

Container Trajectories
An Introduction via Case Factors in Trade Secrets Law

Dominik Rabiej

May 18, 2006

Advanced Undergraduate Project
6.AUP

Spring 2006

Abstract

This paper presents the concept of container trajectories by way of an
illustrative example from the domain of trade secrets law. A container trajectory is an
extension of Jackendoff’s trajectory concept. It has the added benefits of being able to
operate within informational environments, indicate state and add filtering capabilities to
trajectories. Case factors are used by AI in law to indicate a particular salient
characteristic of a case. By expressing case factors using the language of container
trajectories, case factors can now interact with and depend on each other. AI thus gains a
new representational vocabulary to describe law, and law gains the possibility that natural
language processing might be able to produce a system capable of reading case briefs,
forming container trajectories, deriving case factors and automatically providing a set of
relevant cases to support either the plaintiff or defendant.

1. Introduction
1.1. Law and Artificial Intelligence: A Natural Synergy

Studying law from the perspective of artificial intelligence confers benefits to

both fields. Artificial intelligence gains a well-practiced means of describing information

while law gains new understanding of its own underlying structure, along with the

possibility of insights into hitherto undiscovered patterns.

AI and Law is a rich source of research in topic areas such as negotiation,

decision-making, e-commerce, natural language, information retrieval and extraction, and

data mining [1]. In particular, this project focuses on applying principles of AI in the

legal arena, for several aims. Extending the artificial intelligence concept of trajectories

to be able to manipulate legal case factors gives AI more tools to reason with. It also

serves a valuable purpose in setting a reachable target for natural language processing to

strive for: law has the advantage of being a well-documented, systematic field of written

work.

1.2. What are trajectories?

The concept of a trajectory, first introduced by Jackendoff [2], is simple to

illustrate. Consider this English sentence:

The mouse went under the table.

 1

This sentence is unclear. Does the mouse go under the table and stop there? Or

does the mouse simply run under the table and keep going? A trajectory settles this

ambiguity by applying one of five basic concepts of motion: through, into, out of, toward,

and away. If the mouse went under the table and stopped there, that would be an into

trajectory. If instead the mouse simply went under the table on its way elsewhere, that

would be through trajectory.

These five basic concepts are the fundamental building blocks of trajectories.

Jackendoff’s work centered on describing the physical world with language, and thus

there are certain implicit assumptions present in his definition of trajectories.

Specifically, an important distinction is that in the physical world objects cannot be in

two places at once. If the mouse is under the table it cannot be simultaneously on top of

the very same table. This restriction will prove to be an important distinction between

Jackendoff’s trajectories and this research’s container trajectories.

1.3. Case Factors

Case factors are “stereotypical patterns of facts that tend to strengthen or weaken

a side’s legal claim” [3]. In AI, they are essentially tags or flags applied to case by a

human editor. They have no internal structure themselves and merely serve to highlight

an aspect of the case that a human thought noteworthy. For example, if in a trade secrets

legal case a bartender came up with a new recipe and then made sure it was always kept

secret under lock and key, a human editor should assign the Security-Measures factor to

indicate that in this case, there were security measures taken to protect the trade secret.

1.4. Container Trajectories: Factors and Trajectories Combined

How then can the concepts of trajectories and case factors be united?

Furthermore, what is the benefit in uniting them at all? These are the questions that this

research examines and addresses. By uniting trajectories and case factors via container

trajectories, AI and law both gain a new language for dealing with legal information.

Unlike trajectories, container trajectories work well in information-based environments.

 2

Unlike case factors, container trajectories are flexible and modular, which means that a

sufficiently advanced natural language processing system could automatically derive

them from a legal case brief. Essentially, by formalizing information into container

trajectories, factors become “naturally derivable” from trajectories. Factors cease to be

arbitrary human-edited creations and become labels for common trajectory patterns. This

leads to the exciting vision of a natural language processing system capable of reading

case briefs, forming container trajectories, deriving case factors and automatically

providing a set of relevant cases to support either the plaintiff or defendant.

2. Container Trajectories: An Illustrative Example
2.1. The Mason Case

Tony Mason, the plaintiff, developed a cocktail he dubbed “Lynchburg Lemonade.”

