=0,1;C0,1=1;;C0,1=1,0;C0,2=1 A1 gave A0 to A2

2500 Y0=0,1;C0,1=0;;C0,1=0,1 A1 picked up A0

Figure 2-4: RFTell hardcoded sample rules

A numerical priority is associated with each rule, because some actions are usually

detected as a subset of other actions.

The structure of the rules themselves is the most important result from RFTell:

some variables are required to change, while other variables are required to stay

constant, but most state variables are irrelevant. The picking-up action should not

depend on the presence of a third actor in the scene, for instance.

Note also that one same action may have more than one possible encoding: in

the sample above, flying over is triggered both for starting at the left quadrant and

moving to the top quadrant, or starting at the right quadrant and moving to the top

quadrant. Those actions are distinct, from a visuospatial view (one could conceivably

be called flying over from the left and the other flying over from the right), but both

are grouped under the same description.

Note, finally, that the same action could conceivably originate from two different

rules, depending on the current focus and the order with which the changes are
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detected. For the sample of give, there are two rules, one where the receiver makes

contact with the object and then the object breaks contact with the giver, and one

where the object breaks contact with the giver before it makes contact with the

receiver. Even given a large enough time lapse to make those sequences distinct (in

which case it becomes clear that throwing an object to someone is one instance of

give), both rules have the same start and end state.
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Chapter 3

Transition-based representations

This chapter introduces the transition-based representations: why they were

selected, how they compare with previous work, and how they were modified

during my research (section 3.1). It explains how transitions are put together

in patterns (section 3.2), and how those can be used to identify actions.

This chapter also goes over experiments in learning actions, extracting pat-

terns from sample files and using them for recognition, as simple subsequences

(subsection 3.3.1), and then using hits and misses (subsection 3.3.2). Those

experiments were unsuccessful in producing real-time results, consistently iden-

tifying an intuitive description for actions, and recognizing actions themselves.

Experiments with unsupervised learning, using patterns and a specific data

structure, are included in subsection 3.3.3. Those experiments produce a better-

than-random, but ultimately unsatisfactory, prediction rate for transitions.

Section 3.4 includes suggestions on how to modify the present detection

model for future work; this research direction was not pursued, in favor of the

approach taken in chapter 4.

When done with this chapter, the reader be familiar with the transition-

based representation used in my research, its inspirations, and its uses early

unsucessful experiments.

Following a suggestion by Professor Winston, I looked into work by Borchardt

about discrete representations for states and transition [Borchardt, 1984, 1993]. RFTell
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already used a representation very similar to the one I wanted to achieve; adopting

and modifying it swas a natural implementation choice.

3.1 Transitions

3.1.1 First model: state representation and transitions

The first attempt at a model was to make explicit the framework under which such

variables existed. The concept of a state representation was created: at each point in

time, the physical state could be concisely summarized by assigning a value to each of

the variables. Following a suggestion by Dr. Rao, I made the focus variable explicit;

while RFTell did use it to track the rule triggered when the focus was in no actors,

it was unused otherwise; it would be interesting to see whether the actual focus had

any bearing on obtaining a good description of actions. Each state, then, contained

the following variables, essentially identical to the representation used for RFTell

(table 3.1).

Table 3.1: Updated definitions from RFTell

variable description
F -1 if not focused anywhere, the actor ID that is the current focus otherwise.
Ei 1 if actor i is in scene, 0 otherwise.
Mi 1 if actor i is moving, 0 otherwise.
Xi 1 if actor i is going to the right, -1 if to the left, 0 if not moving horizontally.
Yi 1 if actor i is moving up, -1 if moving down, 0 if not moving vertically.
Si 1 if actor i is getting bigger, -1 if shrinking, 0 otherwise.
Cij 1 if actors i and j are in contact, 0 if not.
Rij 1 if the distance between actors i and j is increasing, -1 if decreasing, 0 otherwise.
Tij 0 if actor j is to the right of actor i, 1 if to the top, 2 if to the left, 3 if to the bottom.

A change one variable between two consecutive states was deemed a transition.

Transitions were deemed the most important part of this representation; ideally, any

action could be represented as unambiguously as a sequence of transitions. Each

transition would consist of a variable type, its corresponding actors, a previous state

and a new state. For example, C12 = 0 : 1, or E2 = 0 : 1.
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The representation used in RFTell is closer to Borchardt’s, in that it tracks both

changes in state variables, and lack of change: as seen in rule given for “A1 picked up

A0”, in figure 2-4, a state variable could change values (Y0 changing from 0 to 1) or

keep a constant value (C0,1 staying constant at 0). Transitions, on the other hand,

only track change of value; they have the general format V = A,B, for some state

variable V , and before and after states A and B.

Another notable difference between this representation and the previous one is that

the focus is now explicit: rather than mere consideration, the F variable becomes part

of the description of the scene, and could be used for modeling actions.

Transitions could be extended encompass unknown states: the special value of

“?”, could be used in the previous or new state fields to represent that the current

state was unknown, such as when starting the system, or not applicable, such as the

contact between objects 0 and 1 when object 1 was not in the scene.

Extending transitions to work as masks was just as simple: add a wildcard char-

acter, “*”, to represent that any value would be accepted on that field.

After implementing with this framework, I proceeded to look at the attention

trace itself.

Event traces

I envisioned the transitions outlined above being used in the next stage of the system:

each event gets transformed into a sequence of transitions, each with an associated

frame number from its occurrence, and this stream of timestamped transitions is fed

into the next stage of the system.

Again inspired by the RFTell representation, I wrote a program, Rep, to trans-

lates a stream of reference frames into a stream of transitions, using exactly the same

filters of RFTell. A fragment of the stream is shown in figure 3-1.

Rep did some filtering similar, but not identical, to the one used in Att. Since the

filtering done by Att produced results in previous work, I should be using the exact

same filtering to obtain the same output, and focus only on the machine learning

parts of the process. It should produce the information in this new transition-based

31



43 F 0 2

43 T1,2 3 2

44 F 2 1

44 T1,2 2 3

45 F 1 2

45 T1,2 3 2

68 R0,2 0 -1

69 R1,2 0 1

70 C0,2 0 1

71 X2 0 -1

71 M2 0 1

79 C1,2 1 0

Figure 3-1: Event stream fragment produced by Rep (training set vsr2, give0, frames
43 - 79)

representation, however.

For this purpose, I created another program, Att2Rep, that converts the output

of Att into a stream of transitions and frame numbers, as envisioned before and

produced by Rep.

The representation from Att, however, did not contain any reference to quadrants;

instead, it contained information about whether the angle between two actors was

changing. To adjust for this, I had to expand the state representation and transition

models to include a new type of variable, W , to represent this change: initially Wij

would assume the value 1 for clockwise rotation, -1 for counterclockwise, and 0 for

insignificant rotation of the actors around each other.

Changes in quadrant (T ) were not to be detected anymore. The quadrant borders

at 45 degrees were somewhat arbitrary, and had been proven brittle in initial testing

– small rotation inside a quadrant would not be detected, but some rotation noise

around the diagonals would survive filtering. The variable type was still kept in place

for backwards compatibility, but not produced by Att2Rep.

After initial testing, no actions were found where handedness was relevant. All

actions tested could happen “from the right” or “from the left” under the same label,

and patterns where W variables did assume both 1 and -1 values were not found to

be relevant to the oberved action itself.

In order to keep the model simpler, I fixed the definition of W variables to track

only whether two objects are rotating around each other, not the direction of rotation
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is clockwise or counterclockwise. If required, undoing this at later stage should be

simple enough, but that never became necessary.

