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Abstract

In this thesis, I propose the “Generalize and Sift” model for the acquisition of in-
flection in natural language. This model uses a two step learning process along with
probabilistic selection when there is uncertainty. To learn, the model first creates rules
in a specific to general search over the phonemic feature space of words, allowing for
a fast first degree approximation to the language’s rules. Then, in cases where rules
overlap, the model weights the applicable rules and adjusts these weights according
to observed data, eventually converging on the correct rule. I have implemented this
model in a computer program and run simulations with data mimicking the words a
child might hear as he learns inflections. The implementation displays behavior very
similar to those of children: the same learning curve, similar mistakes while learning,
and equivalent behavior once it reaches “adulthood.”
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Chapter 1

Introduction

The field of language acquisition holds special importance because humans are the
only species that can understand and generate language. Because of this, the mecha-
nisms used to learn language must be unique to humans, and are therefore a glimpse
into how humans differ from other animals. Since we cannot yet peer inside a child’s
head to see how he thinks, discovery in this field has inherent difficulties. Addition-
ally, while there are thousands of different languages distributed across the world, any
child born into a culture speaking any of them will correctly learn that language. To
add complexity, children learn language at an alarmingly fast rate that complicates
any theory of language acquisition. Because of this, most people focus on a small

part of the process.

1.1 Problem Statement

One area of language learning that has received a great deal of attention over the
last 15 years is that of learning the past tense in English. While it is just one small
section of one language, it is an appropriate example because it contains many of the
quirks seen in all languages. In this way, it represents some of the larger issues seen
in language and learning research.

Additionally, because of its prominence, a large amount of linguistic data has been

collected on the English past tense, making it fertile ground for modeling and testing.



As a result, many models and implementations of these models have been set forth,
setting standards of comparison. This thesis aims to surpass these previous attempts
with a more cognitively plausible and accurate model of learning the English past
tense.

However, because the English past tense is only one small part of a larger area
of language, this work also attempts to keep a view of the larger picture. Narrowing
the problem to such a small area runs the risk of creating a model that only works on
that small area. Instead, this thesis approaches the larger problem of learning general
word inflection and class change. While the English past tense is a good place to
start, because it allows the research to relate to previous work, any successful model
should also be easily extended to other types of inflection, and to inflection in other
languages.

Lastly, because a model is only as good as its results, this thesis attempts a
computational implementation of the model presented in order to test its claims
and verify its conformity to that of human behavior. This allows the model to be
compared, on equal ground, not only to previous work, but also to data gathered

about humans as they learn language.

1.2 Goals

The central goal of this research is to create and test a computational model that
can learn the correct transformations of words as they change parts of speech. To do

this, it must contain the ability to perform the following functions:

e Learn Quickly - Humans learn rules of language based on only a very few ex-
amples. They can usually learn a specific fact after seeing it only 1 or 2 times

and create accurate rules with only 5 to 10 examples.

e Generalize Effectively - When shown unfamiliar words, humans can immediately
transform the word into other forms. Additionally, as children learn how to

change words, they apply these transformation to words that they have just
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learned.

e Use Only Positive Examples - Children do not receive much evidence of incorrect
usage. Most of what they hear is correct usage, and even the small amount of

negative feedback is given with mixed signals and shown to be ignored by them.

e Contain Robust Methods - Depending on where a child is born, he may have
to learn an arbitrary language and dialect. In order to do that, his learning
methods must be robust enough to account for all of the possible languages of
the world as well as variations in local dialects. These methods must also allow
for different types of inflectional change such as the many tense formations,
pluralization, and word class change (ie. from noun to verb or from adjective

to adverb).

In addition to the features noted above, Chapter 2 explains some more detailed

behaviors that a model must be able to account for.

1.3 Approach

The central approach taken by this research is that learning word transformation is
a two step process. The first step hypothesizes rules that cause observed changes,
while the second step decides which of the possible rules apply to particular words.
Separately each of these processes uses simple mechanisms, but together the overall
system creates complex behavior that is similar to that of a child learning the same
inflectional transformations.

After seeing words in both the uninflected and inflected form, the first step, gener-
alization, postulates rules that change the word from one form into the other. At first,
this change only applies to the particular words that have been seen. As more words
are seen that exhibit the same change, the rule opens up to include the new examples
in a pattern that is basically a specific to general search through the space of all pos-
sible words. This method takes advantage of the fact that words that change in the

same way are generally clustered in an otherwise sparse phonological space. While it
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does end up covering more words than it should and also produces overlapping rules,
these problems are corrected in the second stage of learning.

This second learning step, sifting, only comes into play when the generalization
process creates more than one rule that can apply to a particular word. For every
word that has conflicting rules, the model assigns weights to the rules and then adjusts
the weights according to the examples it has seen. By doing this, it slowly discovers
the correct rule for that word. In addition, this process cancels out noisy data as well
as allowing for subtle differences seen from individual to individual.

Speech production follows directly from the sifting process. When the model is
required to create an inflected form, it takes the root and applies the appropriate rule.
When there are conflicting rules, it merely chooses randomly between the applicable
rules based upon their current weights.

This model has been implemented on a computer and tested with data reflecting
the words children hear while they learn inflection. The system produces learning and
speech patterns that are consistent with, and virtually indistinguishable from those
of natural speakers as they learn language. Specifically, while learning, it shows the
same learning curve and types of errors as humans. Furthermore, once it completes

learning, it generalizes novel words the same way humans do.

1.4 Structure of Thesis

This thesis is arranged in several sections. Chapter 2 gives the linguistic background
of the problem, describing its finer issues and the linguistic foundation for the model
presented. Chapter 3 describes some of the previous models and, where appropri-
ate, implementations of these models. Chapter 4 lays out the “Generalize and Sift”
learning model in detail. Chapter 5 explains an implementation of this model and
the results of comparing this implementation’s output with that of children. Chapter

6 concludes with a summary of the model and suggests further research in this area.
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Chapter 2

Linguistic background

Over the course of language study, various linguistic structures have been proposed
in order to account for regularities seen throughout languages. The first part of this
chapter will describe some of these smaller structures that words are made up of and
their relation to inflection.

Additionally, a large portion of this research has been geared toward language
acquisition and the specific problem of inflection acquisition. As such, certain trends
have been found across speakers of a particular language as well as across many
different languages. The second half of this chapter explains the details of these
human behaviors that will become the basis of the acquisition models. It goes into
some detail on the English past tense and then explains some of the differences seen

in other inflections.

2.1 Underlying Word Structure

One of the keys to learning is to exploit the internal structure of the information being
learned. Delving deeper into the task usually brings out regularities and patterns
that make learning easier. Words are no exception to this. Underlying words are two
deeper levels of detail that are useful in learning parts of language and specifically

inflectional changes.
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2.1.1 Phonemes

The first level smaller than words is the level of phonemes. Phonemes are the elements
of pronunciation that all words are made up of. They roughly correlate to letters in
written text but instead are the spoken sounds that go along with the letters. Because
some letters can stand for more than one phoneme, they are usually more of them
than letters in a language. For instance, while English contains only 26 letters, it has
40 phonemes.

Phonemes are important because they can be considered the “letters” of spoken
language. While written words often have ambiguous pronunciation, phonemic tran-
scriptions do not. For instance, the words gel and geld appear almost the same in
written text, but their pronunciations differ dramatically. Phonemically, these words
are written as /jh eh 1/ and /g eh 1 d/, displaying the differences in the words’
sounds.

Different spellings can also have the same sound, though, as exhibited by the
words eke, leak, and seek. Phonemically, these words are /iy k/, /1 iy k/, and
/s iy k/. In these words, the phonemic transcription captures the regularity in the
words that would go unnoticed in the written text.

Phonemes are useful from a learning point of view for one main reason. They
are what children actually learn language from, not spellings. Children learn how to
speak by listening to other people talk. Because, as they learn, they are exposed to

only the sounds of the words, their learning must be based on words’ sounds.

2.1.2 Distinctive Features

One level deeper than phonemes lie distinctive features, as seen in Table 2.1. Distinc-
tive features capture the way that the phonemes are actually produced by the mouth.
Two simple examples of features are the LABIAL feature, representing that a person’s
lips are involved in producing the sound, and the NASAL feature, representing the fact
that sound also goes through your nose, not just your mouth. Examples of phonemes

that have these two specific features are labials, p, b, m, f, v, & w and nasals m,
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s |ae|m | p|el
syllabic -+ -] -+
consonantal | + | - | + | + | +
sonorant e
voiced N I T N
back - -] -] -
low S+ -] - -

Table 2.1: The phonemes in the word “sample” and some of each phoneme’s distinc-
tive feature values.

n, & ng. A complete list of phonemes and features can be found in Appendix A.

