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Abstract

A computer program that can understand the meaning of written English must be tremendously complex.

It would break the spirit of any programmer to try to code such a program by hand; the range of meaning

we can express in natural language is far too broad, too nuanced, too filled with exception. So I present

Understand, a program you can teach by example. Learning by example is an engineering expedient: it is

much easier for us to come up with specific examples of a concept than some sort of perfect Platonic model.

Understand uses a technique I call Lattice-Learning to generalize accurately from just a few examples:

“Robins, bees and helicopters can fly, but cats, worms and boats cannot,” is enough for Understand to

narrow in on our concept of flying things: birds, insects and aircraft. It takes only 8 positive and 4 negative

examples to teach Understand how to interpret sentences as complicated as “The cat ran from the yard

because a dog appeared.” Understand is implemented in 2300 lines of Java.
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1 Introduction

• In this section, you will learn where Understand fits within the greater goal
of understanding intelligence, and the particular problem I use it to solve. You
will see a high-level overview of what Understand’s various components do
and how they fit together.

• By the end of this section, you will know enough about Understand to
describe it to your boss or grandparents. You will also know where to skip
ahead to if you want to read more about particular parts of the program.

1.1 The Big Picture: The key to intelligence is representation.

Imagine a dog flying to Mars. This is an unusual thought, and so you may be wondering why I ask you to

imagine it. I want you to consider the thought itself.

Is the thought words? When you think of a dog flying to Mars, do the shapes of the letters and words “A

dog flying to Mars,” come to mind? Not really. If you try, you might be able to conjure up these shapes,

but the core thought itself is not linguistic. You produce the words from the thought.

Is the thought a video? If you try you can see it—perhaps you recall a famous photo of Mars, or your own

pet—but this imagery is nothing like a movie, and the abstract thought is even less cinematic. Again, your

imagination produces these images from the thought.

You can find in all our senses this phenomenon of a core thought that imagination can recreate or put into

words. We can think about smelling a rose, hearing Miles Davis play, touching denim, or tasting a banana

in an abstract way, independent of the senses we first experienced these thoughts through or the words we

use to describe them. And we can apply our imagination to the thought to almost smell the fragrance, hear

the trumpet, feel the texture, or taste the world’s superior fruit. As food and art critics prove, we can also

describe our thoughts of smell, sound, touch, and taste in words.

We have many different types of thoughts. “A dog flying to Mars” is a sort of motion through space, a

trajectory; “the dog becomes excited” is a sort of state change, a transition; “the dog is brown and Mars is a

planet” are timeless, unchanging classifications. We can also think about causality—“NASA made the dog

13



fly to Mars”—and its opposite, prevention—“but his mother tried to stop him.”—both forces. And we can

think about the relative timing of events: “The dog flew to Mars just after his third birthday.”

One approach to understanding intelligence is to try to model these abstract thoughts. A representation-

centric approach to understanding intelligence focuses on figuring out what pieces of knowledge we need to

store in our thoughts, how those pieces relate to each other, and how a computer can store this all efficiently

and perspicaciously so it can use it later.

If a computer is going to be as smart as we are, it needs to be able to think about what we can think

about. It must have a representation for each type of thought that we have; it must have representations

to match our trajectories, transitions, forces, etc. (Figure 1) Gauntlet is a research platform designed to

let us represent many types of thoughts by instantiating representations as semantic networks. Around our

group we colloquially call these instantiations frames, approximating—though not entirely like—the frames

envisioned by Minsky.[4]

Figure 1: If a thought is a particular instance of a type of thought, a frame is a particular instance of a
representation.

14



AI researchers want frames to work with. We can use them to do analogical reasoning: “That dog is a lot

like the Russian space-dog Laika.” We can try to make sense out of odd sounding thoughts: “I’ve never

heard of a dog flying to Mars. Perhaps ‘dog’ is meant to somehow describe a human astronaut.”

Given a rich source of useful frames, Gauntlet can actually reason this cleverly. But it critically needs

that source of frames; without frames, Gauntlet has nothing to reason on. Understand is that source of

frames.

1.2 Understand is the third attempt at transforming English into the repre-

sentations Gauntlet researchers want to use.

The purpose of Understand is to make it easy for Gauntlet researchers to transform English sentences

into frames.

Off-the-shelf tools such as parsers and WordNet[3] already allow a computer to partially understand English.