The new complete list of variable descriptions is shown in table 3.2.

Table 3.2: Definitions of state variables derived from RFTell, final version

variable description
F Current focus. -1 is none, or actor number otherwise.
Ei 1 if actor i is in scene, 0 otherwise.
Mi 1 if actor i is moving, 0 otherwise.
Xi 1 if actor i is going to the right, -1 if to the left, 0 if not moving horizontally.
Yi 1 if actor i is moving up, -1 if moving down, 0 if not moving vertically.
Si 1 if actor i is getting bigger, -1 if shrinking, 0 otherwise.
Cij 1 if actors i and j are in contact, 0 if not.
Rij 1 if the distance between actors i and j is increasing, -1 if decreasing, 0 otherwise.
Wij 1 if actors i and j are rotating around each other, 0 otherwise.
Tij 0 if actor j is to the right of actor i, 1 if to the top, 2 if to the left, 3 if to the bottom.

The change in this representation is the inclusion of the new variables, Wij, to

represent ongoing change of relative orientation. As noted above, this representation

is a superset of the previous representation: no matter whether only Tij, Wij or both

types of variable are fed in the stream, both types of change can be captured.

The same video fragment now produces the results seen in figures 3-2 and 3-3.

3.2 Patterns

With this framework in place, I still needed a model to represent the actions them-

selves. I started with the simplest possible concept: I defined a pattern to be a

sequence of transitions, without unknowns, masks, or constant transitions. In order

for a pattern to match with an event trace stream:

• All transitions listed on the pattern must occur on the event trace, in the listed

order;

• Two transitions that have been matched to the pattern may not occur more

than 15 frames apart;
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47 F 2 1

47 R0,2 -1 0

47 W1,2 0 1

55 F 1 2

55 R0,2 0 -1

55 W1,2 1 0

56 X2 0 -1

56 M2 0 1

56 R1,2 0 1

57 X2 -1 0

57 M2 1 0

57 R0,2 -1 0

57 R1,2 1 0

66 R0,2 0 -1

66 W1,2 0 1

67 X2 0 -1

67 Y2 0 1

67 M2 0 1

67 R1,2 0 1

69 W1,2 1 0

70 C0,2 0 1

71 R1,2 0 1

74 Y2 1 0

75 W1,2 0 1

79 Y2 0 1

79 C1,2 1 0

Figure 3-2: Event stream fragment using Att and Att2Rep (training set vsr2, give0,
frames 43 - 79, using instantaneous and key frames from Att)

67 F -1 2

67 E0 0 1

67 X0 ? 0

67 Y0 ? 0

67 S0 ? 0

67 M0 ? 0

67 E2 0 1

67 X2 ? 0

67 Y2 ? 0

67 S2 ? 0

67 M2 ? 0

67 R0,2 0 -1

67 W0,2 ? 0

70 R0,2 -1 0

70 C0,2 0 1

77 R0,2 0 -1

79 E1 0 1

79 X1 ? 0

79 Y1 ? 0

79 S1 ? 0

79 M1 ? 0

79 R0,1 ? 0

79 W0,1 ? 0

79 R0,2 -1 0

79 R1,2 ? 0

79 W1,2 ? 0

79 C1,2 1 0

Figure 3-3: Event stream fragment using Att and Att2Rep (training set vsr2, give0,
frames 43 - 79, using only key frames from Att)

34



• If two consecutive transitions A and B in the pattern refer to the same variable

α, then no other transitions may occur in the event trace to the same variable

α, between the transitions that match A and B.

The first two conditions, transition occurrence and matching limited to a small

time window, help capture the concepts of sequential actions and locality. The last

condition attempts to capture that allowing other types of change to occur does not

detract from capturing a sequence of changes on a specific variable.

While these rules work for matching against instantaneous and key frames, they

are bad for capturing key frames that occur too far from each other. So, when an

event trace stream is produced using only key frames, the following rules for matching

patterns were used instead:

• Before processing, discard all transitions with unknowns;

• All transitions listed on the pattern must occur on the event trace, in the listed

order;

• No other transitions may occur between two transitions that match consecutive

transitions in the pattern.

In effect, this makes the pattern be a substring of the (filtered) event trace, as op-

posed to a subsequence: in other words, the pattern for key frame matching must have

all its transitions happening adjacent to each other, with no unmatched transitions

in the event log in between.

3.2.1 Comparison with previous work

RFTell

The transition-only representation is not equivalent to the RFTell repre-

sentation: transitions as implemented cannot capture a state that remains constant

while something else changes. The framework could be extended in future work to
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capture transitions with same before and after state, not mentioned in the event log,

but this direction was not explored in the current work.

RFTell also used its own filters, over a variable number of frames for each kind

of scene variable. Att, on the other hand, uses filters that always look at the past 4

frames to determine what is changing on the scene. Different filters are used for

detecting qualitative changes. Different filters will produce slightly different results,

even if they map to very similar representations; a comprehensive comparison of both

representations was not explored.

HMMs

The previous work using HMMs for classification was particularly sensitive to timing:

the timing of each action was captured from the training data, and performing the

same action too slowly or too quickly would cause detection to fail. Timing informa-

tion is not captured in my representation, other than the ordering of the transitions

themselves. Accordingly, I expected this representation to be more robust to timing

changes, as confirmed in experiments.

3.3 Experiments with the transition model

Using this transition-only model and concept of patterns, I did the first few experi-

ments. First, I attempted to reproduce supervised learning from previous research.

3.3.1 Supervised learning

Representation used: transition-only patterns

Goal: verify that meaningful descriptions for each action can be extracted, when the

system is presented with video samples for a single action type (for example, only

give samples).

Method:
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A first algorithm for finding subsequences across a limited number of input event

trances was intuitive: simply search event logs for common subsequences, and build

up larger patterns from smaller patterns. The same training set from the previous

work, vsr2, was used here: 16 actions, with 3 recorded samples for each.

Patterns with 1, 2, 3 and 4 transitions were searched across the event traces for

each individual verb of the training set vsr2, one set of 3 videos corresponding to a

verb at a time. The results for the obtained number of patterns are below, as well as

a representative description found for the verb.

Results:

Using both instantaneous and key frames: see table 3.3. Using only key frames:

see table 3.4.

Table 3.3: Supervised learning experiment on vsr2, using instantaneous and key
frames. The table shows the number of common patterns of 1, 2, 3 and 4 transi-
tions, and a pattern selected by hand as representative of the action.

verb # 1 # 2 # 3 # 4 description

approach 4 7 8 8 R01 = 0 : −1 R01 = −1 : 0
bounce 6 12 15 11 Y0 = 0 : −1 Y0 = −1 : 0 Y0 = 0 : 1 Y0 = 1 : 0

carry 6 17 45 99 C01 = 0 : 1 M0 = 0 : 1 M0 = 1 : 0
catch 7 31 72 103 R01 = 0 : −1 C01 = 0 : 1 Y0 = −1 : 0

collide 11 44 112 176 R01 = 0 : −1 C01 = 0 : 1 C01 = 1 : 0
drop 6 11 6 1 Y0 = 0 : −1 C01 = 1 : 0

fly over 6 14 19 19 W01 = 0 : 1 Y0 = 0 : −1
follow 5 19 64 161 M0 = 0 : 1 M0 = 1 : 0

give 10 96 548 2148 R01 = 0 : −1 R02 = 0 : 1 C01 = 0 : 1 C02 = 1 : 0
hit 10 55 183 376 R01 = 0 : −1 C01 = 0 : 1 C01 = 1 : 0

jump 10 65 233 504 Y0 = 0 : 1 Y0 = 1 : 0 Y0 = 0 : −1 Y0 = −1 : 0
pick up 7 33 121 362 C01 = 0 : 1 Y0 = 0 : 1 Y0 = 1 : 0

push 8 48 113 154 C01 = 0 : 1 C01 = 1 : 0 R01 = 0 : 1
put down 8 41 157 462 Y0 = 0 : −1 Y0 = −1 : 0 C01 = 1 : 0

take 10 130 1154 6786 C01 = 0 : 1 C02 = 1 : 0 R12 = 0 : 1
throw 5 12 13 6 C01 = 1 : 0 W01 = 0 : 1 Y0 = 0 : −1