Distinctive features are important because grammatical rules often depend on a
single feature. As explained below, inflection is dependent on the VOICED feature of
the phoneme at the end of the word. This feature corresponds to the use of the vocal
chords when pronouncing the phoneme. For instance, the phonemes b and p differ by
only the VOICED feature; b is voiced, while p is not. As such, they receive inflections
differently.

Without looking at the level of distinctive features, phonemes would have to be
grouped together in an arbitrary manner in order to explain regularities in linguistic
rules. Distinctive features allow them to be grouped based on similarities in the way
the sounds are produced, grounding the groups in the physical world. This makes

distinctive features both an accurate and appropriate tool to aid in learning.

2.1.3 Sparse Space

As explained earlier, words can be defined by the phonemes that make them up.
Phonemes can then be defined by the distinctive features that make them up. After
grouping words in this way, they can be arranged in a high dimensional space spanning
all the combinations of phonemes. When words are mapped into this space, the actual
words in a language cover only a small part of all the possibilities.

For example, in English, there cannot be any words that have certain consonantal
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clusters. Because of this, any part of the space that corresponds to words with a /k
g/ in them will be empty. Similar impossible sound clusters will create many areas
of the space that are empty, or nearly so.

The sparseness of this space is very important for the learning of language. By
exploiting the natural clusters of words, children can generalize quickly. Words with
similar phonemes, as determined by their distinctive features, are often treated simi-
larly. Therefore, once a person has figured out a rule, he can apply it to words in the

same cluster without explicit examples of its use on the other words.

2.2 Problem Detalils

While much of the attention on inflection has been directed at the English past tense,
a good model of inflection acquisition should account for the behaviors seen in all
parts of English inflections as well as the inflections of other languages. While many
of these exhibit similar properties, each has a few of its own quirks. By showing
the variety of ways that inflection can occur, these quirks give us a glimpse into the

underlying mechanisms of acquisition.

2.2.1 English Past Tense

The English past tense is by far the most studied of all inflections. While most
linguists believe that it is a fairly simple problem compared to other parts of grammar
and even other inflections, it does exhibit most of the properties that make acquisition

interesting.

Regular Formation

As we all learned in grade school, the main way to make a word into the past tense
is to add -ed. This accounts for most of the verbs in the English language, such
as walk => walked, cause => caused, and even the rare copulate => copulated.

This school-taught rule covers over 90% of the words in English.
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Despite this rule’s simple appearance, it is not as straightforward as it seems.
When you add the letters -ed, you actually could be adding one of three different
sounds to the end of the spoken word. The first possible sound is the d phoneme that
occurs in cases such as cause => caused and happen => happened. But adding -ed
could instead be adding a t phoneme, such as in the words walk => walked and
laugh => laughed. Lastly, the rule could actually be adding the new syllable ed.
Some examples of this are mount => mounted and the aforementioned copulate =>
copulated.

The choice between these three options, however, is not an arbitrary decision.
Each of the three cases has a distinct class of words that it applies to. The easiest of
these to see is when you add the entire syllable ed. This occurs when the word ends in
either a t or d phoneme. Thus, it happens for joust => jousted and participate
=> participated, but not to profess => professed or view => viewed.

The other two versions of the add -ed rule split the rest of the verbs in half,
based on the word’s final phoneme. If that phoneme carries the VOICED feature
then it gets the voiced d phoneme added to it, while phonemes that are unvoiced
get the unvoiced t phoneme added to them. Words such as vow => vowed and
absorb => absorbed show the voiced version of the rule while check => checked
and glimpse => glimpsed show the unvoiced version. To confirm that voicing is in
fact the important feature in this distinction, we can look at a pair of words that
differ only by the VOICED feature in the last phoneme of the word. One example of
a pair of words like this is cab and cap. When inflecting these words into the past
tense, they turn into, cabbed and capped, or phonemically /k ae b d/ and /k ae
p t/. This confirms that cab gets the feature matching voiced d phoneme while the

unvoiced cap gets its feature match, the t phoneme.

Irregular Formation

Although these three word additions account for most of the words in English, they
do not account for all of them. What they leave behind are commonly known as

the irregular verbs, which require some change other than the standard add -ed rule.
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Some examples of these words are sing => sang, hit => hit, and feel => felt.

Of the approximately 200 irregular verbs in the English language, almost all of
them fall into one of 10-15 classes of words whose members change in the same way
when forming the past tense. One example class is the words that shorten their vowel
as they go to the past tense. This includes the words bleed => bled, feed => fed,
and meet => met. Another example is the class of verbs that do not change at all.
This class includes words such as bit => bit, bid => bid, and cut => cut.

Like the three versions of the default rule, though, the words in these classes are
not randomly chosen. Instead, the words in each class cluster around a particular
area in the phonological space. For instance, the class containing sing => sang and
drink => drank contains only words that end in a subset of phonemes. These words
are ring, sing, spring, drink, shrink, sink, stink, swim, and begin. Each
class of irregulars cuts out a different phonological space for itself in which it applies.

One way to look at the irregular verbs is to see them as exceptions to the regular
rule. By doing this, it should come as no surprise that each of these irregular classes
has its own exceptions, which lie inside the space it has cut out. For instance, the
irregulars blow => blew, grow => grew and know => knew stake out a vowel change
for words that end in -ow. However, within this space, there is an exception to this
irregular class, show => showed, which does not follow the irregular change. Every
irregular class has exceptions like this, some like show that make the regular change

and some like bring => brought that make a different irregular change.

Other Considerations

One important ability in the system of English past tense is the ease of adding new
words to the vocabulary. When someone creates a new word, people do not have to
wait around until they are told what its past tense is. Everyone English speaker knows
based on the system in place. Some recent additions to English include the words mosh
=> moshed and dis => dissed, of which both happen to take the regular inflection.
But not every novel word follows the regular pattern. When taught the novel words

gling and bing, native English speakers produced the past tense forms glang and
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bang, showing that the irregular verb classes can also attract new members|3].
Another interesting property of the system is that the inflected forms are not set
in stone. There are three places where this can be seen. The first is in dialectical
variants, such as bring => brang, that are acceptable in some parts of the country,
conflicting with the standard bring => brought change. A second place where this
shows up is through historical change. One good example of this is sneak => snuck,
which recently changed from sneak => sneaked in Old English. The last place where
the fluidity of inflection can be seen is in a few words that have multiple, equally
acceptable forms. An example of this is the pair dream => dreamed and dream =>
dreampt, where both of these inflected forms are considered correct. Of particular
note is that these three types of ambiguity in the inflected form can shift either from
the regular class to the irregular or vice versa. Like novel word introduction, they are

not restricted to only the regular rule.

Acquisition

From this, it appears that English has a complex mix of verbs that follow the regular
rule (all three varieties of it), exceptions to that rule, which create their own smaller
rule, and exceptions to the exceptions, which can either fall back into the regular rule
or stake out their own area. Somehow, though, every child exposed to the system
does eventually learn the correct adult form of each verb. A good way to shed light
on this process is to look at children’s behavior as they go through the process of
learning.

Before going into detail about the past tense inflection, though, a larger trend in
all of language acquisition stands out. Children learn based on only positive examples
of the language. The data that children learn from is the adult speech around them,
mostly their parents’, which is made up of only correct examples of the language.
On the rare occasion that a child produces an incorrect form and is corrected, this
correction seems to be ignored by the child[21]. Because noted negative examples are
important to most learning[33], and language is such a complicated process, this fact

makes learning much more difficult than it originally appears to be.
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Taking a closer look at inflection, it seems that children learn in a peculiar way.
Before the age of two, they merely ignore it in all of their utterances. When they
start to use inflections, they do so for only a few words, and not every time they
should. When they do inflect, though, they do so correctly. Additionally, the words
that they inflect in this early stage are the words they hear most frequently. In the
case of the past tense, these tend to be mostly, but not entirely, irregular words such
as come => came, go => went, and run => ran.

After a period of inflecting in this way, children’s rate of inflection goes up. By
the age of two or three they begin to inflect all of the words that they use (although
still not all of the time necessitated by semantics). Strangely, though, in this stage
they also begin to make overregularization mistakes in the irregular verbs that they
use. Words like go => went, which they used to inflect correctly, will now sometimes
be inflected incorrectly as goed.

Children do not choose only the correct or only the incorrect form of the word,
however. They seem to switch almost randomly between the two. One good example
of this is the noted utterance by a child of, “Daddy comed and said, “hey, what are
you doing laying down?” And then a doctor came.[22]” While this is only anecdo-
tal evidence, the swapping between correct and incorrect forms is very common. As
children mature, they eventually do figure out the correct forms, but some overreg-
ularization usually lasts as far as the age of ten. Because of the way children inflect
these verbs, correctly at first, then incorrectly, and finally correctly again, linguists
refer to this learning process as the U-shaped learning curve. An example of this
curve for one child, Sara[22], can be seen in Figure 2-1.

Misapplication of a rule is not confined to only the regular rule, though. While it
is fairly rare, some of the time children will overgeneralize an irregular pattern and
produce forms such as think => thunk or fling => flang[34]. These forms show
that children must also extract and utilize the patterns within the irregulars.