Since Mason took some measures to protect his recipe’s secrecy, and since his was the

only tavern producing this drink, we say factors Security-Measures and Unique-

Product apply; both tend to favor the plaintiff. On the other hand, Mason disclosed his

recipe in negotiations with a sales agent of the defendant, Jack Daniel’s Distillery, which

started marketing an identical cocktail (thus the Identical-Products factor) without

compensating Mason. Thus Disclosure-In-Negotiations applies, a factor that tends to

favor the defendant. The agent was aware, however, that the recipe was a “secret

formula,” so Knew-Info-Confidential, also applies, tending to favor the plaintiff.

Finally, the recipe could have been obtained by reverse engineering the cocktail; Info-

Reverse-Engineerable, applies and favors the defendant. [3]

This case will serve as an example to illustrate container trajectories as applied to case

factors in the context of trade secrets law.

2.2. Defining a Container Trajectory

 Before we embark on defining container trajectories, it is worth stepping back a

bit and considering the nature of law itself. Law is effectively enshrined arguments: one

side presents its views and what it sees as necessary conclusions and then the other side

 3

does the same. A judge and jury weigh the concerns, evaluate the strength of the

arguments on their merits and then reach a decision.

In 1958, Toulmin created a useful model for representing argumentation [4]. His

model has six primary components: claim, data, warrant, backing, qualifier and rebuttal.

Consider the Mason case above. Tony Mason’s claim is that Jack Daniel’s has stolen his

trade secret; the data for this claim is that the Distillery is marketing the cocktail without

compensating him. The warrant for the data is essentially the frame that makes the data

valid for consideration. In this case, the warrant is that taking something from someone

and not paying them for it qualifies as stealing. The backing is that which gives the

warrant effectiveness; here the body of trade secrets law serves as the backing for the

warrant that stealing is wrong. Finally, a qualifier restricts the impact of a claim while a

rebuttal directly contradicts it by challenging its data, warrant or backing.

 How then do container trajectories take into account for these principles of

argument while representing case factors? Let’s examine a container trajectory for the

Security-Measures factor in the Mason case:

Mason Security

LL Recipe LL Recipe into

 This is a very simple diagram representing the concept that Mason wanted to

secure the information contained within Lynchburg Lemonade recipe.

There are actually three containers in this container trajectory. Mason is the first

container, containing the LL Recipe. The second container is Security, which also

 4

contains the LL Recipe. Finally, the LL Recipe itself is a third container; it is only one

container, even though there are two boxes representing it in the diagram.

The diagram is called container trajectory because, in it, a container follows a

trajectory that relates one container to another. The diagram shows the LL Recipe

container, resident in the Mason container, proceeding along the into trajectory thus

moving into the Security container. The five basic types of trajectories remain the same:

through, into, out of, toward and away.

2.3. Information Containers

In dealing with trade secrets law, the primary concern is information. Thus when

the LL Recipe in the diagram moves into the Security container, it does not necessarily

move out of the Mason container. Merely placing the LL Recipe information into the

Security container does not make Mason forget the LL Recipe information!

This conflicts squarely with the way Jackendoff’s trajectories work: if an object

moves into something, it must move out of something else. The reason for this conflict is

because Jackendoff restricted his trajectories to only dealing with the physical world.

How then can we resolve this conflict?

First, we must realize that all trajectories but through have two components: an

into trajectory has an explicit into component as well as an implicit out of component.

Similarly, an away trajectory has an explicit away component and an implicit towards

component. In the physical world, the implicit component is not always formally

defined, but in an information-based world, we can create containers to serve as implicit

components.

Trajectories interact with two containers. One is the primary reference of the

trajectory and the other is the secondary reference. The two components of a trajectory

correspond to the two containers it interacts with: the explicit trajectory component

interacts with the primary reference container and the implicit trajectory component

interacts with the secondary reference container.

In our LL Recipe into Security example, the explicit trajectory component is into,

the implicit is out of. The primary reference is Security, the secondary reference is

 5

Mason. Thus the into trajectory component is applied to Security and the out of

trajectory component is applied to Mason.

Next, we say that containers themselves are classified into types. Different types

have different rules in terms of how trajectories interact with them.

A physical container interacts without any limits. Both out of and into

components of trajectories succeed.

A information container does not allow the out of components of trajectories to

succeed. This does not cause the entire trajectory to fail, only the out of component.

A source container does not allow into and out of components of trajectories to

succeed. This does not cause the entire trajectory to fail, only the particular component

of the trajectory dealing with the source container.

A container which does not allow into components and only allows out of

components is rather impractical, as it would simply be empty.