While the selected patterns provide an adequate enough description for the verbs,

various issues were found with this approach, making the results unsatisfactory:

• The use of instantaneous and keyframes can produce too many common patterns
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Table 3.4: Supervised learning experiment on vsr2, using key frames only. The table
shows the number of common patterns of 1, 2, 3 and 4 transitions, and a pattern
selected by hand as representative of the action.

verb # 1 # 2 # 3 # 4 description

approach 1 0 0 0 R01 = 0 : −1
bounce 1 0 0 0 not detected

carry 0 0 0 0 not detected
catch 3 6 5 2 R01 = 0 : −1 C01 = 0 : 1 R01 = −1 : 0

collide 4 6 4 1 R01 = 0 : −1 C01 = 0 : 1 R01 = −1 : 0 C01 = 1 : 0
drop 2 0 0 0 C01 = 1 : 0

fly over 1 0 0 0 W01 = 0 : 1
follow 0 0 0 0 not detected

give 7 12 10 3 R01 = 0 : −1 R01 = −1 : 0 C01 = 0 : 1 C02 = 1 : 0
hit* 5 8 7 3 R01 = 0 : −1 R01 = −1 : 0 C01 = 0 : 1 C01 = 1 : 0

jump 1 0 0 0 not detected
pick up 2 1 0 0 C01 = 0 : 1 R01 = 0 : −1

push 3 2 0 0 C01 = 1 : 0 R01 = 0 : 1
put down 3 2 0 0 R01 = 1 : 0 C01 = 1 : 0

take 6 30 102 195 C01 = 0 : 1 C02 = 1 : 0 R12 = 0 : 1
throw 2 0 0 0 not detected

on particularly verbose event traces; as seen in table 3.3, give and take have

in the order of thousands detected patterns of size 4: not a good result for an

algorithm aiming at selecting distinctive patterns by itself.

• Some actions did not produce a suitable description using only transitions from

key frames. Some could, but the description was insufficient, such as the key

frame descriptions selected for drop or fly over.

• Some actions did not produce a suitable description at all. The only distinction

between carry and follow, for instance, is whether the two objects are in contact

during the whole action or not. Looking only at transitions fails to capture this

element.

• The selection of a particular pattern, among others, as the representative for an

action was made by hand – not an automated approach. A potentially useful

heuristic was to pick the pattern with the most unusual combination of variable

types; even then, the results would often disagree with a human hand-picked
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description for the pattern.

• The algorithm was unacceptably slow.

• The algorithm did not generalize directly to unsupervised learning.

3.3.2 Subsequences using hits and misses

Representation used: transition-only patterns

Goal: obtain meaningful descriptions of patterns, by using both positive samples

and negative samples of an action as near-miss groups [Winston, 1992].

Method: similar method to the previous experiment in supervised learning, with

the added requirement that patterns need to occur in every positive sample (hits),

and in no negative samples of similar actions (near misses).

In particular, when examining the patterns from a new hit sample, only consider

them if they have been seen on every other hit sample so far, and in no negative

samples; when considering patterns from negative samples, remove them from the

list of patterns considered so far, and add them to the set of patterns from negative

samples.

The following combinations of similar verbs for hits and miss were tried: bounce

and jump, hit and push, give and take, using one of the verbs of each group as a hit

and the other as a near-miss.

Given the poor detection rates in the previous experiment, two of the conditions

when extracting patterns were relaxed:

• The maximum distance between two consecutive patterns was increased to 60

frames, instead of 15.

• Any transition may be skipped between two matching transitions in an event

log, both when extracting and detecting patterns. This is a change from the

previous method, where a pattern would only be detected with consecutive
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transitions on the same variable type α if no transitions of the same variable

occurred in the file between those.

This experiment was performed after all other experiments in this chapter, and

before the ideas that lead to the approach in chapter 4.

Results: tables 3.5, 3.6, and 3.7 detail the number of patterns obtained for each run

of pattern extraction, for each of the 3 training sets (vsr1, vsr2, and vsr3). The first

two columns display results using a verb as a hit, and no verbs as misses; the third

and fourth columns display results using a verb as a hit and the other as a near miss.

The bounce recording in vsr3 includes multiple actors, besides the bouncing ball;

the introduction of other actors (people watching the ball go) introduces many more

transitions, producing the large numbers seen on the last row of table 3.5.

The results are unsatisfactory, for two reasons:

• The number of obtained patterns is too large to conceivably use this as a se-

lection criteria for learning an action – at least with the size of the training

datasets.

• The experiments often detected that some patterns were only present because

of elements that appear to be irrelevant; for example, in the list of patterns of

take without give, from vsr1, X0 = 0 : 1;R0,1 = −1 : 0;F = 0 : 1 was detected,

but X0 = 0 : 1;R0,1 = −1 : 0 was not detected.

Nonetheless, some hints of structure are present: besides vsr3, the results for

bounce without jump are empty, strongly implying that every jump video has bounce

as an action also occurring on it – when the actor lands back on the floor.

3.3.3 Unsupervised learning

Representation used: transition-only patterns
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Table 3.5: Supervised learning with hits and misses: jump versus bounce

jump bounce jump w/o bounce bounce w/o jump
vsr1 187 57 16 0
vsr2 377 15 132 0
vsr3 66 1502 14 1454

Table 3.6: Supervised learning with hits and misses: push versus hit

push hit push w/o hit hit w/o push
vsr1 523 108 348 19
vsr2 61 947 19 549
vsr3 271 114 213 59

Table 3.7: Supervised learning with hits and misses: give versus take

give take give w/o take take w/o give
vsr1 1597 587 567 123
vsr2 917 1906 223 737
vsr3 1368 526 613 166

Goal: verify that patterns extracted during supervised learning are still found. Ver-

ify that patterns found represent meaningful actions. Estimate size of problem.

Method and results:

The key idea for unsupervised learning was the same as for supervised learning:

extract patterns that occur across multiple events. The difference now is that all

event traces would be read together, without labels; a human might then label the

obtained concepts after the process is done.

Initially the same algorithm from the supervised learning experiments was used,

resulting in a running time of hours, and a result of thousands of patterns. All

patterns picked as representatives for supervised learning were found – along with

tens of thousands of others. In order to keep results manageable, only patterns that

occurred in at least 3 training samples were captured. Histograms showing the number

of patterns obtained this way can be seen in figure 3-4: each histogram shows the
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(a) size 1

(b) size 2 (c) size 3 (d) size 4

Figure 3-4: Frequency of patterns in events by pattern size; see subsection 3.3.3

number of patterns of a given size (number of transitions), dividing them by frequency

(number of sample events where they appeared as a subsequence at least once).