Around the same time that children begin to create these errors they also begin
to inflect novel words. From the very beginning of this novel word inflection, they

agree with adult performance[3]. This applies to both the regular rule as in rick =>
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Figure 2-1: The u-shaped learning curve seen in children.

ricked and irregular rules as in gling => glang. Even on the words where adults
disagree, children agree with them on the possible forms (as with spling => splang
or spling => splung.

All of this points to the idea that in the beginning, children are basically mem-
orizing the past tense of the most common verbs (which they hear most often) but
later start to recognize patterns in the words. Once they notice the patterns, they
will use them productively. This applies to the novel words as well as words that
they already know. Application of these patterns then explains not only the jump in
usage and the ability to handle novel words (because they now apply productively,
but also the overgeneralization errors and the U-shaped learning curve (because this

also causes overproductive application).
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2.2.2 English Plurals

The formation of the plural in English is extremely similar to that of the past tense.
It, too, has one regular rule with three parts that differentiate based on the same
distinctive features. Instead of adding -ed, plurals are made by adding -s. The three
analogous regular rules then follow quite straightforwardly. Those that end in an
unvoiced phoneme, such as cat => cats, get the s phoneme. Those that end in a
voiced phoneme, such as dog => dogs get the voiced version of s, the z phoneme.
And lastly, those that end in a phoneme that is similar to s, such as bus => buses
get the syllable ez added on. This almost exactly mimics the regular words in past
tense formation.

The irregular nouns, although more scarce than irregular verbs, also reflect the
same behavior as the irregular verbs. Like the verbs, they lie in classes such as the
mouse => mice, louse => lice class. And again these irregular classes have excep-
tions such as spouse => spouses. Because of these similarities, the English plural
shows that the behavior of the past tense is not just an isolated case of inflection, but
instead one example of general rules.

By looking at the plurals together with the past tense, we can also generalize
English inflection one step further. When we inflect by adding a phoneme to the end
of the word, such as z or d, a couple of general rules play a part. The first results
when the end of the word is very similar to that of the addition. This causes the
addition to gain a vowel and becomes a syllable such as ez or ed. The second is
that the addition takes on the value of the VOICED feature of the end of the word,
thus creating the voiced-voiced and unvoiced-unvoiced property noted above. These
higher level rules may be a part of the inflection process or they may be a separate
process used to make words easier to pronounce. Either way, this regularity shows

up throughout English inflection.
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2.2.3 German Plurals

As mentioned earlier, though, English inflection is well known for it’s simplicity. Most
of the words follow the regular pattern, with only a small number changing in some
other way. A robust model of inflection must account for the behaviors of other
languages also. One language that displays some differences from English is German,
specifically the German system for pluralizing.

The main difference in German is that instead of having only one main pattern,
it has five: words that exhibit no change, along with words that add en, er, s, or
e[20]. None of these patterns, though, cover a majority of the words in the language.
Instead, they each stake out a different area in the phonological space and then act
as a regular rule within that area by exhibiting the same type of exceptions, and
exceptions to exceptions that show up in the rules of English.

This behavior complicates the process of learning. Instead of having one regular
process with irregular exceptions, there are four (all but the addition of s) semi-
regular rules along with a few purely irregular rules (including the add s rule). Each
of these semi-regular rules acts much like the English regular rule within its own
domain, but is treated like an irregular when in the other rules” domains. In this way,
German looks to be made up of a number of overlapping rules that all act as if they
are regular.

Like children learning English, however, children growing up learning German
show the same behaviors: the ability to generalize, overregularization errors (with
each of the rules), and the U shaped learning curve. Combining the similarities and
differences of English and German, it seems that the processes underlying German
inflection are not entirely different, but are based on the same mechanisms as English,
just more entwined. German simply has a larger number of semi-regular patterns
and more overlap in the words they cover. This creates a seemingly much more

complicated system.
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Chapter 3

Previous Models and

Implementations

Because the acquisition of the English past tense has received a great deal of attention,
quite a few models have been proposed to account for the behaviors described in the
last chapter. These models fit into two basic categories that represent the two main
views on linguistic learning and knowledge representation. This chapter describes
some of these previous models that take either of the connectionist or symbolic ap-
proach as well as computational implementations of each type of model. Additionally,
the idea of the “default rule,” which may have some bearing on inflectional change is

discussed.

3.1 Connectionist

The connectionist theory of language contends that there are no symbols in the brain
and that all knowledge is stored as associations between input configurations and
output configurations. This theory stems from the fact that our brains are made up
of neurons that store information in their connections. Learning, then, corresponds
to merely figuring out which inputs should be connected to which outputs.

Because there are no symbols to be manipulated in the brain under this theory,

there can also be no rules. This idea is supported by the fact that amongst every
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proposed rule there are exceptions to refute its general applicability. A connectionist
architecture explains regularities by attributing it to similarities in the input. If two
words have nearly identical makeups, then they activate many of the same inputs
to the system. With similar inputs, the system behaves similarly and gives similar

outputs.

3.1.1 Neural Nets

Because of its direct correlation to the connectionist architecture, the obvious choice
for an implementation for this type of system is a neural network. There are two
major attempts at using neural networks for the task of learning the English past

tense that differ in only one major aspect, the representation given as input to them.

Rumelhart and McClelland

The first system to attempt this approach was created by Rumelhart and McClelland
in 1985[32]. This neural network correctly learned many regular verbs as well as some
irregulars. In addition, the system exhibited some of the overgeneralization errors seen
in children. Problems with this system arose, however,when it was asked to inflect
words it had not been trained on. For example, when given the novel word smeeb,
it would produce the completely different past tense imin, while almost all people
produce smeebed. Pinker and Prince gave a more detailed critique of this system[29]
that points out that most of its errors stem from it’s Wickelfeature representation of
the input words. Nonetheless, the fact that this system made substantial progress on
the problem of inflection acquisition started the heated symbolic versus connectionist

debate.

MacWhinney and Leinbach

In response to criticism of the R&M system, MacWhinney and Leinback created a
new neural network that used a different input representation[19]. Instead of Wickel-

phones, it fit each input word into two templates that relied on distinctive features.
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These templates corresponded to the left and right justified versions of the input
words. Learning, then, relied on determining connections between words fit into
these templates. This network did not produce as many strange forms as the R&M
system and correctly learned many more irregular verbs. Only limited testing was
done on this system, though, so it’s overall accuracy on the general inflection learning

task was never determined.

3.1.2 Critique

These systems exhibit many of the problems that arise from all connectionist models
of human learning. The first of these is the learning rate. Neural networks generally
require an extremely large number of examples (up to 80,000 words) before they
can successfully learn how to produce the correct form. People, however, can learn
based on as few as 10 examples. In addition, they also rely heavily on their input
representation that, conceptually, defeats their whole claim that learning does not
require symbols. By leaning so heavily on the their input representation, they can
ignore the symbolic manipulation by pushing it into the steps that prepare the data
before it is given to the actual learning procedure. In this way their systems do
not explicitly manipulate symbols, but they greatly depend on them in their input
representation putting a damper on their claims of symbol independence. One last
problem is the way in which the neural nets created the U-shaped learning curve seen
in children. This was not a result of the system architecture, but instead the result of
the ordering of the input data. Early in the training, the system was exposed to a large
proportion of irregular verbs, while later on in the training it was exposed to a larger
proportion of regulars. This change in the input frequencies caused the change in
output that includes overregularization. Children do not receive this change in word
frequencies, however. This means that the connectionist models do not successfully

explain the U-shaped learning curve.
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3.2 Symbolic

The other main approach to the task of inflection acquisition is based on the fact that
the words that require the same change when inflecting fall into natural groups based
on the phonetic makeup of the word. Because of this, rule-based systems have been
formulated for the problem. Motivated by the fact that linguists have been able to
create lists of rules for languages, these systems attempt to automatically generate
rules to explain observed examples. These rules successfully capture most of the

regularity in inflection and often look similar to those found in grammar textbooks.

3.2.1 Symbolic Pattern Associator

In response to the connectionists’ models, Ling and Marinov created the first rule-
based system to learn the English past tense as well as some other verb inflections|15,
14]. This system, called a “symbolic pattern associator”, used an algorithm that cre-
ated identification trees based on observed data. This method achieved a reasonable
amount of accuracy as well as mimicking some of the behaviors of children such as
the U-shaped learning curve and overregularization errors. In addition, it did not

produce strange outputs to novel words.

