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Abstract

This thesis investigates the bidirectional exchange of information between linguistic
and non-linguistic semantic inputs containing ambiguities. Such exchange is critical
to Cognitively Complete Systems, in which collections of related representations and
processes cooperate for their mutual problem-solving benefit. The exchange paradigm
of reconciliation is defined, in which ambiguities and gaps in multiple input domains
are simultaneously resolved. A complete architecture for implementing reconciliation
between the linguistic and non-linguistic semantic domains is described, employing
the Streams and Counterstreams bidirectional search technique, Combinatory Cat-
egorial Grammar, and Lexical Conceptual Semantics. This architecture has been
implemented, resulting in a system that can act as an ambiguity resolving constraint
between linguistic and non-linguistic inputs, with the side effect of also producing
a language parsing and generating system. For example, if the system is presented
with the phrase “The orange rolls,” and a non-linguistic input (perhaps from a vision
subsystem) describing the presence of bread (rolls) in the scene, the system will auto-
matically select the interpretation of the the linguistic input describing pieces of bread
of orange color. Thus, ambiguity is resolved in the linguistic domain, and the state-
ment that the rolls have the property orange can be propagated to the non-linguistic
semantic domain.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Introduction

This thesis focuses on the cooperative exchange of information between the linguistic

and non-linguistic semantic domains. The motivation behind this thesis stems in part

from situations in which standard natural language parsers and generators seem to

come up short: specifically, situations in which the correct interpretation of either

the linguistic or non-linguistic semantic input is only achievable by considering both

inputs simultaneously. This thesis is also supported by philosophical motivations

calling for the creation of systems with broader and more robust cognitive abilities.

Such systems rely on a high degree of cooperation and sharing between problem

domains, and so the thesis embraces the philosophy by demonstrating a technique for

cooperative information exchange in general, and by creating a system for cooperative

exchange between the linguistic and non-linguistic semantic domains.

1.1 Motivation by Example

As an motivating example, let us consider a standard parser being presented with a

few words: “The orange rolls.” Because of the ambiguity inherent in natural language,

these words can be interpreted as having at least two meanings, including a piece of

fruit moving by rotation, or a piece of bread with a red-yellow hue. With only the

linguistic input to go on, a traditional parser could produce both interpretations.

However, linguistic inputs are often so ambiguous that a parser cannot afford to
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produce all possible interpretations. The typical solution is to use some statistical

heuristic to ignore unlikely interpretations. In this case, the parse might decide

that the red-yellow-bread interpretation is statistically unlikely and return only the

rotating-fruit interpretation.

Now let us also consider a similar scenario, but with the addition of visual input

from a camera observing a few pieces of bread. For the sake of argument, we will

assume that the visual recognition system is able to identify the bread in the input,

but is unable to determine the color of the bread (perhaps there is low light, or the

input is black and white). Now, if a human were serving as the parser, they would

easily be able to identify the red-yellow bread interpretation of “the orange rolls” as

the most likely, given the non-linguistic context. In fact, if that human had already

familiarized themselves with the visual input before receiving the linguistic input, it

is very possible that the rotating fruit interpretation would not even occur to them,

because the red-yellow bread interpretation seems so obvious!

Returning to the artificial parsing system, we are likely to be disappointed. Stan-

dard parsers do not consider non-linguistic context when evaluating linguistic inputs,

so the parser will behave exactly as if the non-linguistic input was not present. At

best, it might be hoped that the parser would generate both the rotating-fruit and

red-yellow-bread interpretations, and that some other system could be charged with

ranking these interpretations using the non-linguistic context. But what happens

when there are too many interpretations for the parser to enumerate? The parse may

choose to prune a statistically unlikely interpretation before passing its results to the

non-linguistic context ranking system, even though the non-linguistic context might

overwhelmingly support that interpretation.

This thesis presents a solution to this example problem. By incorporating non-

linguistic context directly into the natural language parsing process, and analogously

by incorporating linguistic context into natural language generation, this system seeks

to avoid these early-pruning problems. Furthermore, the system hopes to go one step

further by passing on information about any ambiguities it resolves to the domains

that gave rise to the ambiguity. In this example, each word in the linguistic domain

18



can be assigned an unambiguous interpretation. Furthermore, the information that

the bread is orange-colored can be passed on to the non-linguistic domain. Any other

system that use the non-linguistic domain can then make use of the fact that the rolls

are orange, just as if the vision system had actually been able to observe it.

1.2 Philosophical Motivation

1.2.1 The plight of AI research

Traditionally, researchers have applied a divide-and-conquer approach to the problem

of Artificial Intelligence. For the past several decades, we have known that creating

an artificial system capable of human-like intelligence is an exceptionally difficult

problem that will require many subsystems specializing in the solution of a wide array

of problems. The general approach, then, has been to take the overall problem (e.g.

artificial intelligence) and break it down into smaller problem (e.g. vision, audio,

natural language processing, kinematics, abstract reasoning, etc). These problem

areas are recursively subdivided until thousands of micro-problems are being pursued

in parallel. The standard view seems to be that once all of these sub-sub-sub-problems

are perfectly solved, then they will be quickly lashed together and AI will be solved.