Weighted trie

To try to obtain an unsupervised learning algorithm with running time faster than

a day, the naive intersect-and-increment algorithm was dropped. Taking inspiration

from string matching algorithms, I decided to use a trie-like data structure; each

node would contain a transition (instead of a character from a string) and have an

associated weight. Each pattern would be represented as a path starting at the trie

root, with one node for each of its transitions (as strings are represented in tries).

Observed patterns from an input event log would be added to the data structure,

creating new nodes or modifying weights of existing nodes; each pattern would con-

tribute by increasing the weight of each of its nodes by 1. This way, the weight of

a tree node would be the number of times the pattern starting at the root node and

ending at that node was observed.

This trie-structure could be used for enumerating all patterns, and, in future

work, for prediction. It could be modified to also keep track of which input events

were responsible for each weight change, instead of just counting the number of events:

actions could then be associated to specific node leafs.
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All patterns could then be enumerated by searching through all nodes of the data

structure and listing the patterns obtained from reading the transitions in the path

from root to node.

Prediction could also be done from this data structure. Probabilities could be

computed based on the frequency of the children of each node; doing so, however,

would require an estimation of what node would correspond to the current state of

the tree.

As a first, simple, approach, pointers were kept to all trie nodes corresponding to

a partial pattern that matched the event log so far. Children were counted for each of

the nodes indicated by the pointers, and weighed equally. This proved to be too slow,

as then number of pointers quickly grew to the thousands, since pattern matching can

skip transitions. The results, too, were less than ideal: both when using instantaneous

and key frames, or only key frames, the probability of guessing the next transition

correctly averaged around 7% – better than random, but unacceptably low. Other

modifications could have been done to try to improve this result – such as restricting

prediction only to a small subset of the trie leading to hand-picked patterns – but

this line of research was stopped in favor of another, more promising model.

3.4 Future work: changes to modeling states

Both in the explicit results of supervised learning, and the implicit not-very-good

performance of unsupervised learning, inadequacies of using only transitions were ev-

ident, such as the very low prediction rate. The representation used was not expressive

enough to distinguish between some actions, using patterns as subsequences.

3.4.1 RFTell

The main flaw in the previous approach was not paying attention to state; as the

results indicated, that model alone is not as descriptive as the rules handcoded in

rftell, or sufficient for providing a satisfactory description to all actions.

Before jumping into more complex models, one possible approach would to fill
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that conceptual hole: repeat the experiments above, but include the possibility for

the no-change transition, fixing a specific state to a variable in the given frame.

Transition clauses

I define each particle of a RFTell rule to be a transition clause. Each of those

may take one of two forms: a single transition in a variable, or a single transition,

accompanied by a requirement that another variable remains constant at the same

value. For example, the rule for give,

C0,1=0,1;C0,2=1;;C0,2=1,0;C0,1=1;;

is made of two such clauses; the first one specifies that contact between actors 0

and 1 is made, while contact between actors 0 and 2 exists. If the rule were to be

C0,1=0,1;;C0,2=1,0;C0,1=1;;

then the first clause would have no requirement that other variables remain con-

stant.

Extracting those clauses from event traces is similar to extracting just transitions.

Now, for each frame on which various x transitions happen, there are x(N − x +

1) possible transition clauses to extract, based on the combinatorics of which state

variables change and which state variables are fixed in a given frame. The problem

size increases at most by a constant factor of N , causing no big issues with the running

time.

3.4.2 Physical state

Looking closely at supervised learning and to results from RFTell, the main mod-

eling issue seemed to be the inability to represent state along with transition. At the

ideal state, one would be able to capture rules as the ones hardcoded in RFTell:

some variables changing, and some variables (but not all) fixed. Determining which

variables should be captured as fixed, however, greatly increases the complexity of

the problem.
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Another issue that also could be better explored is timing: as seen on RFTell

and on various patterns found from supervised learning, very similar actions would

not trigger the same pattern because actions that were only a couple frames apart

would be detected in the reverse order.

In order to deal with timing, instead of using transitions, future work could in-

vestigate using sets of transitions: transitions that occur too closely together can be

put on a single set, and the order in which they occur on an event trace should not

be relevant. Ideally this would remove any ordering artifacts introduced in earlier

stages of the system. Each transition should not appear in more than one set, and

sets should be divided based on time windows, i.e., based on frame numbers. The

current research would be a specific case of this model, where each set is limited to a

single transition.

The trie structure could then be modified: each node now would have a state

representation, and each edge will have a transition set. A pattern, read from root

to leaf, would again describe the complete change of physical state on a system.

Possibly, patterns with the same sequence of transition sets will then be collected,

and the information for which parts of the state remain will be extracted. How to do

so in unsupervised learning is also left for future work.

The trie structure would be used both for supervised and unsupervised learning,

built from collected input; the only difference would be which input is used for each

experiment. In the supervised case, a single pattern could be picked as the definition,

again by using heuristics of least common variable types. In the unsupervised case,

relevant patterns might still require some other mechanism for being selected from

the results.

The target result in either case would be rules similar to the ones hardcoded in

RFTell. Detection becomes just a matter of matching; prediction, again, can be

done based on prior observed patterns and weights on the trie structure.

This direction of future work, however, was abandoned in favor of a more promising

approach, described in the next chapter.
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Chapter 4

Boosting

This chapter details boosting classifiers: the transition-based patterns of

chapter 3 are used as weak classifiers for a boosting algorithm, producing clas-

sifier ensembles that achieve perfect classification on the training data, and

intuitive descriptions.

Pattern extraction, and producing a library of candidate classifiers of a man-

ageable size, are discussed in subsection 4.1.1; the algorithm itself is discussed

in subsections 4.1.2 and 4.1.3.

Results for the supervised learning for each of the 16 verbs are shown and

discussed in section 4.2, and discussed in section 4.3.

When done with this chapter, the reader be familiar with the central results

of my research: classifier ensembles as intuitive and good-fitting mechanisms

for visuospatial action recognition.

Simple patterns turned out to be insufficient to describe an action by themselves.

Intuitive patterns selected by hand (table 4.1) were not unique to the actions that

they were meant to describe, and patterns that were unique, when they existed, did

not appear to provide an intuitive description of the scene (see table 4.2).

While this might indicate an inadequacy of the selected representation, exam-

ining the occurrences of hand-picked patterns across events suggests that the logs

produced from samples of distinct verbs are different enough from each other to make

classification possible, even if the found patterns are not unique identifiers.
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Table 4.1: Hand-picked pattern descriptions; see table 3.2 for a legend for transitions

name pattern
approach R0,1 = 0,−1; R0,1 = −1, 0;
bounce Y0 = 0,−1; Y0 = −1, 0; Y0 = 0, 1;
carry C0,1 = 0, 1; M0 = 0, 1;
catch C0,1 = 0, 1; M0 = 1, 0;
collide C0,1 = 0, 1; R0,1 = −1, 0;
drop Y0 = 0,−1; C0,1 = 1, 0;
fly over W0,1 = 0, 1; W0,1 = 1, 0;
follow left X0 = 0,−1; X1 = 0,−1;
follow right X0 = 0, 1; X1 = 0, 1;
give C0,1 = 0, 1; C0,2 = 1, 0;
hit R0,1 = 0,−1; C0,1 = 0, 1;
jump Y0 = 0, 1; Y0 = 1, 0; Y0 = 0,−1;
pick up C0,1 = 0, 1; Y0 = 0, 1;
push C0,1 = 0, 1; M0 = 0, 1;
put down Y0 = −1, 0; C0,1 = 1, 0;
take R0,1 = 0,−1; C0,1 = 0, 1; C0,2 = 1, 0;
throw C0,1 = 1, 0; M0 = 0, 1;

Observing different patterns occur with different frequencies across distinct sam-

ples hints at looking at a method that combines multiple patterns in order to build

a single classifier – in particular, boosting. Results in table 4.2 motivate boosting,

suggesting secondary patterns that corroborate or reinforce main patterns.