3.2.2 Inductive Logic

The second approach to rule-based learning is the quite similar, inductive logic system
created by Mooney and Califf[24, 25]. Instead of making a identification tree of rules,
it produces an ordered list of rules that pass from the most specific to the most general.
This roughly corresponds to using the linguistic Blocking Principle, which says a more
specific rule blocks the application of a more general rule. In this work, however, they
made no attempt to account for the psychological patterns of learning in humans. So,
while it correctly learned the inflections of words and could realistically inflect novel

words, it did not reflect the human learning process.
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3.2.3 Omne-Shot Learning

In a somewhat different approach, Yip and Sussman attempted to take advantage of
the sparseness of the space of all words[37, 38]. They use a technique that creates
rules based on their position in the space of distinctive features. In this space, the
rules are clustered in such a way as to make them easily distinguishable based on
positive and negative examples. In order to get around the problem that children
receive no negative evidence, their system assumed that there can be only one correct
form and generated negative examples internally that differ from the observed, correct
examples. Like the other rule-based models it successfully learned most of the words
given to it, could generalize to novel words, and exhibited much of the same behavior
that children do. It’s main advantage over the other systems is that it could also
generalize on its rules to formulate higher level rules that capture multiple rules’

properties. An example of this is the voiced-voiced, unvoiced-unvoiced regularity.

3.2.4 Critique

While these rule-based systems successfully learned the inflected forms of words, they
did not correlate completely with observed human data. In particular, at no point
could any of these systems produce conflicting forms. Additionally, the representa-
tions in the symbolic pattern associator and inductive logic programming methodolo-
gies caused them to lose some of the regularity in the data. Words that fall within the
class of an exception rule but are not exceptions (ie. need => needed among bleed
=> bled and feed => fed) were treated as exceptions to the exception and given a
separate rule. These words, however, are actually following the more general regular
rule and should not be treated individually.

The one-shot learning method tried to account for this problem, but had additional
faults with its algorithm. First, in order to generate internal near misses, it stored
all of the data that it had seen up to that point, in essence, memorizing all the forms
it had seen. If a human had access to all the forms he had previously seen, then he

would have no need for rules in the first place. Additionally, the one-shot learning
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architecture required a choice between splitting rules up into separate parts or not
being able to learn the inflections to words that are exceptions. For example, the
system would have to choose between having multiple rules that both stand for add
-d but apply to different sets of words or not learning the show => showed exception
to the know => knew rule. Thus, while this model outwardly reflected many aspects
of human behavior on its limited data set, it was internally quite different from what

we know about the human brain.

3.3 Default Rule Models

An important idea used by some models to take into account regularities and explain
inflection formation, is the idea of a “default rule”. With this approach, one rule is
singled out from the regularities and treated differently. In theory, this rule can apply
to any word, but is often blocked. There are, however, some cases where the default
is never blocked and can therefore be discerned. Some of these places where blocking
is often forbidden are in application to acronyms and in words borrowed from other
languages[20]. Because it is often the case that a single rule applies in all of these
unblocked cases, that rule gains a special status that allows it to apply to any word,
becoming the “default rule”.

While the “default rule” defines behavior that accounts for the regularities across
all classes and leaves room for exceptions to be handled, it does not define how the
exceptions to the default rule are handled. Different views on this have led to at least

two models using the default rule.

3.3.1 Words and Rules

In the Words and Rules model, Pinker proposes a system that is a hybrid between
a rule-based approach and a connectionist approach[28, 30]. This system has one
default rule and a connectionist memory for the exceptions. In this model there is
only one true rule, and that can apply to any word. Any patterns in the irregulars,

then, are merely a result of similarities in the input, as the connectionists claim. This
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idea is supported by the fact that in human learning, irregular words need to be
heard fairly frequently, as in a connectionist model, or else they get generalized to

some other form.

3.3.2 Rules and Competition

In order to also capture the regularity among the irregulars, Yang proposed a model
of multiple rules that compete by way of the input data in order to determine which
applies[35]. This model is similar to the strictly rule-based approach, but has two
main differences. The first is that one of these rules is raised to the status of the default
and treated differently in the ways explained earlier. The second is that instead of
ordering the other rules, they all begin on equal ground and compete against each
other, via frequency of use in the language, to determine which rule applies to a
particular word. Each word and each rule thus has weights associated with it to
allow the end form to be determined probabilistically. This competition accounts for
many of the behaviors seen in human learning including those left out by the other

rule-based models.

3.3.3 Critique

While the default rule approach can account for some human behaviors, it cannot
be implemented easily. There is no good way to determine which regularity seen in
the language should become the default rule. While it seems straightforward to find
the default in English, this is not the case in some other languages such as German.
For instance, analysis has shown that using this technique, the default rule for the
German plural is the add -s rule that applies to less than 10% of the nouns in the
language[20].

This difficulty is probably why no implementations of this approach have been
attempted, but it also demonstrates a hole in the theory itself. If there is no way
to figure out what the default rule is, then how do humans figure out which of the

observed regularities should become the default rule? The only proposed answers
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define it by its behavior and determine the default rule by choosing the rule that
applies in the special cases mentioned earlier. Doing that, though, creates a circular
definition that must then be hard-coded into the system. For humans that would
imply that the properties of a default rule are inherent to the human brain, an unlikely

prospect.
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Chapter 4

Generalize and Sift

The model presented in this thesis is a rule-based model motivated by children’s be-
havior. As such, it exhibits the same learning curve and makes the same type of
mistakes during learning as children. The core of this model is a two-step learning
process combined with a probabilistic generation mechanism. The learning mech-
anism is responsible for determining rules from regularities in the input as well as
deciding which rules apply to which words. It is activated every time that the system
is exposed to a word, using that instance to assist it in learning the more general
rules of the language. The generation mechanism is activated when the system needs
to produce a form. It chooses among the possible forms based on the knowledge that

the learning system has gained up to that point.

4.1 Learning

The idea behind this learning algorithm is a two step process. The first step, gener-
alization, is responsible for discovering patterns in the observed words and creating
rules that capture these patterns. These rules only need to be a first approximation to
the observed regularities. Their role is to allow inflection based on incomplete knowl-
edge. Specifically, the rules this step produces often turn out to be more general than
the rules that would be necessary to cover just the examples seen.

The second step, sifting, works out the kinks in the imperfect rules made by
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generalization. It refines the inflections based on more data and is responsible for
completing the knowledge about the inflections.

The two methods work in parallel each time they are exposed to an inflected form.
Generalization updates the rules it has proposed while the sifting method deduces
the correct application of the rules. Together they eventually correctly identify every

word’s inflection.

4.1.1 Generalization

The core of the generalization algorithm is basically a specific to general search
through the phonemic space of words. It begins with a rule that applies very specif-
ically to only one word. Then the rule generalizes to more words until it eventually
covers all of the words it should apply to.

For instance, look at Figure 4-1. Assume that the system knows the word walk
and sees the past tense walked. It will then create Rule #1, that says, “for the
word walk, add ed to the end.” This rule is so specific that it only applies to one
word, walk, almost like memorizing the inflection for this one word. Suppose that
a bit later, though, it learns the pair talk => talked. The system then proposes a
second, very similar, rule, Rule #2, “for the word talk, add ed to the end.” In the
beginning each of these rules only applies to the one word that instigated it.

From these two rules, the process then generalizes to cover both words with Rule
#3, “for the word *alk add ed (where * stands for any number of arbitrary letters).”
After seeing a few more words that use this same rule (perhaps rack => racked,
turn => turned) and kill => killed, it will eventually end up with Rule #10,
that says, “for the word * add ed.” This rule would correspond to the regular past
tense inflection rule. Similarly, given examples, the system would also come up with
rules such as, “for the word *eed (as in bleed, feed, or breed) change the ee to a e
(to get bled, fed, or bred).” Eventually the system would have rules to cover every
inflectional change in the language.

These rules almost always cover more words than they would cover if they were

perfect. For instance, the *eed rule above also covers the word need that actually
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Rule #1 Rule #2
for: walk for: tak
add: -ed add: -ed

N/

Rule#3 Rule #4
for: *ak for: rack
add: -ed add: -ed

~ /S

Rule #6 Rule #8
for: *k for: kill
add: -ed add: -ed

Rule #10
for: *
add: -ed

Figure 4-1: The process of rule generalization.

follows the add ed rule. This is not a problem for generalization, however. All it is
concerned with is making sure that the rules cover all the words that it should cover,
hence the specific to general search through the space.

It is important to note, though, that the example above used letters to illustrate
the generalization process. This was done in order to demonstrate the procedures
and properties of the learning process. The actual system, however, does not learn
using letters. Instead, it uses the very detailed space of distinctive features. Because
of this, it would not come up with the add ed rule as mentioned above, but instead
three similar rules that cover the three cases of the regular rule. These rules would
look more like, “for the word *V add d,” “for the word *v add t,” and “for the word

*(t|d) add ed” (where V stands for any phoneme with the VOICED feature, v stands
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for any phoneme without the VOICED feature, and (t|d) stands for either of the
phonemes t or d represented by their shared features). These three rules would then

cover the three versions of the the regular rule as seen by the words’ pronunciations.