Gauntlet first passes your English input into a parser, which analyzes the grammar of your input to mark

the language with syntactic information. Gauntlet also pulls category information from WordNet, such

as that “cat” is a type of of mammal. The English, syntactic information, and category information are

Understand’s input. (Figure 2)

Understand is the third attempt at writing a computer program for this automatic interpretation. Origi-

nally Gauntlet used a hand-coded rule-based system, but this approach ultimately proved impracticable.

Lance replaced the rule-based system with a program that can learn by example. Understand builds on

the success of Lance.

Figure 2: The flow of information into Gauntlet. First a human types in some English. Then a parser
augments the English with syntactic information. Understand transforms that syntacticly-augmented
English into semantic frames and delivers them to Gauntlet.
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1.2.1 Hand-coding rules is too hard.

The Genesis group’s early frame-generation work consisted of manually produced rule-based systems. Human

programmers wrote If-Then rules that look for particular English fragments to produce frames: “If you see

the parsed form of ‘X Ys to the Z’, turn that into a trajectory frame whose subject is X, motion is Y, and

destination is Z.” While these rules work well, this manual approach makes it difficult to expand beyond

very simple phrases. It would be insane to try to write down all such rules it would take to cover all of

English. The manual approach is also distasteful from a cognitive science perspective: we humans learn to

understand language by example, not by hard-coding.

1.2.2 Lance pioneered learning by example.

Lance [2] pioneered the approach of learning rules by example. It can learn to turn parsed English into

frames from a list of examples: “‘The dog flew to Mars.’ should be represented this way, ‘The dog became

excited.’ should be represented that way.” It uses Winston’s Arch-Learning technique[7] to build models

for each representation, learning constraints such as “A trajectory’s verb must be a type of travel.” or “A

transition’s verb must involve change.”.

The purpose of Understand is to improve on Lance by learning equivalent rules from fewer examples.

1.3 Lattice-Learning enables Understand to learn from very few examples be-

cause it learns abstractions and learns generously.

There are two ways to reduce the number of examples it takes to learn a set of rules:

1. Reduce the number of examples Understand needs to learn a single rule.

2. Ensure that the number of examples needed to learn a new rule remains independent of the other rules

it depends on.

Understand uses a learning technique I call Lattice-Learning to accomplish both of these goals.
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To reduce the number of examples it takes to learn any particular rule, Lattice-Learning defaults to very

permissive descriptions of what inputs are acceptable. Rather than slowly building up a description from

small, sure steps, Lattice-Learning begins by making a huge skyward leap, allowing nearly anything at

first, then reigning itself in with future examples. While this style of learning may seem reckless, it learns

quickly and the algorithm is designed to prevent mistakes. For most concepts, Lattice-Learning takes just

two examples to learn a description: a positive example to seed the description, and a negative example to

specify it. For example, Lattice-Learning can learn a description of mammals by answering the question,

“What could be a cat but not a fish?”—a positive “cat” example and a negative “fish” example.

Understand decouples the task of learning a new rule from old ones with abstraction. By learning each

new rule as a “black box”, Understand can avoid combinatoric blow-up. When learning a rule to produce

trajectories from paths, Lattice-Learning’s reasoning is something like, “If I can use this path in this trajectory,

I can probably use any path in any trajectory.”

1.4 Understand learns and uses rules in a tightly-coupled loop.

Understand embodies to the maxim “You can only learn what you almost already know.” Before learning

a new rule, Understand uses all the rules it has already learned, transforming its English input into frames

where possible. Then it learns a new rule based off that nearly-complete transformation.

Whenever Understand is learning, the program can be thought to be in a feedback loop of learning and

using rules. When it has no rules—no knowledge of English— it can only learn rules for very simple phrases

such as “the fish”. As its understanding of English grows to a larger list of rules, it can learn new rules based

not solely on English, but also on frames produced by rules it learned earlier. This tightly-coupled feedback

loop allows Understand to get a handle on basic English grammar in a very short period of training. In

fact, after learning about a dozen rules, it’s possible to teach Understand with purely English examples,

such as “Patrick’s cat means the cat of Patrick.”

1.5 Where do I go from here?

• Supporting Technology to learn about Threads and Semantic Networks, the representational in-
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frastructure of Gauntlet and Understand.

• Lattice-Learning to learn more about Lattice-Learning, the reason Understand can learn quickly.

• Rules Engine to learn how Understand uses the rules it has learned to turn English into frames.

• Results and Contributions to see my latest experimental results and a summary of this thesis’ main

contributions.
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2 Supporting Technology

• In this section, you will get an overview of Threads, Semantic Networks, De-
pendency Parsers, WordNet, four technologies on which Gauntlet and Un-
derstand depend.