4.1 Description of boosting

Boosting is the name given to learning algorithms that create a stronger learner from

a set of weak learners. In particular, the system uses AdaBoost, originally formulated

by Freund and Schapire [Freund and Schapire, 1995], to improve the performance in

this classification problem.

Each candidate patterns is used for two potential weak classifiers: one that returns

positive for the presence of the patterns as a subsequence in the transition log and

negative for its absence, and another classifier that returns the reverse result.

Any permutation of the actors is permissible during the check for a subsequence
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Table 4.2: Occurrence of hand-picked patterns in given samples: a pattern is detected
if its definition (table 4.1) occurs as a subsequence in the event log

sample detected patterns
approach0 approach fly over jump
approach1 approach follow left
approach2 approach hit
bounce0 approach bounce fly over jump
bounce1 approach bounce fly over jump
bounce2 bounce jump
carry0 carry catch fly over follow left push
carry1 approach carry catch collide fly over follow left jump pick up push
carry2 approach bounce carry catch collide fly over follow right hit jump pick up push

throw
catch0 approach catch collide fly over hit jump
catch1 approach catch collide fly over hit pick up
catch2 approach catch collide fly over follow right hit
collide0 approach catch collide fly over follow right hit
collide1 approach carry catch collide hit push
collide2 approach bounce catch collide drop fly over hit put down
drop0 carry catch drop fly over push throw
drop1 (none: bad sample file)
drop2 carry catch drop fly over push throw
fly over0 approach bounce fly over follow left jump
fly over1 bounce fly over follow left jump
fly over2 jump
follow0 approach bounce follow left
follow1 approach fly over follow left
follow2 approach catch collide fly over follow right hit pick up
give0 approach carry catch collide fly over follow right give hit push take throw
give1 approach carry catch collide fly over follow left give hit push take throw
give2 approach carry catch collide fly over give hit jump pick up push take throw
hit0 approach collide fly over hit
hit1 approach fly over
hit2 drop fly over hit
jump0 bounce jump
jump1 bounce jump
jump2 approach bounce fly over jump
pick up0 approach carry catch collide fly over hit pick up push
pick up1 approach carry catch collide fly over hit pick up push throw
pick up2 approach carry catch collide fly over hit pick up push
push0 approach carry catch collide fly over follow right hit pick up push throw
push1 approach bounce carry catch collide fly over follow left hit push put down throw
push2 approach carry catch collide fly over follow left hit push put down throw
put down0 carry catch drop fly over push put down
put down1 carry catch drop fly over push put down
put down2 carry catch drop fly over push put down throw
take0 approach carry catch collide fly over give hit pick up push take throw
take1 approach carry catch collide fly over give hit pick up push take throw
take2 approach carry catch collide fly over give hit pick up take push
throw0 carry jump pick up push throw
throw1 carry drop fly over give hit jump pick up push put down
throw2 bounce carry catch fly over follow left jump pick up push throw
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Table 4.3: Library sizes obtained give samples only (see subsection 4.1.1)

size 1 size 2 size 3 total
no F, W, M, E 8 49 200 257
no F 13 184 1982 2179
all transitions 15 261 3442 3718

Table 4.4: Full library sizes (see subsection 4.1.1)

size 1 size 2 size 3 total
no F, W, M, E 18 545 12009 12572
no F 24 766 13762 14552
all transitions 26 906 19014 19946

match, and patterns are stored in an unique representation, as explained previously.

Again, the maximum distance between consecutive matching transitions is limited to

at most 60 frames.

4.1.1 Candidate classifiers

The pattern used for potential weak classifiers should be patterns obtained from train-

ing examples. The simple approach used was to simply select all patterns that occur

in at least 3 samples; this provides a large library of patterns, increasing the ex-

pressivity of possible ensemble classifiers, but making the classfication process rather

slow.

Variations were attempted as to which types of transitions should be considered

for the library – all types, all types except focus transitions (F), and all types except

focus transitions, existence, movement without direction and orientation change (F,

E, M and W, respectively); information on the sizes of libraries for each of the different

configurations are included in tables 4.3 and 4.4.
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4.1.2 Classifier algorithm

Each classifier keeps a copy of the pattern it is based on, whether it is an invert-

ing classifier, and its weight α. It also keeps a pattern watcher, a class responsible

for observing each transition and notifying the classifier when the pattern has been

completed; once the whole event log has been observed, the classifier can return the

result, based on whether it has been notified by the pattern watcher, and whether it

is an inverting classifier.

The pattern watcher keeps a list of completion watchers, each of which represents

a potential match between the observed transition log and the pattern. Whenever a

new transition is observed by a pattern watcher:

1. For each existing completion watcher, observe the new transition, and obtain

the list of new completion watchers.

2. Add all new completion watchers to the list of the pattern watcher.

3. For each completion watcher: if it has completed the pattern, notify the clas-

sifier, and remove the completion watcher. If the frame number of the last

observed transition was too high (more than 60 frames apart), remove the com-

pletion watcher.

4. Keep track of the largest position from a completion watcher, and produce it

for displaying the progress of the classifier.

Each completion watcher keeps a reference to the pattern it is observing, a map of

the actors that have already been fixed, the position of the pattern that has already

been fixed, and the frame number of the last observed matching frame. Whenever it

observes a new transition:

1. If the new transition cannot match the next transition in its pattern, given the

fixed actors, return an empty list of new completion watchers.
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2. Given the current match of actors, for each new possible match of actors, create

a new completion watcher with the new match of the actors, the same pattern,

and one position further, then return a list of all new completion watchers.

In effect, each completion watcher keeps track of one possible match, each pattern

classifier keeps track of the all possible matches for a pattern, and the weak classifier

itself is responsible for the transition log classification.

Because transition logs are immutable, the presence of a pattern as a subsequence

only needs to be checked once, and can then be memoized for later use.

4.1.3 Boosting algorithm

In order to use a classifier ensemble, each weak classifier that is part of the hypothesis

contributes with its classification ci, which can be 1 or -1, and its weight αi. If∑
ciαi > 0, the ensemble classification is 1, otherwise it is -1.

The pseudo-code for a step of the boosting algorithm is as follows:

1. Pick the best unused classifier c from the set of candidate classifiers C; if there

are no unused classifiers left, stop. All unused classifiers start with the same

weight.

2. If c is an inverting classifier, invert it to a positive classifier, and change the

sign of its weight.

3. If there is a matching classifier in the current hypothesis set, increase its weight

by the weight of c; otherwise, add c to the current hypothesis set.

4. Let e be the number of samples classified incorrectly by c, and |S| the total

number of samples. ε = e/|S| is the error of the classifier c. For each sample s,

if the current ensemble of classifiers classifies s correctly, multiply the weight of

s by 0.5/(1− ε), else multiply it by 0.5/ε.

5. Normalize all sample weights.
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Steps are taken until there are no classification errors left, or until there are no

candidate classifiers left (or until the algorithm is manually interrupted).