4.1.2 Sifting

As the generalization process figures out rules for the words, it often turns out that
some of these rules overlap. For instance, even with just the two rules mentioned
above, quite a few words, such as need and feed, fit both the rule that applies to *,
that matches any word, and the rule that applies to *eed. To complicate things, even
though the same two rules apply, need requires the add ed rule while feed requires
the vowel change rule. To correct for this, the system must have some way to choose
between multiple rules and yet allow for any of the rules to be chosen.

This is where sifting comes into play. For each word, the system starts out by
assigning a probability to each matching rule. This probability represents the chance
that the particular rule is the one that applies to that word. Each time the system
sees an inflected form of that word, it examines the rules for a match and updates the
probabilities accordingly, raising the correct rule’s and lowering the rest. Although
the system treats every example as if it is correct examples, this cautious movement
accounts for the fact that the examples may sometimes have errors in them.

As an example of this process, both need and feed might start out with a 50/50
chance that each of the two above rules is the correct one. After a few examples of
needed and fed, however, these probabilities would diverge, raising the probability of
the “add ed” rule being correct for need and lowering it for feed. As seen in Figure
4-2, despite the initial confusion, once the system sees each of the inflected forms and

alters the probabilities, it converges on the correct rule for both of the words.

4.2 Generation

Because we cannot yet peer into children’s brains, though, an equally important part

of the system is the part that generates the inflected forms of verbs. By making the
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Figure 4-2: The prominence of the add -ed rule when competing with the ee => e
rule on two words, need and feed.

system produce inflections, we can compare its results with the forms people produce
while in the process of learning as well as the forms produced for novel words after
they have completely grasped the language.

When the system needs to inflect a known word that has only one possible rule, the
result follows naturally. It merely applies that particular rule to the word. Similarly,
when asked to inflect a novel word that falls under only one rule, the system must
assume that the one rule is the correct one, and, once again, apply the single possible
rule to the word. When the system has more than one possible rule for a particular

word, though, a slightly more complicated process must occur.

4.2.1 Probabilistic Selection

Resorting to probabilistic selection could happen for one of two reasons. The first
reason is incomplete knowledge about a word that falls under more than one rule. In
these cases there must be two or more different applicable rules and the system must
still have not determined which is the correct one. However, at this point, each of the

rules will have a probability associated with it that corresponds to the likelihood that
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the rule applies to the particular word. The system then picks randomly between
the possible rules in proportion to the associated probabilities. By doing this, it can
determine a unique solution each time it needs to inflect the word despite conflicting
possibilities.

The other reason for the system to use probabilistic selection is when novel words
are encountered. In these case, the system has never seen the word before and has no
idea what the correct inflected form is. In order to produce a form the system checks
each of the rules that it knows, finds all of the rules that could apply to the word, and
then randomly chooses between them. As mentioned earlier, for many words there is
only one rule that could apply, so the system just applies it. For the ones with more
than one possible rule, the random selection disambiguates much like it does for the

words with incomplete knowledge.

4.3 Behavior

Over a sample of many words, this model accurately models human behavior. It
can correctly learn how to inflect any word it sees, exhibits the same behaviors while
learning as children do, and can generalize novel words efficiently. Generalization
creates multiple rules that capture all of the regularity in the language, while sift-
ing determines when to apply them. Finally, the probabilistic generation process
accounts for the unpredictable, yet bounded behavior seen both while learning and
while inflecting novel verbs.

At the beginning of the learning process the system has only a few rules, each of
which each applies to only one or two words. When inflecting these words, it will
do so correctly, but for other words it cannot guess at any inflection at all. This is
comparable to having a few memorized inflected forms, matching the behavior seen
in children’s early acquisition.

As the system generalizes its rules, however, it begins to exhibit some of the other
behaviors seen in children. At this time, the system will greatly increase the number

of words it inflects. Each time a rule is generalized, it will not only cover the word that
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caused the generalization but also a few that lie inside the space it has generalized
over. For instance, after seeing just the two pairs bleed => bled and feed => fed
the system proposes a rule that applies to anything of the form *eed. It can then use
this rule on the word breed despite having never seen bred.

Like children at this stage of increased inflection use, the system can also begin
inflecting novel words. With more general rules, novel words are much more likely
to fall within one of the rules and be inflected. Thus, given the novel word, smeed it
could produce the form smed.

In addition, greater generalization causes rules to overlap more often. This, in
conjunction with the probabilistic selection mechanism, can cause overgeneralization
errors. Because one of the rules corresponds to the correct form while the other an
overregularized form, selecting semi-randomly (according to the probabilities) will
cause the system to overgeneralize some of the time, just like children in the same
stage. Then, once these errors occur, the slow sifting process starts to create a U-
shaped learning curve as it figures out the correct form for the words that lie within
the overlap area.

Eventually, however, generalization will completely cover the area for each of the
rules and sifting will uniquely determine the correct rule for each word that lies in
the overlapping areas. This corresponds to the system in the “adult” stage. Now it
correctly inflects all of the words it has seen and the selection process will only be
utilized for novel words - a place where adults often differ in their speech.

An important feature of this model is that while it exploits the regularities seen in
the words by creating rules, sifting allows for a great deal of variation in the output.
This variation lets all the irregulars through as well as the exceptions to the irregulars.
It also allows the exceptions to either go to a different irregular rule or fall back on
the regular rule, whichever is deemed appropriate by the observed forms.

Additionally, this process allows for the ambiguities found in human speech. Di-
alectic variants merely correspond to differences in the input causing sifting to choose
the local rule instead of the more widely accepted. Historical changes in a word’s

inflected form can result from too few examples of the correct form leading to sifting
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choosing the incorrect rule. Lastly, words with multiple, accepted forms can result
from sifting never converging one way or another, leaving the selection process to
choose each time.

This model also makes some predictions about the behavior of people as they
learn. The first prediction is where the overgeneralization errors occur. First, over-
regularization should occur across the board on all of the irregulars. This behavior
does in fact show up in children[22]. Second, overirregularization should occur only
within the tight phonological space of the irregular rule. Again this turns out to be
true as seen in mistakes such as trick => truck and swing => swang[34]. Lastly,
it proposes that the most difficult words to learn how to inflect will be those that
have the most competing rules. One good example is the verb bring => brought
that also fits in the class that would change it to any of brang, brung, or bringed.
This word turns out to be especially troublesome for children and some do not ever
learn it correctly, instead keeping it into adulthood and creating dialectical variants
in the language[4].

In all of these ways the behaviors of this system reflect the behaviors seen in
children as they learn inflection as well as the behaviors of adults once they have
mastered inflection. The system is also based on fairly simple, psychologically plau-
sible methods that only create complicated behaviors when combined. Because of
this, the “Generalize and Sift” process of learning produces an accurate model for

inflection learning in humans.
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Chapter 5

Implementation

I have implemented two versions of the “Generalize and Sift” learning model for
computational testing. The first version uses a deterministic selection routine that is
sensitive to errors in the input data. This version uses the generalization mechanisms,
but does not incrementally update the probabilities of rules. Instead, it assumes that
the input data is universally correct and directly assigns a rule to a word once it has
seen a single example of that rule in use with the word. Because of this, it learns
faster than humans, and does not make all of the same types of mistakes. Specifically,
it does not exhibit the U-shaped learning curve.

The second version implements the entire “Generalize and Sift” learning model,
including the probability updating. This accounts for irregularities in the data, caus-
ing the learning to slow to match that of children as well as bringing out many of
the behaviors that children exhibit. This chapter describes the details of these im-

plementations and their performance.

5.1 Input and Output

The input to the system is a word, its phonemic transcription, its part of speech, and
an index that represents its meaning. Some example entries can be seen in Table 5.1.
Note that words that differ only by tense are given the same meaning index.

Because of this, the system knows that two words stand for the same concept, but
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Word Phonemes Part of Speech Meaning
feed /fiy d/ Present Verb 23

fed /fehd/  Past Verb 23
cry J/kray/  Present Verb 31
cried /krayd/ Past Verb 31

Table 5.1: Examples of system input data.

only differ in the grammatical use and pronunciation. Giving words the same meaning
index in the input is based on the idea that in order to analyze changes due to tensing,
the system (or a child) must already know that two words are actually different forms
of the same word.

The outputs from the system are forms requested by specifying a meaning index
and tense. For example, A request for meaning=23, tense=VPa would return, /f eh
d/. This request and answer format was chosen in order to simulate the idea of the
system trying to express a particular idea. It would have some notion of the concept
it wanted and what grammatical context it would need to be in. It would then need to
look up the correct way to say the word. The actual output is just the pronunciation
of the requested word. This can be done at any point during the learning process.

Additionally, after learning, a list of the words that the system knows and a list of
the rules that it uses can be displayed. An example of this can be seen in Appendix
B. While these lists cannot be compared to the representations in human brains, they

can be examined in light of the known regularities in the language.