• By the end of this section, you will know how each technology fits into Un-
derstand’s architecture, and how it uses each to accomplish Understand’s
goal of learning to understand English.

2.1 Threads store hierarchical data.

Threads[6] are data structures that mimic the way our brains store hierarchical data, such as phylogenetic

Is-A relations between different types of animals. (Figure 3)

Figure 3: Cats and dogs are mammals. Mammals and fish are animals.

To represent this information as Threads, just write the types of each animal from general to specific. (Figure

4)

animal mammal cat
animal mammal dog
animal fish

Figure 4: Three Threads express the same information as the tree in Figure 3

The Thread representation of hierarchical memory has several advantages over tree structures.
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2.1.1 Advantage 1: Threads store redundant information.

If a tree-based memory were to suffer damage, it would certainly lose information. (Figure 5) If the link

between “animal” and “mammal” breaks, there is no way to know that cats or dogs are animals.

Figure 5: Figure 3 broken. There is no path from “cat” or “dog” to “animal”.

On the other hand, the Thread representation of the same memory has redundant information. Again we

break one link, between “mammal” and “animal” on the “cat” Thread. (Figure 6)

mammal cat
animal mammal dog
animal fish

Figure 6: Figure 4 broken. We can fix the “cat” Thread with the redundant information in the “dog”
Thread.

There is still enough information in the Thread Memory to determine that cats are animals: reading the

“dog” Thread, we see that mammals are animals. Cats are mammals, so we can deduce that cats are animals.

2.1.2 Advantage 2: Threads are biologically plausible.

Vaina and Greenblatt, the creators of the Thread Memory representation, showed that damage to Thread

Memory mimics some types of aphasic memory loss. That is, a damaged Thread Memory shows some of the

same disabilities as a damaged human brain. This parallel suggests that human memory may be implemented

in a Thread-like way.
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2.1.3 Advantage 3: Threads easily handle multiple word senses.

When we hear the words “dog” and “fox”, we typically recall their most common meanings, the common

animals. But these words have several more meanings: to call a person a dog means you consider them ugly;

to call someone a fox means you consider them clever. Thread Memory can represent these different word

senses with a different Thread for each. (Figure 7)

entity living-thing animal mammal carnivore canine dog
entity living-thing person unpleasant-person unpleasant-woman frump dog
entity living-thing animal mammal carnivore canine fox
entity living-thing person clever-person fox

Figure 7: Four Threads: two senses of the word “dog” and two senses of the word “fox”.

Gauntlet uses Threads as unique identifiers for a concept. Thread Memory’s handling of multiple senses

allows precision: instead of reasoning about the words “dog” or “fox”, Gauntlet reasons about Threads

as particular word senses. Threads remove ambiguity: they tell us whether the word “Mike” refers to me,

to some other person named Mike, or to a microphone.

In classical AI terms, Threads are like symbols, but contain richer type information. Unlike a meaningless

LISP gensym, Threads contain information about how the symbol relates to other symbols.

2.2 Semantic Networks store relations between threads.

While Gauntlet uses threads to represent one particular concept, such as Luke Skywalker or Darth Vader,

threads are not suited for storing relationships between concepts, such as that Vader is Luke’s father. Gaunt-

let uses the Semantic Network data structure to store inter-concept relationships.

2.2.1 Simple Semantic Networks store relations between concepts.

Semantic networks are typically drawn as graphs, with concepts as nodes and relationships as edges.

21



Figure 8: Vader is Luke’s father.

Figure 9: A richer version of Figure 8 with more Star Wars relationships.

2.2.2 Reified Semantic Networks store relationships between concept and relationships.

Unfortunately these simple semantic networks are a bit limiting. Though we can use them to express the

relationships between any two objects, we cannot use these semantic networks to talk about relationships

themselves. We can say “Leia loves Han.” and “The Emperor hates the Rebellion.” but we cannot express

“loves is the opposite of hates”.

A reified semantic network is called so because it turns relationships into things (Latin: res, rei) themselves.

It is easiest to see how this type of semantic network differs from a simple semantic network graphically.

(Figure 10)
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(a) Leia loves
Han and the
Emperor hate
the rebellion.

(b) Imagine
hooks pulling
on the relation-
ship lines to
make loops of
their own.

(c) The loops be-
come nodes rep-
resenting each re-
lationship.