4.2 Boosting results

Preliminary results were less than promising: before running the experiment with the

full pattern library as a list of candidate weak classifiers, boosting was tested on a

smaller number of examples, using a smaller number of classifiers.

At first, limiting transitions to not include F, E, T or W, only patterns that

appeared in all give training examples were used. The resulting list of patterns

was insufficient to build a classifier that correctly separated all gives from the other

patterns, or all approaches from the other patterns.

As a second test, the hand-picked patterns for each of the 16 verbs were used

as candidates for classifiers; again, it was impossible to build an ensemble able to

properly classify all training data.

However, once the tests were ran with the full library of patterns, using all possible

transitions, all actions were perfectly classified – not a surprise, because some of the

verbs did have non-intuitive unique patterns. A sample classifier ensemble is shown

in the following sections.

Ensemble pictures

The pictures in the Appendix A are screen shots capture of the final state of the

classifier program. In the main panel, each line represents a training sample: the first

column is the sample name, the second column marks whether it was labeled as a hit

or as a miss, the third column shows whether its classification by the current classifier

is correct, and the fourth column contains the sequence of transitions composing the

sample itself.

In the right panel, the list of selected classifiers so far shows up, listing weight and

the pattern used in its canonical form (all actors permutated to give the first possible

lexicographical representation of the pattern).
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Table 4.5: Approach classifier ensemble

alpha pattern description

1.925 X0 = −1, 0; S0 = 1, 0;X0 = 0,−1;
actor 0 stops moving left
actor 0 stops increasing in size
actor 0 starts moving left

1.557 R0,1 = 1, 0; X0 = 0,−1; C0,1 = 0, 1;
actors 0 and 1 stop moving apart
actor 0 starts moving left
actors 0 and 1 make contact

2.697 R0,1 = 1, 0; X0 = −1, 0; C0,1 = 1, 0;
actors 0 and 1 stop moving apart
actor 0 stops moving left
actors 0 and 1 break contact

-2.375 R0,1 = 0,−1; R0,1 = 0, 1;
actors 0 and 1 start approaching each other
actors 0 and 1 start moving apart

-2.292 C0,1 = 0, 1; R0,1 = 0, 1;
actors 0 and 1 make contact
actors 0 and 1 start moving apart

In the bottom panel, a graph shows the number of classification errors at each

boosting iteration step.

4.2.1 Approach

The resulting ensemble for classifying the approach samples is shown in figure A-1,

and described at table 4.5. The desired pattern for approach appears as a subpattern

of many other samples that were here selected as misses instead of hits. As a result,

the boosting algorithm selected for patterns that are specific to the given samples

of approach, selecting transitions that do not seem too related to the action of ap-

proaching itself – such as changes of size, movement of one of the actors, and contact:

overfitting, given the small data set. It also selected against actors first approaching

each other and then moving farther apart again (fourth pattern).

4.2.2 Bounce

The resulting ensemble for classifying bounce samples is shown in figure A-2, and

described at table 4.6. All the selected patterns relate to the vertical movement of a
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Table 4.6: Bounce classifier ensemble

alpha pattern description

1.925 Y0 = 0,−1; Y0 = 0,−1; Y0 = 1, 0;
actor 0 starts moving down
actor 0 starts moving down
actor 0 stops moving up

2.267 R0,1 = 0,−1; Y0 = −1, 0;Y0 = −1, 0;
actors 0 and 1 start approaching each other
actor 0 stops moving down
actor 0 stops moving down

2.260 Y0 = 0,−1; Y0 = 1, 0; Y0 = −1, 0;
actor 0 starts moving down
actor 0 stops moving up
actor 0 stops moving down

Table 4.7: Carry classifier ensemble

alpha pattern description

1.568 X0 = 1, 0; X0 = 0, 1; X1 = 1, 0;
actor 0 stops moving right
actor 0 starts moving right
actor 1 stops moving right

1.695 C0,1 = 0, 1; X0 = 0,−1; X1 = 0,−1;
actors 0 and 1 make contact
actor 0 starts moving left
actor 1 stops moving left

-0.979 C0,1 = 0, 1; C0,1 = 1, 0;
actors 0 and 1 make contact
actors 0 and 1 break contact

single actor, as the desired pattern, but they often skip some of the vertical transitions

in the event log. The ensemble is similar, but not the same, as the desired pattern,

and successfully classifies the jump examples as misses, unlike the desired pattern.

4.2.3 Carry

As seen on figure A-3 and table 4.7, the first pattern specifies only movement, and no

contact: actor 0 comes from the left, stops, and gets actor 1, moving it along with it

right, until it stops. On the second pattern, contact is noticed, as well as both actors

starting to move. The last negative pattern removes the cases where contact is made

and then later broken – in all testing samples, the carrying actor never lets go of the

ball, unlike in some other actions. Those examples are similar to the desired pattern,
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Table 4.8: Catch classifier ensemble

alpha pattern description

1.925 Y0 = 0,−1; C0,1 = 0, 1;Y0 = −1, 0;
actor 0 starts moving down
actors 0 and 1 make contact
actor 0 stops moving down

1.706 C0,1 = 0, 1; Y0 = −1, 0; R0,1 = −1, 0;
actors 0 and 1 make contact
actor 0 stops moving down
actors 0 and 1 stop approaching

3.097 R0,1 = 0,−1; Y0 = −1, 0; X0 = −1, 0;
actors 0 and 1 start approaching
actor 0 stops moving down
actor 0 stops moving left

Table 4.9: Collide classifier ensemble

alpha pattern description

1.568 S0 = −1, 0; Y0 = 1, 0; X1 = 1, 0;
actor 0 stops reducing in size
actor 0 stops moving up
actor 0 stops moving right

1.052 R0,1 = −1, 0; R0,1 = 1, 0; C0,1 = 1, 0;
actors 0 and 1 stop approaching
actors 0 and 1 stop moving apart
actors 0 and 1 break contact

1.812 R0,1 = −1, 0; R0,1 = 0, 1; C0,1 = 1, 0;
actors 0 and 1 stop approaching
actors 0 and 1 start moving apart
actors 0 and 1 break contact

-1.632 C0,1 = 0, 1; R0,1 = 0,−1;
actors 0 and 1 make contact
actors 0 and 1 start approaching

and the ensemble successfully classifies only the carry samples as hits.

4.2.4 Catch

The classifier ensemble for catch can be seen at table 4.8 and figure A-4. All patterns

are positive and hint at the directions the objects from which objects approach each

other before the contact, or how the movement stops after contact.
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Table 4.10: Drop classifier ensemble

alpha pattern description

1.925 Y0 = 0,−1; C0,1 = 1, 0; R0 = 1, 0;
actor 0 starts moving down
actors 0 and 1 break contact
actors 0 and 1 stop moving apart

-0.915 R0,1 = −1, 0; actors 0 and 1 stop approaching

-1.612 R0,1 = 0,−1; R0,1 = −1, 0;
actors 0 and 1 start approaching
actors 0 and 1 stop approaching

-1.313 Y0 = 0,−1; actor 0 starts moving down

0.956 R0,1 = 0,−1; R0,1 = 0, 1;
actors 0 and 1 start approaching
actors 0 and 1 start moving apart

-1.603 X0 = 0,−1; actor 0 starts moving left

4.2.5 Collide

The ensemble for collide is described at table 4.9 and figure A-5. The first pattern

describes only one of the actors reacting to the collision: stopping movement farther

away from the camera, up and to the right. The second and third patterns describe

parts of the following sequence of events: the actors approach, stop approaching,

make contact, start moving away, and break contact. The last pattern, negative,

indicates that once contact is made, the actors do not get any closer later.