5.2 Lexicon

Once put into the system, the words are each represented by a lexical entry. This
entry contains all the information input to the system: the word, pronunciation, part
of speech, and meaning index. A sample lexical entry is shown in Table 5.2. The
spelling of the word, however, is never used by the system. It was included only to
make the data easier to interpret.

The pronunciation is stored as a string of phonemes converted into a list of dis-
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Word Spelling | sample
s lae|m|p|el
syllabic S+ -] -1+
consonantal | + | - | + | + | +
. sonorant -+ -+
Pronunciation §
voiced - -+ - T+
back I e
low S+ -] -] -
Part of Speech | Noun
Meaning Index | 17
. Index 12 4|31
Rule List Probability | 3 | 5| .2

Table 5.2: A sample lexical entry.

tinctive features according to the list in Appendix A. Each phoneme is represented
as a list of 18 binary digits and a pronunciation is stored as a series of these binary
lists. Because everything is converted to features on input and then converted back
upon output, all processing on the phonemes in the system is done on the distinctive
feature representation, not on phoneme names themselves.

The part of speech is handled in a similar fashion. It is stored as a list of parts
of speech. In this way a past tense or plural form is considered an addition to the
present tense or singular form. For example, a noun is given the tag of “noun”, while
a plural noun merely adds the tag “plural” to the existing “noun” tag to result in a
“noun plural”. This abstracts the idea of the part of speech into a list of grammatical
features and allows it to be treated much the same as the pronunciation, which is a
list of phonemes.

In order to allow for the probabilistic selection, each lexical entry has a list of
rules that can apply to it, each with an associated probability. When a new word is
learned, each rule that fits this word is added to the list. If no rules match it, then

the list is left empty until an applicable rule has been formulated.

42



5.3 Transformation Rules

A transformational rules is represented within the system as a template of words
that it matches, a list of the changes that the rule makes, and a number specifying
how far to shift the original word before applying the changes. Both the APPLY TO
template and the CHANGES template inside the rule are represented as words with
one difference from those in the lexicon, that they can leave features unspecified. A

sample rule can is shown in Table 5.3

Word Spelling | DC (Don’t Care)
* lao | k
syllabic DC| + | -
consonantal | DC | - | +
.. sonorant DC| - | -
Pronunciation -
voiced DC| - | -
Apply to
back DC| + | +
low DC | + | -
Part of Speech | Verb
Meaning Index | DC
Rule List DC
Shift 1
Word Spelling | DC
* t
syllabic DC | -
consonantal | DC | +
.. sonorant DC | -
Pronunciation -
voiced DC | -
Changes
back DC | -
low DC | -
Part of Speech | Past
Meaning Index | DC
Rule List DC

Table 5.3: A sample rule generated by the system that would inflect /t ao k/ => /t
ao k t/ (talk => talked) and /w ao k/ => /w ao k t/ (walk => walked).

The APPLY TO template is a “word” that contains only those phonemes and

43



features needed to explain what set of words this rule applies to. For instance, the
rule for the words send => sent, bend => bent, and lend => lent would have an
APPLY TO template of /* eh n d/ in distinctive feature representation. The * means
that any number of any phoneme will match!. Similarly, the APPLY TO template for
the voiced version of the regular rule would be *V (where the V stands for a required
voiced feature with every other feature in the phoneme unspecified).

The “word” that stands for the changes, the CHANGES template, looks very similar
to the APPLY TO template. Again, many of the phonemes and features are left
unspecified signifying that they remain the same after the rule is applied. A word
that the rule applies to is changed based on the specified phonemes and features. Any
feature specified in the CHANGES template overwrites the feature in the original word.
For the send => sent example above, the CHANGES template would be *v (where
the v stands for the unvoiced feature with all others unspecified)?. This single feature
change turns the d to a t in these words and completes the change to the past tense.

The SHIFT number only comes into effect when the rule specifies either a prefix or
suffix added onto a word. In these cases, the SHIFT adds phonemes that are completely
unspecified to the beginning or end of a word. These unspecified phonemes are then
filled in by the CHANGES template. In the regular rule example above, there is a
SHIFT of 1 and CHANGES template of *d. When applied to a word, such as /t er n/
(turn), the rule first shifts by 1, making it /t er n _/ (where _stands for a phoneme
with no specified features), and then applies the changes to result in /t er n d/
(turned).

With these two ideas of shifting and feature substitution, a word can be changed
in any way from mere additions to entire word suppletion. Furthermore, because of
their representation as words, the APPLY TO and CHANGES templates can be easily

learned by the system.

!The * can only appear at the beginning or the end of the word in order to avoid having regular
expression matching. Psychologically, this means that only local context is necessary to determine
if a rule applies.

2Here the * is used merely as a placeholder to say whether the changes are right or left justified.
This is important when deciding whether an addition is a prefix or suffix.
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5.4 System Procedures

The procedures of the system is separated into two components. The learning com-
ponent, encapsulating both the generalization and sifting algorithms, deals with the
input and creates the lexicon and rules. The generation component, uses the selection

algorithm and produces output when elicited.

5.4.1 Learning

The learning module is activated every time that the system is exposed to a word.
Figure 5-1 shows a diagram of this module. It first checks the word against those
listed in the lexicon. If the word is contained directly in the lexicon, then the system
proceeds to the next word. However, if the word is not directly in the lexicon, the
learning process is activated.

The lexicon is designed around the principle that it can only contain one word
with a specified meaning index. This corresponds to the idea that different forms of
the same word should not all be memorized. Instead, they should be derived through
rules applied to a single base form. Because of this constraint, the system checks to
see if any lexical words have the same meaning index as the observed word. If there
are no matches to the meaning index, the system adds the word to the lexicon and
proceeds to the next word.

However, if a word in the lexicon has the same meaning index as the observed word,
the system needs to discover which is the root form. It compares the grammars of the
lexicalized and observed words and if the observed word has a “smaller” grammar, it
switches the role of the two words. For instance, when comparing a lexical word with
grammar “Plural Verb” and an observed word with grammar “Verb,” the system will
swap the two words, replacing the first with the second within the lexicon. Because
of this, lexicalized words are generally the root form. Additionally, the lexicalized,
inflected forms cannot will not have any rules associated with it.

Next, the system checks to see if there is a rule to derive the inflected word

from the word in the lexicon. If the lexical word has an appropriate rule, the sifting
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Figure 5-1: Flowchart of the learning process.
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process takes effect. The system then raises the probability of that rule and lowers
the probabilities of the other, competing rules.

On the other hand, if the system has a lexical entry with the same meaning index,
but no rule to create the observed word, then it creates a new rule to explain the
observed change. To do this, it first analyzes the differences between the lexical word
and the observed word. From this, it creates a rule with an APPLY TO template
equal to the lexical word and appropriate SHIFT and CHANGES template to convert
it into the observed word. For example, when the system makes a rule for the pair
/t ao k/ => /t ao k t/ (talk => talked), the system notices the greatest simi-
larity between the words when the root is shifted left by 1 phoneme. It then sets the
CHANGES template’s SHIFT to 1 and adds the t phoneme to the end. A generalized
form of this rule, which differs only by the APPLY TO template, can be seen in Table
5.3. For comparison, when it makes a rule for the pair /s ih t/ => /s ae t/ (sit
=> sat), it sets the SHIFT to 0 and creates a CHANGES template that is completely
with unspecified values except for a - in the second to last phoneme’s HIGH feature,
as seen in Table 5.4. This - signifies the change from ih, which contains the HIGH
feature, to ae, which does not.

The system then decides whether the rule is, in fact, a new rule or merely a
generalization of a rule that already exists in its main list. To do this, it compares
the CHANGES template in the new rule to the CHANGES template in each of the
existing rules. If any there is a match, in both part of speech and pronunciation, then
the system generalizes the APPLY TO template of the existing rule to also cover the
new word.

The generalization is done by merging the new rule’s APPLY TO template (which
only applies to the one word) with the known rule’s APPLY TO template (which may
apply to many words). The system goes through each feature of each phoneme and
compares the values. When corresponding features of the two templates agree, the
merged template retains that value. When they differ, it makes the feature value in the
merged template unspecified, allowing either value to match. In this way, it performs

the specific to general search over each of the APPLY TO template’s phonemes.
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Word Spelling | sit
s |ih | t
syllabic -4 -
consonantal | + | - | +
sonorant -l - -
Pronunciation voiced - - -
Apply to
high -+ -
back - - -
low - - -
Part of Speech | Verb
Meaning Index | 13
Rule List empty
Shift 0
Word Spelling | DC
* 7?7 | DC
syllabic DC | DC | DC
consonantal | DC | DC | DC
sonorant DC | DC | DC
Pronunciation voiced DC | DC | DC
Changes
high DC| - | DC
back DC | DC | DC
low DC | DC | DC
Part of Speech | Past
Meaning Index | DC
Rule List DC

Table 5.4: The initial rule generated by the system to inflect /s ih t/ => /s ae t/
(sit => sat).
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5.4.2 Selection

When requested to produce a particular form, the system uses a fairly straightforward
algorithm as seen in Figure 5-2. Given a meaning index and part of speech, it first
checks the lexicon for the specified word. If it succeeds, it outputs the lexical word.
If it does not find a complete match, it looks for a word in the lexicon with the same
meaning index, but a different part of speech. Without that, the system fails to
output anything, much like a person who cannot find the word for the concept he is
trying to express.