(d) Now we can draw the
opposite relationship be-
tween “hates” and “loves”

Figure 10: Edges in a simple semantic network become nodes in a reified semantic network.

2.2.3 Gauntlet uses reified semantic networks as a meta-representational substrate.

Gauntlet builds frames out of four primitive semantic network combinators: things, relations, derivatives,

and sequences. Derivatives, relations, and sequences can combine any of the four combinators. This flexibility

allows Gauntlet to build arbitrarily complex representations.

Figure 11: things are containers for threads. things are like the nodes of a simple semantic network: they
represent a single concept.

Figure 12: relations connect two concepts together, as the edges of a simple semantic network do. Like
things, relations have a descriptive thread.
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Figure 13: derivatives derive meaning from one thing. derivatives are like a one-sided relation.

Figure 14: sequences gather together any number of things. sequences are like a joint relation between many
concepts.
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Figure 15: Using the four basic combinators, it is easy to construct frames that begin to capture aspects of
meaning, such as this one representing “Mike’s dog walked to the house.”
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2.3 Dependency Parsers diagram sentences.

A dependency parser is a program that can turn English text into a set of simple syntactic relations.

Running a dependency parser on a sentence results in something much like a grade-school sentence diagram.

Understand uses a dependency parser as the first step in turning English into the representations you

teach it.

Understand mechanically transforms a dependency parse into a set of Gauntlet frames. It creates one

relation for every pair of related words in the sentence.

Figure 16: The dependency parse of “The boy ran to the tree.”

Understand currently uses the Stanford Parser[1] as its dependency parser. But the parser is a modular

component of Understand, and could be replaced with any other English parser with little modification.

2.4 WordNet is Gauntlet’s Thread dictionary.

WordNet is a database of relationships between English words. WordNet stores relationships such as syn-

onym, antonym, and importantly for Gauntlet, hyponym. Hyponym relationships contain Thread-like

information: “cat” is a hyponym of “mammal.”

Gauntlet imports WordNet’s hyponym information to build Threads.
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3 Lattice-Learning

• In this section, you will learn about a new algorithm for concept learning,
Lattice-Learning. You will see that its generous descriptions allow it to learn
quickly.

• I will use a mammal description as a motivating example. In particular, you
will see what you can learn about mammals by knowing cats are mammals
and fish are not. I will then show a real example of how Understand learns
descriptions to match entity and path representations.

• After reading this section, you will have learned a bit about how Lattice-
Learning fits into the larger category of concept-learning algorithms. You will
know how to rank concept-learning algorithms on a scale between suspicious
and generous. You will know why generous algorithms like Lattice-Learning
are a good fit for learning rules to transform English into frames.

Lattice-Learning is an algorithm for concept-learning on Threads. You can use Lattice-Learning to build a

description of a concept from positive and negative examples.

3.1 Concept-learning algorithms learn descriptions from examples.

To learn a concept, a computer program tries to determine a Boolean function that tells whether or not an

unknown input is in that concept. For example, if the concept to learn is mammal, then

mammal(cat) = True

mammal(fish) = False

That is, cats are mammals but fish are not.

To teach the program, we just have to feed it such example cases of the function, and the learning algorithm

infers the rest. How exactly the algorithm infers the rest defines a concept-learning algorithm.

We can think of concept-learning algorithms as narrowing an upper and lower bound in a Version Space[5].

(Figure 17) Learning a better description moves the two bounds closer together.
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Figure 17: A version space for mammal after +cat,−fish. Too-general types such as living-thing are above
the upper bound, and known-mammal types such as cat are below the lower bound. dog remains in the
uncertain middle area.

The lower bound marks types certain to be in the concept; we know that cats are in mammal because

we explicitly told the program so. cat, as a positive example, generalized the description from nothing to

at-least-cats.

The upper bound cordons off too-general types; we know that living-thing is not within mammal because

we know fish are living things but not mammals. fish, as a negative example, specified the description from

anything down to nothing-that-could-possibly-be-a-fish.

It is not obvious what to do with an input like dog, which falls in the area between the lower and upper

bounds. It is not a cat, but also could not be a fish: no example explicitly allows dog, and no example denies

it. How to treat this middle area is a design choice in a concept-learning algorithm.

Winston’s Arch-Learning algorithm at the heart of Lance denies anything in this middle area: its mammal

function would return False for a dog input. To understand that dogs are mammals too, we must guide

Lance with more examples to climb up the list of types from cat to mammal. Lance’s suspicion prevents

it from learning quickly, demanding many examples before learning a concept fully.
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Lattice-Learning, on the other hand, treats the middle area as True. Its reasoning mirrors the human logic,

“Will I allow it? Sure, I don’t see any reason why not to.” This generosity enables Understand to settle

on the correct mammal description from only the cat and fish examples.