Unfortunately, these traditional approaches make Artificial Intelligence too hard.

So far, I have simply depicted the standard technique of divide-and-conquer, and

there is nothing inherently wrong with method of attack in many situations. The

reason divide-and-conquer falls apart in this case is that subdividing the problem

space does not necessarily result in simpler problems.

There is much reason to believe that the human brain shares information ram-

pantly. Consider the example of the phoneme-restoration effect [17] where subjects

hear a sentence, but with one of its phonemes completely removed. These subjects

spontaneously hallucinate into the gap the phoneme that gives the sentence the most

coherent meaning, and astonishingly are completely unaware that the sentence even

contained a gap at all! Studies in which information sharing is abnormal give further
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clues into the nature of information sharing. Consider the effect of synesthesia, in

which some people experience cross-over between various senses, literally seeing num-

bers in color, hearing notes in color, or tasting words. Experimental evidence [11]

has recently been produced which demonstrates that synesthetes truly perceive dif-

ferently, easily completing experimental tasks that are difficult or impossible for non-

synesthetes. These experiments force us to consider how similar information sharing

may be occurring all the time in everyone’s brain, but is simply taken for granted.

In contrast to this paradigm of shared information, artificial intelligence researchers

have attempted to solve each subproblem in isolation, without using any information

from across the modular divide. Many systems continue to be created that ignore

the context in which they are being used. In such a systems, understanding a scene

containing a dog together with the label “boxer” would require either an object recog-

nition system talented enough to identify different breeds of dog, or a language system

somehow capable of guessing that “boxer” in this case did not refer to a professional

fighter. Many intelligence problems, including visual scene reconstruction, object

recognition, and speech recognition, suffer from under-constrained inputs. Creating

systems which solve these problems becomes more tractable if they can work together

with other systems, using context to reduce the range of possibilities.

1.2.2 Cognitively Complete Systems

In order to start focusing on cooperative systems, the notion of Cognitively Complete

Systems has arisen. Research in this area investigates how modules and represen-

tations with different but related purposes can cooperate with one another for their

collective benefit. In a Cognitively Complete System, it is no longer necessary for

a particular representation or cognitive module to completely solve the problem as-

signed to it. Rather, it should make whatever progress can be made with the informa-

tion available. The solution is later completed by cooperating with related cognitive

facilities. The hope of Cognitively Complete Systems is that by relaxing the expecta-

tions from perfection in isolation to most-informed-guesses with help from neighbors,

we will be able to make much progress in research areas that have traditionally been
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considered difficult.

This thesis has been executed as part of the MIT Artificial Intelligence Lab’s

Bridge Project. The Bridge Project has the goal of creating a Cognitively Complete

System spanning the vision and language faculties. As its core structure, Bridge has

a variety of representations, some closely tied to language, some closer to vision, and

other more abstract representations in between. Tying these representations together

is a web of bidirectional constraints. These constraints are charged with the task

of maintaining coherence between the representations while providing avenues for

information transfer. The complete Bridge system will be able to accomplish tasks

such as imagining input sentences as “mental videos,” then reflectively analyzing

these videos to extend the understanding of the input. As an example, the sentence

“The boy walked from the tree to the table in the house,” could elicit a video, from

which the question “Did the boy walk through a door?” might be answered. The

complete Bridge system should also be able to visually observe events and express

these in language. The symbolic structures required for language can then provide a

more thorough understanding of what has been seen. Because the system supports

bidirectional information exchange, it should be able to use a visual input together

with a linguistic input as an opportunity for learning how the two inputs are related.

As a Cognitively Complete System, the Bridge project is interesting in and of itself.

However, the interest should also extend to other fields of research related to artificial

intelligence, such as vision, natural language processing, and cognitive science. In

these fields, much multi-modal research has been proposed but remains virtually

untested due to the lack of an adequate test bed. For example, natural language

theories of word learning [10, 15] and language acquisition models [19, 7] could be

testable in the context of Bridge. Thus, it is the further goal of the Bridge Project to

support advancement in these domains by providing a Cognitively Complete System

as a test bed for exploring new theories, especially those involving the notion of

cooperative representations.
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1.3 Thesis scope

As exploration in handling situations such as the “orange rolls” motivating example,

and as one step in the creation of the Bridge System, I present here an investigation

of information exchange between natural language inputs and a structured semantic

representation of the worlds. This thesis seeks to answer two questions:

• What kind of exchange should we expect between natural language and non-

linguistic semantics?

• How can this exchange be accomplished?