Mason and Security are both information containers. Most of the containers we

will be dealing with in this research are information containers. An example of a source

container would be an immutable database; speaking in a legal context this might be the

precedent for a case: actors within the case generally cannot change precedent because of

stare decisis (assuming the case is not at the Supreme Court level). Even though out of

component trajectories fail, the corresponding into component trajectory would succeed,

meaning that other containers could read information within the source container.

We arrive then at a key distinction of container trajectories relative to

Jackendoff’s trajectories: container trajectories have two components: implicit and

explicit, and interact with two containers, the primary and secondary. Containers have

three types: physical, information and source. A container’s type dictates whether

trajectory components succeed in interacting with it.

2.4. Filters

We’ve established how to represent the first case factor, Security-Measures, as a

container trajectory. To represent the next factor, Unique-Product, we’ll need to

introduce a new concept: filters.

 6

Here’s the container trajectory for the case factor Unique-Product in the Mason

case:

Mason LL Recipe Space

LL Recipe LL Recipe into

only allow
identical

This should look familiar. The LL Recipe container is moving along the into

trajectory into the LL Recipe Space container. This is a container created to represent the

space of products akin to the LL Recipe. Finally, there’s a thick gray line over the into

trajectory. This is a filter on the trajectory. The filter’s rule is under the filter itself; here

it is only allow identical. That means that only new objects identical to the objects

already in the container are allowed in the container. If there are no objects in the

container, then the first object put in will be the one by which all others are judged.

Objects of course can be containers themselves and filter rules can be as complex as

desired. In Toulmin’s terminology, a filter’s rule can be viewed as a qualifier.

How then can we represent why Mason argues that Jack Daniel’s product is an

Identical Product? The container trajectory for the Identical-Product factor looks like

this:

 7

Jack Daniel’s LL Recipe Space

JD’s LL JD’s LL into

only allow
identical

LL Recipe

 Here we can see that Jack Daniel’s Lynchburg Lemonade (JD’s LL) is moving

along the into trajectory from Jack Daniel’s into the LL Recipe Space. It gets past the

filter because it is identical to Mason’s LL Recipe. If it was not identical, then the

container trajectory would look like this (say for JD’s Gin), with the filter stopping the

trajectory from succeeding:

Jack Daniel’s LL Recipe Space

JD’s Gin into

only allow
identical

LL Recipe

 8

2.5. Conduits

Next, let’s tackle expressing the case factor Disclosure-In-Negotiations as a

container trajectory:

Negotiations

Mason

Jack Daniel’s

LL Recipe into LL Recipe

 The LL Recipe travels the into trajectory to Jack Daniel’s. All of this takes place

within the conduit of Negotiations. A conduit is the passage a trajectory takes; in other

words, for the into trajectory to occur, it had to go through the conduit of Negotiations.

 In this diagram, the disclosure (the into trajectory itself) of the LL Recipe by

Mason to Jack Daniel’s takes place via Negotiations (the conduit). Thus we have

represented the Disclosure-In-Negotiations case factor.

 Conduits themselves are containers. Conduits are the only containers that can

directly contain trajectories; all other containers can only directly contain other

containers. Conduits, in contrast, can only contain container trajectories.

 This property allows us to represent the next factor, Knew-Info-Confidential, in

the following manner:

 9

Confidentiality

Mason Security

LL Recipe LL Recipe into

Jack Daniel’s

into
Confidentiality

Here we have the entire Confidentiality conduit, itself a container, moving along

the into trajectory into the Jack Daniel’s Container. This represents that Jack Daniel’s

knew that Mason had taken security measures to product the LL Recipe. Also, notice

how container trajectories allow for interaction between case factors in a manner that

wasn’t possible with case factors alone. Before, one case factor did not matter to another

case factor. Now, with container trajectories, case factors can depend on and interact

with one another.

2.6. State and Invertible Containers

What if we don’t want to express a trajectory per se and would simply like to

express state? We can use containers to do this as well. We simply set up a container

representing the state desired and then place any objects that are in that state within the

container. Here’s an example to represent the Info-Reverse-Engineerable case factor

from the Mason case:

 10

Reverse
Engineerable

LL Recipe

 The Reverse Engineerable container holds the LL Recipe object, to indicate that

the LL Recipe object can be reverse engineered.