3.2 Lattice-Learning learns mammal from just +cat and −fish

To learn a concept, Lattice-Learning keeps a record of all the positive and negative example Threads of that

concept it has seen. At any time it can use these positive and negative examples to generate a description

of the concept on-the-fly.

To generate a description, Lattice-Learning tries to answer the question “What are the most general types of

things that could be one of my positive examples but cannot be one of my negative examples?” In this section

I step through the mammal example to show how the algorithm computes the answer to that question. Our

examples are +cat and negative −fish.

The algorithm walks down the types on each positive example Thread from general to specific. These types

are candidates to be in the set of most general types. In this case, there is just one positive Thread, cat,

beginning with thing.

thing entity physical-entity object whole living-thing organism animal chordate
vertebrate mammal placental carnivore feline cat

Figure 18: Just one positive Thread, cat.

The algorithm walks down the types on each candidate thread, checking each type to see if it is in any of

the negative threads. If the type is part of a negative example, the type is too general; if the type is not

part of any negative example, it is safe to admit. Because the algorithm works from general to specific, the

first type that is safe to admit is the most general.

I’ll include a few more examples. Note that +cat allows anything, as it has no reason not to—no negative

examples.
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• “Can thing be a cat but not a fish?” No, a fish is a thing, so some unknown thing could actually be a
fish.

• “Can entity be a cat but not a fish?” No, again, an unknown entity could be a fish.

...

• “Can a vertebrate be a cat but not a fish?” No, fish are vertebrates.

• “Can a mammal be a cat but not a fish?” Yes, an unknown mammal could be a cat, but cannot be a
fish, as fish are not mammals.

Figure 19: A trace of the algorithm deciding that mammal is the most general type allowed by +cat,−fish.

Figure 20: A screen-shot showing the implemented Lattice-Learning code also settling on mammal from
+cat,−fish.

Figure 21: +cat,−love→ physical-entity

Figure 22: +cat→ thing

Figure 23: +cat,−fish,−cow → carnivore
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3.3 Why not just tell the program “mammal” to begin with?

You may be wondering why we have to go through such a hassle to teach the computer a description for

mammal. Could we not just have given it mammal to begin with? Yes, in this case we certainly could have.

But we can only do so if we know what the description should be.

One particularly fascinating aspect of the human mind is that it is sometimes much easier for us to come up

with specific examples than a general description. Sometimes we do not even have a name for the general

description we want to consider. It is much easier for us to say “a dove, robin, and sparrow are this type

of bird, but hawks, penguins, and ducks are not” than to remember the order of small, perching songbirds,

“passerines.” Lattice-Learning shines when we want to teach a concept whose description we cannot name

explicitly.

Because Lattice-Learning can generate descriptions on-the-fly, it is well-suited to refinement over time.

Perhaps originally you thought you were teaching the program about mammals, but upon reflection you

realize you meant carnivores. Just add cow as another negative example. (Figure 23) Lattice-Learning

automatically refines its description to account for every example. And because it remembers all examples

and generates a fresh description with each refinement, Lattice-Learning is not sensitive to what order you

give it the examples.

3.4 Understand learns descriptions of frames

Until now I have only shown Lattice-Learning working with a single description whose positive and negative

examples are threads. Understand extends this learning to trajectories and other frames—structures

composed of threads.

The first representation I usually teach Understand is entity, a way of storing a noun and all its related

information together; “the dog”, “cats”, “Patrick’s pet fish”, and “the very ugly red dog” are all entities.

So I start by telling Understand the meaning of “the cat.” (Figure 25)

Applying Lattice-Learning at each level of the input, the description to match the input looks like Figure

25.
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Figure 24: I tell Understand to represent “the cat” as an entity.

(a) Positive and negative
examples

(b) Generated description

Figure 25: Each thread is now a positive example. So far, this description has no negative examples. This
description will match any relation with two things underneath.

But this description is too general. A side-effect of the Lattice-Learning algorithm is that a description

consisting of just a single positive example and no negative examples will match anything. In particular, we

don’t want it to match the “to tree” part of “to the tree.” (Figure 26)
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To fix this problem, we let Understand make the mistake, and then point it out as a negative exam-

ple. (Figure 27)

Figure 26: The parse of “To the tree.” is two relations. According to our current description, both are
allowed. That is bad. We want “the tree” but not “to tree”.