However, with a word that matches the meaning index, but not the part of speech,
the system can then begin applying rules to inflect the word. It checks through the
list of applicable rules and finds all rules that cause the correct inflection. If there
are none, the system merely outputs the lexicalized word form which has the wrong
part of speech. If there is one match, then the system applies that rule and outputs
the result. If there is more than one possible rule, then the system chooses randomly

between all the matches, weighting them according to their stored probabilities.

5.4.3 Differences in Deterministic Implementation

The system explained in the preceding sections corresponds to the complete “Gener-
alize and Sift” learning algorithm. The second system assumes no errors in the input
data and therefore does not rely on the cautious learning by updating probabilities.
This only changes one main aspect of the implementation.

Any time that the system sees an inflected form of a word, it immediately changes
the probability of the rule that causes that change to 1. This can happen in two
different cases during the system’s operation. First, when an observed form causes
either a new rule to be formed or a rule to be generalized to cover a word, this rule
will gain complete hold on the word, allowing no other rules to displace it. The other
case occurs when the system has generalized multiple rules that could fit a word.
Once it finally sees an inflected form, it will raise the probability of that rule to 1 and

eliminate the other possibilities entirely.
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The selection mechanism relies on this change, but does not need to change itself.
Any word where the system has seen the inflected form will have only one applicable
rule, resulting in the system selecting that rule. The rest of the words may still have
multiple possibilities, but again, the selection mechanism need not change to decide

between them.

5.5 Performance

The systems were run on a variety of data sets in order to test individual aspects of the
model. All of the data presented was in English and given to the system in the format
previously explained. The deterministic model was tested in order to find out how
fast the “Generalize and Sift” process could learn the rules. The complete system was
tested in order to compare the model’s behavior to observed human behavior. Both
models performed well, correctly learning the rules presented to them and making

reasonable generalizations.

5.5.1 Present Participle

In order to test the model’s rule making and generalization capabilities, the systems
were tested on the present participle (run => running, fly => flying). In English,
the present participle has only one rule and no exceptions to this rule. Even words that
seem like they should be exceptions, such as swing => swinging and the notorious
be => being, follow the rule for this form. This universal regularity allows the rule
creation and generalization mechanisms to be tested without interference from the
selection mechanisms.

Both the deterministic and complete systems were run with this data set. Because
there were no competing rules, both performed identically. Both systems were able
to extract the rule and then apply it productively soon thereafter. When asked to
inflect a verb, the systems either returned the root form (if they did not yet have a
complete grasp of the rule) or provided the correct form. Additionally, after seeing

as few as 2 words, the system could correctly apply the rule to novel words.
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5.5.2 Past Tense
Small Data Set

The next data set tested the systems on a small set of verbs and their past tense

forms?

. These verbs contained examples of all three versions of the default rule as
well a few irregular verbs. This test required the systems to keep track of multiple
rules, as well as forcing the systems to select between competing rules.

The two systems again performed quite well. They both extracted appropriate
rules from the data and used them correctly on the learned words. They also gener-
alized these rules to novel words in the same way that humans do, such as mate =>
mated. A listing of the lexicon and rules learned by the system after just the first
iteration of the data can be found in Appendix B.

Because the data contained only a small number of verbs, only one verb, feed was
covered by more than one rule, feed => fed and feed => feeded. In order to see
how the system decided between rules, this verb was tracked throughout the learning
process. The results of this, showing the learning curve for complete model, can be

seen in Figure 5-3. For this word, the system displays the U-shaped learning curve

also seen in children.

Large Data Set

The main test of the model used a large set of verbs and their past tenses. Only the
complete model was tested with this data. For this test, the words were randomly
chosen from a large corpus in proportion to their use in the language[12]. By doing
this, the input represented, as closely as possible, the same words that a child might
hear as he is trying to learn how to inflect.

As in the previous tests, the system correctly learned all of the words it saw
and showed the U-shaped learning curve for common verbs that fall under multiple

rules. This behavior parallels the behavior seen in children during the same stage of

3These verbs were: dance, drop, fix, kiss, laugh, like, look, touch, walk, answer, call, cry, hug,
turn, add, need, paint, wait, draw, sing, and feed.
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Figure 5-3: The progression of the system learning the past tense rule for the word
feed.

development. Also like children, the system began to overgeneralize around the same
time that it started to inflect words that it had not seen in the correct form. After the
child-like learning phase, the system eventually converged to an “adult” state where
it produced correct forms exclusively and would inflect novel words to the same form
as people.

The rules produced by this system looked very much like those found in grammar
textbooks. For instance, one rule added the t phoneme to any word that ended in
an unvoiced phoneme while another added the d phoneme to any word that ended
in a voiced phoneme. In this way, the system produced rules that were not only
accurate for the input words (as displayed by its correct performance) but also useful
for analysis of new words. This allows both the system and an outside observer to

see how it would perform on any given word.
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5.5.3 Plural

The complete system was also tested with a small set of nouns and their plural

forms*

in order to see if it performed comparably to the past tense tests. The results
showed similar behavior to that on the small data set of past tense verbs. The system
again correctly learned the words presented while making similar mistakes during
the process. It also generalized effectively to novel words, both during the learning

process and after it had finished learning the training data. This test confirmed this

model’s value in understanding the general problem of inflection acquisition.

4These nouns were: cake, cat, chief, cup, fruit, month, bottle, boy, dog, girl, gun, box, bush,
church, dish, glass, horse, nose, house, leaf, foot, and man.
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Chapter 6

Conclusions

The “Generalize and Sift” model captures much of the behavior seen in inflection ac-
quisition both in theory and practice. It could also lend itself to extension, with only
minor modifications, to other area of learning. Additionally, while the implementa-
tion performed well on the task of learning the past tense, it could be run through

simulations of other learning tasks.

6.1 Contributions
In this thesis, I have made the following contributions:

e Conceived of a model of inflection acquisition based on the behavior of children

as they learn inflection that uses psychologically plausible procedures.

e Implemented two version of this model in order to verify the learning algorithms.
The first version uses the assumption of perfect input data in order to prove
the methods. The second uses a more conservative approach, accounting for
variants among the input data and mimicking the behavior of children as they

learn inflection.

e Shown experimentally, through use of the implementation, that this model ac-

counts for many of the aspects of human inflection, including overgeneralization
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errors, the U-shaped learning curve, dialectic and historical variants, and the

ability to generalize to novel words.

6.2 Future Work

While this model captures the properties of inflection acquisition, this area has room
for future improvements. The model could be altered or expanded, while the imple-

mentation could be adapted to other tasks to provide more support for its ideas.

6.2.1 Model

One area where the model may need improvement is in the area of the default rule.
As mentioned earlier, evidence exists that one or more rules are singled out from the
others and treated differently. In the current model, these differences can merely be
learned as places where the rule can or cannot apply. If the idea of the default rule
turns out to be inherent to humans, though, then it should be added to the model
along with an appropriate way to determine it. This would push the rule selection
part of the model closer to that of the Rules and Competition model proposed by
Yang.

Another possible addition would be to make the amount the weights update de-
pendent on time. While child language is fairly elastic and can change based on a few
examples, adult language is quite the opposite. By adjusting the amount that the
sifting process updates weights (a large amount at first and then gradually decreas-
ing), the model could account for the fact that adults require much more conflicting
input to change their speech patterns.

The model could also be extended to include other constraints on rule application.
Currently, it relies on only the constraints of a word’s part of speech and pronuncia-
tion, the meaning value is used only to match forms of words. Making words’ mean-
ings into sets of features, may allow the principles of generalizing and sifting to be
used for semantic distinctions. One possible example would be an animate/inanimate

distinction that would help determine the appropriateness of sentences such as, “the
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man ran home,” versus, “the box ran home.”

One last possibility for this model is to stretch it into other areas of learning. The
ideas of generalization followed by sifting are not only useful in the area of language,
but many tasks that involve creating overlapping rules with exceptions. Thus these
principles may be useful in similar tasks such as mapping spelling to pronunciation, or

tasks as distant as group classification (such as determining the features of mammals).

6.2.2 Implementation

To date, the systems presented in the this paper have been exposed to the task of
learning English inflections. The first step delving further into their applicability
would test them on other languages, such as German. While the abstract models do
account for the behaviors seen in other languages, the implementations have not been
tested on them.