 Non-conduit containers can be inverted, however. Here is the Info-Reverse-

Engineerable from another perspective:

LL Recipe

Reverse
Engineerable

 Inverting a container is akin to the concept of trajectory components. Just as an

into trajectory has an implicit out of trajectory component, so too are containers

invertible. The first representation of Info-Reverse-Engineerable can be read as “among

the objects that are reverse-engineerable, there lies the LL Recipe. The second

representation is “within the LL Recipe, it has a property of being reverse-engineerable.”

 11

3. Definitions
3.1. Containers and Objects

An object is an entity within a particular representation. Objects are empty

containers, or containers whose contents are beyond the current depth of resolution.

Containers are objects that can contain other objects or containers.

Containers are represented by a box with the container’s name within the top left

corner of the box.

3.2. Trajectories

A trajectory is a representational bridge between two containers. A trajectory is

one of these five basic concepts of motion: through, into, out of, toward, and away.

Trajectories are represented by arrows connecting two containers, with the

trajectory’s name within the arrow.

3.3. Trajectory Components

Trajectories are built up of complementary components: the explicit and implicit

component. The explicit component is the one corresponding to a trajectory’s name, for

the into trajectory, the into trajectory component is the explicit component. The implicit

component is the complementary of the trajectory’s name, for the into trajectory, the

implicit component is the out of trajectory component. Each trajectory component

corresponds to one of the two containers that the trajectory bridges.

3.4. Trajectories and Containers

 Trajectories bridge two containers. The container corresponding to the

destination of the explicit trajectory component is known as the primary reference. The

other container, corresponding to the implicit trajectory component, is called the

secondary reference.

 12

3.5. Types of Containers

A container can limit whether or not it allows trajectory components of a certain

type to succeed. There are three types of containers:

A physical container interacts without any limits. Both out of and into

components of trajectories succeed.

A information container does not allow the out of components of trajectories to

succeed. This does not cause the entire trajectory to fail, only the out of component.

A source container does not allow into and out of components of trajectories to

succeed. This does not cause the entire trajectory to fail, only the particular component

of the trajectory dealing with the source container.

3.6. Filters

Whereas container types control the success of trajectory components, filters

control the success of entire trajectories. A filter is applied to particular trajectory, and if

the filter’s criteria are met, the trajectory succeeds. If the filter’s criteria are not met, the

trajectory fails.

Filters are represented by thick gray lines across trajectory arrows, with the

corresponding filter criteria (known as the filter’s rule) centered below the bottom of the

gray line.

3.7. Conduits

Conduits are special types of containers that can only contain full container

trajectories: two containers and the associated trajectory.

Conduits are represented by a large box containing the two containers and the

trajectory arrow, with the name of the conduit written in the top left corner of the box.

 13

3.8. Invertible Containers

All non-conduit containers are invertible, meaning that their contents can become

their container.

4. Contributions

This paper presents the concept of container trajectories, as applied in the context

of trade secrets law. Container trajectories are an upgrade of Jackendoff’s trajectories

that work in information environments. Container trajectories, applied to case factors,

provide law with a robust representation for expressing key legal principles. Developing

container trajectories provides a valuable target for natural language processing systems;

one can imagine, for example, a natural language processing system capable of reading

case briefs, forming container trajectories, deriving case factors and automatically

providing a set of relevant cases to support either the plaintiff or defendant. Overall,

container trajectories are a novel representation for expressing the interaction of

information for legal contexts and beyond.

5. Acknowledgements

 Many thanks to my project supervisor, Prof. Patrick Winston: he introduced me to

this particular field of study as well as taught me how to understand artificial intelligence

papers thanks to his Human Intelligence Enterprise Class. Thanks also to Prof. Leslie

Kaelbling who encouraged me to pursue research that I found exciting and for her

support and guidance throughout my years at MIT. Thanks too to Anne Hunter for her

friendship since I first visited MIT and for her help navigating the administrative aspects

of MIT. Finally, thanks to my advisor, Prof. Piotr Indyk, for his support and guidance.

 14

6. References

[1] E. L. Rissland, K. D. Ashley, and R. P. Loui, “AI and Law: A fruitful synergy,”

Artificial Intelligence, vol. 150, no. 1-2, Nov., pp. 1-15, 2003.

[2] Jackendoff, Ray, Semantics and Cognition, Cambridge, MA: MIT Press, 1983.

[3] K. D. Ashley, and E. L. Rissland, “Law, learning and representation,” Artificial

Intelligence, vol. 150, no. 1-2, Nov., pp. 17-58, 2003.

[4] Toulmin, Stephen, The Uses of Argument, Cambridge, UK: Cambridge

University Press, 1958.

 15