Figure 27: I tell Understand to fix the description with a negative example. I mark the errors in pink by
clicking on them.
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(a) Positive and negative examples (b) Generated description

Figure 28: The description now matches only a determiner relation between an entity and a part-of-speech.
This is probably specific enough.
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3.5 Understand learns abstractions

The rule that produces entities dealt entirely with English syntax—the entity representation does not incorpo-

rate any other representations. But Understand can build representations out of both syntax descriptions

and other representations. This process is analogous to building walls out of basic components like bricks

(syntax), and then building houses out of already-built walls (other representations).

To see how Understand uses other representations, consider what the parse of “to the tree” looks like now,

having learned the right rule for entity.

Figure 29: The parse has one syntax relation, and one entity.

I usually represent paths as a relation between the preposition and the entity defining the path.

Understand treats this case a little differently. Noting that it pulled in the whole entity untouched,

Understand sees an opportunity for abstraction. Instead of building a complete description, it treats

entity as a black box, only building a description at the very top level.

Because Understand treats the path’s internal entity as an abstraction, the rule does not have to change if

we expand on the entity representation later. If we teach Understand how to turn “Mike’s house” or “the

top of the tree” into entities, “around Mike’s house” and “from the top of the tree” will already work.
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Figure 30: We want the parse to turn into this. Note that the entity has been swallowed whole.

Figure 31: The syntax relation has a full description, but the description for the entity is shallow. This rule
does not care what is inside the entity.
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4 Rules Engine

• In this section, you will learn how Understand’s engine for using rules works.
You will see how it uses the rules it has learned to turn simple frames into
fewer, richer frames. And you will learn how the Deepest-Average heuristic
and priming ensure that you get back the interpretation you want when the
meaning is ambiguous.

• I’ll first show how the engine transforms the simple phrase “to the tree” into
a path frame. To show how the engine handles ambiguity, I’ll also show what
it does with “The bird soared over the sea.”

Understand learns rules that fit nicely into a rewriting rule system. Understand receives examples from

the user in the form of an example input and the desired output for that input. When Understand learns a

new rule from an example, it builds Lattice-Learning descriptions based on the example input, and it builds

skeletal versions of the example output. (Figure 32)

Figure 32: A stylized rule. On the left side, a rule looks for syntax or frames to match each of its descriptions.
If all the rule’s descriptions are matched, the rule produces a new frame on the right by filling a skeleton.

The rule’s skeletons have the same shape as the example’s output, and know how to fill themselves in. The

skeleton stores some combination of constant, already-filled-in Threads, paths to find a Thread in the input,

or paths to find a whole frame in the input.
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The skeleton stores constant Threads for Threads it cannot find in the input, such as rep path when learning

to turn “to the tree” into a path, as in Figure 30.

If a Thread is in the input, such as thing entity ... tree in the same example, the skeleton stores

an encoded path to that Thread: a frame number in brackets followed by a list of turns to make while

descending into that frame. Frame numbers count from zero, so you may need to add 1 to each number to

make sense of the path. For example, [2] 1 0 means: look into the frame in the input that matches the

third description; then step into its second component; step into its first component; finally get the Thread

of that innermost part. (Figure 33)

Figure 33: The thread at [2] 1 0 in this example is dog.

If a complete frame from the input is found in the output, as the entity frame, the skeleton stores a path

indicating it can pull the whole frame. Whole-frame paths are encoded as a frame number in braces: {3}

means to pull in the entire fourth frame. This path encoding needs no more numbers, as the skeleton does

not descend into the frame.

A collection of input descriptions and skeletons make a rule. If the input descriptions are satisfied by the

input frames, the skeletons fill themselves in to produce new output frames.

Though production systems all use rules in roughly the same way, they differ in what to do if more than

38



Figure 34: A skeleton with all three types of skeleton options: rep path is a constant Thread; [0] 0 points
to the Thread of the first frame’s first component and {1} points to the entire second frame.

Figure 35: Rule #0: The rule for creating an entity Understand learned in the last section looks for the
particular syntax of a noun phrase. It creates an entity by pulling in the Thread for the noun.

one rule can fire at any time. Understand’s engine takes a multiple-universes approach: when several rules

apply, it follows each possibility independently. Once each universe has settled on an answer, it chooses the

best result to return as its interpretation of the input. This implementation naturally allows priming—telling

the engine in advance what kind output you think is the best.