4.2.6 Drop

As seen by the size of the ensemble in table 4.10 and figure A-6, the concept described

here is much more complex. The first pattern is intuitive enough to understand, and

even envelops the hand-picked pattern for drop: an object starts moving down, loses

contact with the other object, and then stops moving away (due to having hitting the

floor). The third pattern, negative, implies that objects should not start approaching

each other and stop doing so; the second pattern reinforces the end of that. The

fourth pattern, strangely enough, attributes a negative weight to an object simply

moving down. The fifth pattern asks for objects first approaching and then moving

further apart (a consequence of bringing an object closer before dropping it), and the
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Table 4.11: Fly over classifier ensemble

alpha pattern description

Infinity X0 = 0, 1; Y1 = 0, 1; Y1 = 0,−1;
actor 0 starts moving right
actor 1 starts moving up
actor 1 starts moving down

Table 4.12: Follow classifier ensemble

alpha pattern description

1.925 X0 = 0,−1; R0,1 = 1, 0; X0 = 0,−1;
actor 0 starts moving left
actors 0 and 1 stop moving apart
actor 0 starts moving left

2.266 R0,1 = 0,−1; S0 = −1, 0; R0,1 = −1, 0;
actors 0 and 1 start approaching
actor 0 stops decreasing
actors 0 and 1 stop approaching

2.261 R0,1 = 1, 0; R0,1 = 0,−1; Y0 = 1, 0;
actors 0 and 1 stop moving apart
actors 0 and 1 start approaching
actor 0 stops moving up

last one gives a negative weight to any movement to the left (drops always happened

straight down or slightly to the right).

4.2.7 Fly over

As seen on table 4.11 and figure A-7, there is a single pattern that classifies the

samples of fly over perfectly. It appears that on fly over examples, and only on fly

over examples, there is an actor moving right, while the other actor first moves up

and then down. This isn’t an intuitive result, but it did detect that on every scene

of a ball flying over a person, the person moved right, while the ball moved up and

down.

4.2.8 Follow

The description for the follow ensemble is at table 4.12 and figure A-8. The first

pattern is very similar to the hand-picked concept of follow left, but it also detects
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Table 4.13: Give classifier ensemble

alpha pattern description

Infinity R0,1 = 1, 0; R0,2 = 0,−1; R0,1 = 0, 1;
actors 0 and 1 start moving apart
actors 0 and 2 start approaching
actors 0 and 1 start moving apart

that the distance stops increasing – because the leader started moving first, before the

follower also started moving. The second pattern is indicative of something happening

at the end of the follow action: the leader stops, the distance starts decreasing, and

then it stops, as one of the actors moves away from the camera while stopping. The

third pattern also detects a variation in change from the start and the end of the

action, but with a vertical movement – caused by the first step of one of the actors.

4.2.9 Give

The ensemble for give, at table 4.13 and figure A-9, indicates that a single pattern

can classify perfectly all the training data. It makes no mention of contact between

ball and receiver: despite it apparently being a fundamental characteristic of give,

the distinguishing feature in all training examples is the sequence in which objects

approach or depart from each other. Better miss examples would help filter out this

classification. Nevertheless, it hints that the relative movements are important to

identify an action.

4.2.10 Hit

The ensemble for hit is shown at table 4.14 and A-10. The first pattern shows the

movement of the moving object right after the hit – start moving away and lose

contact. The second pattern shows the object approaching, stopping, and moving

away again. The third pattern is a disincentive against objects moving up. Patterns

4 and 5 weight contact negatively. Patterns 6 and 7 hint at movement stopping right

before contact; patterns 8 and 9 show the final fall right before contact, and then
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Table 4.14: Hit classifier ensemble

alpha pattern description

1.568 Y0 = 0,−1; X0 = 0, 1; C0,1 = 1, 0;
actor 0 starts moving down
actor 0 starts moving right
actors 0 and 1 break contact

0.949 R0,1 = 0,−1; X0 = −1, 0; R0,1 = 0, 1;
actors 0 and 1 start approaching
actor 0 stops moving left
actors 0 and 1 start moving apart

-1.632 Y0 = 0, 1; actors 1 starts moving up
-1.509 C0,1 = 1, 0; actors 0 and 1 break contact

-0.931 C0,1 = 0, 1; C0,1 = 1, 0;
actors 0 and 1 make contact
actors 0 and 1 break contact

1.075 X0 = −1, 0; R0,1 = −1, 0; R0,1 = 0, 1;
actor 0 stops moving left
actors 0 and 1 stop approaching
actors 0 and 1 start moving apart

1.512 R0,1 = 0,−1; X0 = −1, 0; R0,1 = −1, 0;
actors 0 and 1 start approaching
actors 0 stops moving left
actors 0 and 1 stop approaching

1.727 Y0 = 0,−1; C0,1 = 0, 1; R0,1 = 0, 1;
actor 0 starts moving down
actors 0 and 1 make contact
actors 0 and 1 start moving apart

2.771 Y0 = 0,−1; C0,1 = 0, 1; X0 = −1, 0;
actor 0 starts moving down
actors 0 and 1 make contact
actor 0 stops moving left
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Table 4.15: Jump classifier ensemble

alpha pattern description

1.354 R0,1 = 0, 1; X2 = 0,−1; Y2 = −1, 0;
actors 0 and 1 start moving apart
actor 2 starts moving left
actor 2 stops moving up

1.534 Y0 = −1, 0; Y0 = 0,−1; Y0 = 0, 1;
actor 0 stops moving down
actor 0 starts moving down
actor 0 starts moving up

-0.808 R0,1 = 0, 1; actors 0 and 1 start moving apart

0.779 S0 = −1, 0; S0 = 1, 0; R0,1 = 0, 1;
actor 0 stops decreasing in size
actor 0 stops increasing in size
actors 0 and 1 start moving apart

1.311 R0,1 = −1, 0; S0 = 1, 0; X1 = −1, 0;
actors 0 and 1 stop approaching
actor 0 stops increasing in size
actor 1 stops moving left

-1.468 Y0 = 0,−1; Y0 = 0,−1; Y0 = 0, 1;
actor 0 starts moving down
actor 0 starts moving down
actor 1 starts moving up

distance increasing after it (8) or a horizontal stop (9).

4.2.11 Jump

The ensemble for jump can be seen at table 4.15 and figure A-11. Most samples of

jump include more than one actor in this training set; patterns are detected that

reflect that. Nevertheless, a strong positive pattern is detected, indicating vertical

movement, and a strong negative one is also in place to invalidate very similar bounce

samples (with the two downward movements).

4.2.12 Pick up

The obtained ensemble for pick up is at table 4.16 and figure A-12. Patterns 1 and

4 hint at contact happening and being broken multiple times – a consequence of the

filtering and the very tenuous contact between carried object and carrier. Patterns

2 and 3 display the relative movements of the carrier and carried objects, but fail
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Table 4.16: Pick up classifier ensemble

alpha pattern description

1.925 C0,1 = 1, 0; R0,1 = −1, 0; C0,1 = 0, 1;
actors 0 and 1 break contact
actors 0 and 1 stop approaching
actors 0 and 1 make contact

1.914 X0 = 0,−1; X1 = 1, 0; Y1 = 1, 0;
actor 0 starts moving left
actor 1 stops moving right
actor 1 stops moving up

3.503 X0 = 0,−1; X1 = 0, 1; Y1 = 1, 0;
actor 0 starts moving left
actor 1 starts moving right
actor 1 stops moving up

3.849 C0,1 = 0, 1; C0,1 = 0, 1; C0,1 = 0, 1;
actors 0 and 1 make contact
actors 0 and 1 make contact
actors 0 and 1 make contact

to include contact information. The combination of those, however, classifies the

samples correctly.