The system could also be set to learning tasks. Within language acquisition,
it could be used to learn how to change a word’s part of speech. For instance,
changing an adjective to an adverb often calls for the addition of the syllable 1y to
the end of the word as in clear => clearly. Negating a word is another process
similar to this in which a prefix is added to the front of the word. Possible =>
impossible, conceivable => inconceivable, and believable => unbelievable
are good examples of this type of negation. Both of these problems, along with any
other problems involving word changes or suffixation, are well suited for the system

created for this research.

6.3 Summary

In this thesis, I have presented a psychologically plausible model of inflection acqui-
sition. While the model is composed of fairly simple components, it behaves in a
complicated fashion similar to that of humans as they learn. Within this model are
the ideas of generalization and sifting for rule creation in a sparsely filled space, along

with the idea of probabilistic selection for the use of incomplete knowledge. These
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general principles work well for this task because they capture the essence of the
imperfect rules that people appear to use. This allows them to accurately reflect the
learning process of humans. As such, the “Generalize and Sift” model may also be

useful in explaining other areas of human learning.
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Appendix A

Phonemes and Distinctive Features

This is a table of English phonemes, an example of each in use, and the distictive

features of each of them[2].

p b m em t d | n en k g ng
pea | bee | mom | item | tea | day | no | dozen | key | gay | sing
Syllabic X X
Consonantal | x X X X X X X X X X X
Sonorant X X X X X
Voiced X X X X X X X X
Continuent
Nasal X X X X X
Strident
Lateral
Distributed
Affricate
Labial X X X X
Round
Coronal X X X X
Anterior X X X X X X X X
High X X X
Back X X X
Low
Tense

29



th

dh

sh

zh

ch

fin

van

sea

700

thin

then | she

azure

chin

Syllabic

Consonantal

Sonorant

Voiced

Continuent

Nasal

Strident

Lateral

Distributed

Affricate

Labial

Round

Coronal

Anterior

High

Back

Low

Tense

el

er W

huddle

ray

bird | way

yes | hay

Syllabic

X

Consonantal

Sonorant

Voiced

"

~

»

~

Continuent

Mo R

Nasal

Strident

Lateral

Distributed

Affricate

Labial

Round

Coronal

"

"

Anterior

High

Back

Low

Tense

60




1y

ih

ey

eh

ae

uw

uh

ah

oW

ao

aa

beet

bit

bait

bet

bat

boot

book

but

boat

taut

pot

Syllabic

Consonantal

Sonorant

Voiced

Continuent

Nasal

Strident

Lateral

Distributed

Affricate

Labial

Round

Coronal

Anterior

High

Back

Low

Tense

X

X

X

X

Table A.1: English phonemes and their distinctive features.
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Appendix B

Sample Lexicon and Rule Output

This file shows samples of the lexicon and rules that the system creates when run.
This file came from showing the system 21 words and their past tense once each. The
word format is:

[ pronunciation 1 = spelling (part of speech) Meaning: index

Rule List

rule prob

num. weight

And the rule format is:
Rule index: num.
APPLY TO template in word format
Shift: amount

CHANGES template in word format

Note that for the APPLY TO and CHANGES templates appear in the same for-
mat as words with one exception. Their pronunciation often does not have complete
phonemes. Instead they will list a phoneme by its features, stating whether it pos-
sesses the feature (yes), does not possess the feature (no), or does not care about that

feature (DC).
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Lexicon

#twords = 21
#trules = 6
Words:

[ d ae n s ] = dance (Verb) Meaning: 120

Rule List
rule prob
0 1.0

[ dr aa p] = drop (Verb) Meaning: 121

Rule List
rule prob
0 1.0

[ £f ih k s ] = fix (Verb) Meaning: 122

Rule List
rule prob
0 1.0

[ k ih s ] = kiss (Verb) Meaning: 123

Rule List
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[ 1 ae f ] = laugh (Verb) Meaning: 124

Rule List
rule prob
0 1.0

[ 1 aay k] =1like (Verb) Meaning: 125

Rule List
rule prob
0 1.0

[ 1 uh k ] = look (Verb) Meaning: 126

Rule List
rule prob
0 1.0

[ t ah ch ] = touch (Verb) Meaning: 127

Rule List
rule prob
0 1.0

[ wao k ] = walk (Verb) Meaning: 128

Rule List
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[ ae n s er ] = answer (Verb) Meaning: 129

Rule List
rule prob
9 1.0

[ kao 1 ] = call (Verb) Meaning: 130

Rule List
rule prob
9 1.0

[ kr aa y ] = cry (Verb) Meaning: 131

Rule List
rule prob
9 1.0

[ h ah g ] = hug (Verb) Meaning: 132

Rule List
rule prob
9 1.0

[ t ern] = turn (Verb) Meaning: 133

Rule List
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[ ae d ] = add (Verb) Meaning: 134

Rule List
rule prob
14 1.0

[ n iy d ] = need (Verb) Meaning: 135

Rule List
rule prob
14 1.0

[ peynt] = paint (Verb) Meaning: 136

Rule List
rule prob
14 1.0

[ wey t ] =wait (Verb) Meaning: 137

Rule List
rule prob
14 1.0

[ d rao ] = draw (Verb) Meaning: 138

Rule List
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17 1.0

[ s ih ng ] = sing (Verb) Meaning: 139

Rule List
rule prob
18 1.0

[ £f iy d ] = feed (Verb) Meaning: 140

Rule List
rule prob
14 0.8
19 0.2
Rules:

Rule index: O

[

syl cons son
DC DC DC
aff lab round
No DC DC
syl cons son
DC DC DC
aff lab round
No No DC

voice
DC
cor

DC

voice
DC
cor

DC

cont
DC
ant

DC

cont
DC
ant

DC
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nas
No
high
DC

nas
DC
high
DC

str
No
back
DC

str
No
back
DC

lat
DC
low

DC

lat
No
low

DC

dist
No
ten

No

dist
No
ten

No



syl cons son voice  cont nas
No Yes No No DC No
aff lab round cor ant high
DC DC No DC DC DC

] = 7777 (Verb) Meaning: O Rule List Empty
Shift: 1

[t]=7777 (

Noun Verb Plural Past

DC DC DC Yes

) Meaning: O Rule List Empty

Rule index: 9

[

syl cons son voice cont nas
No DC DC DC DC DC
aff lab round cor ant high
No No DC DC DC DC
syl cons son voice cont nas
DC DC DC DC DC No
aff lab round cor ant high
No No DC DC DC No
syl cons son voice cont nas
DC DC DC Yes DC DC
aff lab round cor ant high
No No DC DC DC DC

] = 7777 (Verb) Meaning: 0 Rule List Empty
Shift: 1
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str
DC
back
DC

str
No
back
DC

str
DC
back
DC

str
No
back
DC

lat
No
low

No

lat
No
low

DC

lat
No
low

DC

lat
DC
low

DC

dist
DC
ten

No

dist
No
ten

No

dist
No
ten

No

dist
No
ten

No



[d] = 77?27 (
Noun Verb Plural Past
DC DC DC Yes

) Meaning: O Rule List Empty

Rule index: 14

L

syl cons son voice cont
DC DC DC DC No
aff lab round cor ant
No No No DC DC
syl cons son voice cont
No Yes No DC No
aff lab round cor ant
No No No Yes Yes

nas str lat
DC No No

high back low

DC No DC
nas str lat
No No No

high back low

No No No

] = 7777 (Verb) Meaning: O Rule List Empty

Shift: 2

[ ihd] = 7777 (

Noun Verb Plural Past
DC DC DC Yes

) Meaning: O Rule List Empty

Rule index: 17
[ dr ao ] = draw (Verb) Meaning: 138

Shift: O

[

syl cons son voice cont
DC DC DC DC DC
aff lab round cor ant
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Rule List Empty

nas str lat
DC DC DC

high back low

dist
No
ten

DC

dist
No
ten

No

dist
DC

ten



DC DC DC DC DC
1 = 77727 (

Noun Verb Plural Past

DC DC DC Yes

) Meaning: O Rule List Empty

Rule index: 18

[ s ih ng ] = sing (Verb) Meaning: 139

Shift: O

[

syl cons son voice cont
DC DC DC DC DC
aff lab round cor ant
DC DC DC DC DC

DC ] = 72777 (
Noun Verb Plural Past
DC DC DC Yes

) Meaning: O Rule List Empty

Rule index: 19
[ £f iy d ] = feed (Verb) Meaning: 140

Shift: O

[

syl cons son voice cont
DC DC DC DC DC
aff lab round cor ant
DC DC DC DC DC

DC ] = 77?77 (
Noun Verb Plural Past

DC DC DC Yes
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Yes

DC

No

Rule List Empty

nas
DC
high
No

Rule List Empty

nas
DC
high
No

str
DC
back
DC

str
DC
back
DC

lat
DC
low

Yes

lat
DC
low

DC

Yes

dist
DC
ten

DC

dist
DC
ten

No



) Meaning: 0

Rule List Empty
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