4.1 Normally only one rule applies at a time.

Consider an unambiguous sentence fragment, “to the tree.” (Figure 37)

On an unambiguous example like “to the tree,” only one rule applies at a time. The rule engine simply

applies each rule as it becomes applicable. When no more rules apply, the rule engine stops and returns
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Figure 36: Rule #1: The rule for creating a path. One description matches the destination entity, and
another looks for the preposition. If both descriptions are satisfied, the skeleton can pull the preposition and
entity together to form a path.

Figure 37: The dependency parse of “to the tree” has 2 links.

the last-produced frames as the final result. (Figure 38) To interpret “to the tree” as a path, Understand

needs just the two rules it learned in the previous section.

Figure 38: At first Rule #0 is satisfied and Rule #1 is not, so Rule #0 fires. Then, Rule #1 is satisfied and
Rule #0 is not, so Rule #1 fires. After these two steps, no rule is satisfied, so we’re done.
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4.2 Ambiguity forces Understand to explore all possibilities.

Sometimes Understand is asked to transform a sentence that seems ambiguous. That is, during the

transformation of the sentence, Understand finds two or more rules that could apply at the same time.

One such sentence is “The bird soared over the sea.”

“Soar” has always been a problematic word for Gauntlet researchers, as usually it means “fly”, but can

also mean “increase”, as in “the price soared.” The “fly” interpretation leads to a motion-through-space

trajectory, while the “increase” sense is best thought of as a state change transition. While both interpreta-

tions of this sentence make some sense, a trajectory is a more natural representation, as it can incorporate

all the sentence’s information. The transition representation we use in Gauntlet cannot incorporate paths

like “over the sea.”

When Understand tries to transform a sentence like this, it does so by exploring all possible interpretations.

When it reaches the ambiguity, it forks off into two branches: one leading to the trajectory interpretation, one

to the transition interpretation. After each branch finishes, Understand passes all possible interpretations

to the Deepest-Average heuristic to choose the best one.
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Figure 39: How Understand interprets “The bird soared over the sea.” First, three unambiguous steps
transform “The bird” and “the sea” into entities, and then “over the sea” into a path. Next, the engine
branches into two paths, one interpreting “The bird soared” as a trajectory, the other as a transition. Finally,
the trajectory branch incorporates the “over the sea” path; the transition cannot use the path.
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4.3 The Deepest-Average heuristic usually chooses the frame you want.

In our first example, “to the tree”, there was no ambiguity about what frame we wanted back; we wanted

the final one, the path. Typically this ultimate product will be the most meaningful.

But when the engine runs into ambiguity and forking paths appear, final frame is an idea that no longer

makes sense. In our second example, is the trajectory or transition the final one? Both are at the end of a

branch of execution, so that criterion doesn’t help us decide. In these ambiguous situations, we can apply

the Deepest-Average heuristic.

To find the Deepest-Average value for a set of frames, calculate the average depth of its frames, counting

syntactic parse-link frames as depth 0. Choose the frame set with the largest heuristic value as the best

interpretation. You can see the last example from Figure 39 labeled with Deepest-Average values in Figure

40.

Empirically I find that the Deepest-Average heuristic almost always gives back the result I find most meaning-

ful. Looking for a high average depth promotes higher-level interpretations. Counting syntactic parse-links as

0 depth penalizes interpretations that do not use all the available material, as in the transition interpretation

of “The bird soared over the sea,” which did not use the “over the sea” path information.

4.4 If you prime Understand with what you want, it will try to find a frame

that matches.

Occasionally the Deepest-Average heuristic doesn’t give the answer you want; sometimes we ask it to serve

two masters. Say Mark wants to find trajectories in stories, and Raymond wants to extract transitions.

Someone will be disappointed by the heuristic’s answer. So Understand allows you to prime its Deepest-

Average heuristic with a description to match.

Primed with a description, Understand will apply Deepest-Average only to outputs that match the de-

scription, giving back the best of a subset of all possible answers. Mark primes Understand with a

trajectory description, Raymond primes it with a description that matches transitions, and both get back

the interpretation they are looking for.
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Figure 40: “The bird soared over the sea.” labeled with Deepest-Average values. The trajectory with a path
has the best heuristic value.
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5 Results and Contributions

5.1 Experimental Results

Understand’s ability to transform parsed English into semantic frames depends entirely on its training.