4.2.13 Push

The ensemble for push can be viewed at table 4.17 and figure A-13. The first pattern

shows the movement change before contact is made; the second shows movement

change once contact is lost, and the third pattern shows contact being lost, made,

and lost again – potentially a filtering issue.

4.2.14 Put down

The ensemble for put down, at table 4.18 and figure A-14, is made of a single pattern,

that classifies perfectly all training samples. It is a very intuitive one as well: the

distance stops increasing as the object is being moved down, the object stops moving

down, and then the contact between the object and the actor is lost.
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Table 4.17: Push classifier ensemble

alpha pattern description

1.925 Y0 = −1, 0; X0 = 0,−1; C0,1 = 0, 1;
actor 0 stops moving down
actor 0 starts moving left
actors 0 and 1 make contact

2.266 C0,1 = 1, 0; X0 = 0, 1; Y0 = 0, 1;
actors 0 and 1 break contact
actor 0 starts moving right
actor 0 starts moving up

1.701 C0,1 = 1, 0; C0,1 = 0, 1; C0,1 = 1, 0;
actors 0 and 1 break contact
actors 0 and 1 make contact
actors 0 and 1 break contact

Table 4.18: Put down classifier ensemble

alpha pattern description

Infinity R0,1 = 1, 0; Y0 = −1, 0; C0,1 = 1, 0;
actors 0 and 1 stop moving apart
actor 0 stops moving down
actors 0 and 1 lose contact

Table 4.19: Take classifier ensemble

alpha pattern description

Infinity C0,1 = 0, 1; R0,2 = −1, 0; R1,2 = 1, 0;
actors 0 and 1 make contact
actors 0 and 2 stop approaching
actors 1 and 2 stop moving apart
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Table 4.20: Throw classifier ensemble

alpha pattern description

1.925 Y0 = 0, 1; C0,1 = 1, 0; Y0 = 0,−1;
actor 0 starts moving up
actors 0 and 1 break contact
actor 0 starts moving down

1.914 Y0 = 0,−1; Y0 = 0, 1; X0 = 0, 1;
actor 0 starts moving down
actors 0 starts moving up
actor 0 starts moving right

3.503 C0,1 = 0, 1; Y0 = 0, 1; X0 = 0,−1;
actors 0 and 1 make contact
actors 0 starts moving up
actor 0 starts moving left

3.503 Y0 = 0, 1; R0,1 = 0, 1; Y0 = 1, 0;
actor 0 starts moving up
actors 0 and 1 start moving apart
actor 0 stops moving up

4.2.15 Take

The ensemble for take (table 4.19, figure A-15) is also made of a single pattern. As

in give, not all contact information is registered by it, but information about varying

distances carry the necessary information to distinguish between take and give, and

all other training examples: namely, the taker approaches the giver and the ball to

get it, instead of having the giver approach.

4.2.16 Throw

The ensemble for throw (table 4.20, figure A-16) has all patterns telling parts of the

same story: the object is picked up moved up, loses contact, stops moving up, moves

down, and bounces.

4.3 Summary and discussion

Before performing the experiments, I had two main concerns about ways it could fail:

overfitting the training data, and insufficient candidate classifiers. Here, the set of

potential classifiers is finite and pre-determined based on the training set, because
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the full space of possible patterns is intractably large. The expressivity of potential

ensemble classifiers depends on how well those patterns divide the data.

The first attempt at generating a library with patterns of even size 4, from all

events, required more memory than available. I scaled the libraries back to patterns

of size at most 3, which were much more manageable.

In initial experiments, using only the library obtained by getting patterns common

to all give training samples, there was insufficient information to classify any of the

verbs perfectly, without false positives or negatives. The candidates present only in

give were not expressive enough, even if the training samples for give produce some

of the most verbose event logs, second only take. Given this, I gave up on building

classifiers based on other specific verbs, and focused on the classifiers using the full

library.

Eliminating variables that suggested less information and seemed less relevant to

actions themselves also reduced the size of libraries, as shown in tables 4.3 and 4.4.

The experiments were still far from real time, with duration in the order of minutes.

The first experiment with the full library, using the smallest of those, produced

perfect classification for each of the verbs, as analyzed above. The first experiment

already showed that the library it used contained enough diversity in its patterns to

be able to classify all actions, as expected.

Past the issue of there not being enough classifiers, by choice of an adequate

library, the next issue to be concerned about was overfitting. Some of the verbs were,

in fact, defined perfectly by a single pattern; as seen on each of those cases, however,

that pattern does occur in each of the training videos of the selected verb in vsr1,

and nowhere else; and even those single patterns make intuitive sense, as described

above.

The main result of my research is the perfect, and intuitive, classification given

above. In future work, this approach should be attempted on larger training sets, to

increase confidence in the results.
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Chapter 5

Results and Contributions

5.1 Results

Some goals of my research were accomplished: the visuospatial action recognition

system, as presented in this research, is able to identify the 16 actions perfectly

within the training set, providing intuitive high-level descriptions. Recognition can

occur in real time, but learning does not. The system still should be tested with

larger datasets.

The results also validate the use of a transition-based representation for action,

though it is likely possible to improve greatly upon the representation taken for my

research, in particular the representation of trajectories, and what actors initiate

actions involving another actor.

5.2 Contributions

In this section, I list the noteworthy contributions in this thesis.

• Analyzed possible state-based transition representations for actions, and imple-

mented one that obtained results;

• Studied possible implementations of classifiers as simple finite state machines

for transitions, and concluded this to be an unsatisfactory mechanism;
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• Performed several experiments with patterns as classifiers that yielded unsatis-

factory results, suggesting directions for improvement and future research;

• Demonstrated that intuitive classifier ensembles can be constructed, using com-

monly observed patterns and boosting, to classify perfectly a given set of videos.

• Created a system that perfectly recognized all videos for each of the 16 actions:

approach, bounce, carry, catch, collide, drop, fly over, follow, give, hit, jump,

pick, push, put, take, throw.
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Appendix A

Ensemble pictures

This appendix includes screenshoots showing the final state of the boosting classifier

described in chapter 4. For each experiment, vsr1 samples corresponding to the target

verb were used as hit samples, while all other vsr1 samples were used as miss samples.

An explanation of the interface and a detailed discussion of each result can be found

in section 4.2.
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Figure A-1: Classifier ensemble for approach
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Figure A-2: Classifier ensemble for bounce
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Figure A-3: Classifier ensemble for carry
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Figure A-4: Classifier ensemble for catch
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Figure A-5: Classifier ensemble for collide
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Figure A-6: Classifier ensemble for drop
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Figure A-7: Classifier ensemble for fly over
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Figure A-8: Classifier ensemble for follow
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Figure A-9: Classifier ensemble for give
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Figure A-10: Classifier ensemble for hit
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Figure A-11: Classifier ensemble for jump

80



Figure A-12: Classifier ensemble for pick up
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Figure A-13: Classifier ensemble for push
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Figure A-14: Classifier ensemble for put down
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Figure A-15: Classifier ensemble for take
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Figure A-16: Classifier ensemble for throw
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