While we have just begun to explore how much Understand will ultimately learn, I provide a sample

training sequence for reference and comparison to previous programs such as Lance. The exact training

data can be found an appendix to this document.

In 20 minutes I trained Understand with 8 positive and 4 negative examples of what various phrases of

English mean (or do not mean). With just these 12 examples, Understand can produce frames covering

several areas of the English language: entities, paths, trajectories, transitions, causality, and time relations.

5.2 Contributions

In this section, I list my noteworthy contributions in this thesis.

• Introduced Lattice-Learning, a concept-learning algorithm that can learn Thread descriptions from

very few examples.

• Implemented Understand, a program that uses Lattice-Learning to learn to transform parsed English

into semantic frames.

• Suggested that the Deepest-Average heuristic will usually pick the most meaningful of several ambigu-

ous interpretations.

• Performed an experiment showing Understand’s remarkable grasp of English after only 12 examples.

45



Appendix: Examples

In this appendix I list the examples that teach Understand to the point referred to in my experimental
results. These examples are stored in text format.

Positive Examples

Positive examples consist of a Positive marker followed by some English text and its meaning. Its meaning
can either be in a form of s-expression markup or in English that Understand already can understand
(from previous examples.) For example,

Positive
Mike’s car
the car of Mike

will teach Understand that “Mike’s car” means whatever “the car of Mike” means.

Negative Examples

Negative examples are a little trickier. They start with a Negative marker followed by some English context,
an incorrect frame, and faulty causes. Rather than just asserting “this does not mean that”, a negative
example asserts “in this context, this frame is not a valid interpretation, because these causes prevent it
from being so.” The second example states that “to” is not an entity in “to the tree” because it is part of a
prepositional-object grammar link.

Negative examples are tricky to write manually. Even I shy from it. The format is really tuned for Under-
stand; it is easy to work with Understand to create these negative examples by marking the mistakes it
makes.

S-expression markup

S-expressions are a convenient format for expressing tree data structures as text. It is beyond the scope of
this appendix to explain them fully, but I do want to supply a few notes for people familiar with them.

The ‘t’, ‘d’, ‘r’, and ‘s’ atoms begin a new thing, derivative, relation, or sequence. These expect a thread,
followed by 0, 1, 2, or any number of children, respectively.

Threads can either be written literally in quotations, as in "rep entity", or just as a name that will be
looked up in WordNet, as in bird.

The ‘*’ atom shortcuts the tree building process by pulling in an entire frame, rather than just a thread. It
looks for a frame with the thread at its top level, and pulls it into the s-expression whole. (* entity), for
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example, pulls in a whole entity, in the third example the tree entity. This feature is purely for convenience,
and has the same effect as typing the complete structure.

The examples

These is Understand’s exact log file for the training that produced the documented results, with minor
formatting to fit the page. There are 8 positive and 4 negative examples.

Positive
the bird
(s "rep entity" (t bird))

Negative
to the tree
(S "rep entity" (T "thing part-of-speech part-of-speech-to to"))
(R "thing parse-link prepositional-object" (T "thing part-of-speech
part-of-speech-to to") (T "thing entity physical-entity object whole
living-thing organism plant vascular-plant woody-plant tree"))

Positive
to the tree
(r "rep path" (t to) (* entity))

Positive
the bird flew
(s "rep trajectory" (t flew) (* entity))

Negative
the bird flew to the tree
(S "rep trajectory" (T "action travel fly flew") (R "rep path" (T "thing
part-of-speech part-of-speech-to to") (S "rep entity" (T "thing entity
physical-entity object whole living-thing organism plant vascular-plant
woody-plant tree"))))
(R "thing parse-link prepositional-modifier" (T "action travel fly flew") (T
"thing part-of-speech part-of-speech-to to"))

Negative
the bird is
(S "rep trajectory" (T "action be is") (S "rep entity" (T "thing entity
physical-entity object whole living-thing organism animal chordate vertebrate
bird")))
(T "action be is")

Positive
the bird flew to the tree
(s "rep trajectory" (t flew) (s "rep entity" (t bird)) (* path))

Positive
the price increased
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(r "rep transition" (t increased) (* entity))

Negative
the price is
(R "rep transition" (T "action be is") (S "rep entity" (T "thing entity
abstraction attribute quality worth value monetary-value price")))
(T "action be is")

Positive
the man disappears
(r "rep transition" (t disappears) (* entity))

Positive
a star appears
(r "rep transition" (t appears) (* entity))

Positive
the bird flew because a cat appeared
(r because (* transition) (* trajectory))
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