In answer to the first question, the notion of reconciliation is introduced. Under

the reconciliation paradigm, both linguistic and non-linguistic input are presented to

the system, both containing ambiguities and missing information. A reconciliatory

exchange seeks to makes the best use of all the information available in both input

domains to try to resolve ambiguities and fill gaps in both the linguistic and non-

linguistic inputs.

With the concept of reconciliation laid out, I then describe a complete architecture

for implementing reconciliation between the linguistic and non-linguistic semantic

domains, employing the Streams and Counterstreams bidirectional search technique,

Combinatory Categorial Grammar, and Lexical Conceptual Semantics. As part of

the research leading to this thesis, I have also implemented the system described.

Thus, this thesis stands not only as a proposed architecture for reconciliation, but

also as documentation for a system I have successfully constructed.
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Chapter 2

Solution Roadmap

In this chapter, I examine the problem domain of information exchange between

linguistic and non-linguistic semantic domains. I then provide an outline of a system

which will support bidirectional reconciliatory exchange between these domains. This

outline will be realized in Chapter 4, with the support of techniques described in

Chapter 3.

2.1 The Problem Domain

This section will briefly discuss characteristics of the linguistic input domain and the

non-linguistic semantic domain, and will consider how information can be exchanged

between them.

2.1.1 Characteristics of the linguistic input domain

Inputs in the linguistic domain are sentences and phrases consisting of unstructured

sequences of words. These inputs can arise in several ways, including audio processing

(e.g. speech recognition), visual processing (e.g. reading/text recognition), or in the

case of an artificial system, directly from a keyboard or other text source.

When linguistic inputs enter the system, they are linear rather than structured

(all that is known is that one word follows another). It is the responsibility of the
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system, with the assistance of a grammar, to extract a structured linguistic represen-

tation from the original unstructured representation. It is this structured linguistic

representation that implies a semantic meaning.

2.1.2 Characteristics of the semantic input domain

The semantic domain is a structured representations of the world. Information can

enter the semantic domain through a variety of non-linguistic channels: vision, kines-

thetics, reasoning, imagination, and so on. Semantic information can also be extracted

from linguistic inputs, for example by parsing.

The nature of language and grammar imposes restrictions on the structure of

semantic representations that can be directly interchanged with language. The se-

mantic principle of compositionality states that the meaning of any expression (such

as a phrase) is a function of the meaning of its sub-expressions, where the particular

function is determined by the method of composition. For example, the expression

“The quick fox jumped over the log” can be considered a composition of the sub-

expressions “The quick fox” and “over the log”, where syntactic composition with

“jumped” is the method of composition. In other words, the semantics of this sen-

tence can be expressed: jumped(Semantics(“The quick fox”), Semantics(“over

the log”)). Recursive application of this principle reveals that the semantic value of

an expression is a structured representation.

2.1.3 Parsing, Generation, and Reconciliation: Paradigms

for connecting the linguistic and nonlinguistic domains

This thesis focuses on information exchange between related domains. Therefore, let

us first examine in what manners information could be exchanged.

The first exchange paradigm is parsing. The parsing paradigm is a unidirectional

exchange process in which the unstructured linguistic input is translated into semantic

structures. Many linguistic inputs contain sufficient ambiguity that they can produce

several semantic interpretations. This ambiguity can be a result of the acquisition
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Parsing:

“The red ball”
parsing−→

[
MODIFIER [<Property RED>
<Thing BALL>

Generation:[
MODIFIER [<Property RED>
<Thing BALL>

generation−→ “The red ball”

Reconciliation: [<Thing ROLLS:BREAD>

“The

{
orange : color
orange : frult

} {
rolls : verb
rolls : bread

}
”


reconciliation−→


[
MODIFIER [<Property ORANGE>
<Thing ROLLS:BREAD>

“The orange:color rolls:bread”


Figure 2-1: A schematic representation of the parsing, generation, and reconciliation
paradigms for information exchange between the linguistic and non-linguistic do-
mains. In the parsing paradigm, information flows from the linguistic domain to the
non-linguistic domain. In the generation paradigm, information flows from the non-
linguistic domain to the linguistic domain. In the reconciliation domain, information
flows in both directions, resolving ambiguities and filling gaps in both domains.

of the linguistic input; for example, if the linguistic input is acquired from an audio

recording of speech, there may be uncertainties as to what word was actually said.

Ambiguity can also be implicit in the rules of grammar; for example, the phrase “the

duck on the table with the flag” leaves the parser to guess whether “with the flag”

implies that the duck has a flag, or that the table has a flag. In the parsing paradigm,

the only recourse for dealing with this ambiguity is to produce all possible semantic

interpretations. Because this is computationally expensive, most parsers actually

use some statistical heuristic to guess which are the most likely interpretations, and

ignore the rest. The parsing paradigm is the most commonly explored in artificial

intelligence.

The second exchange paradigm is generation. Generation is essentially the reverse

process from parsing. It is the process of taking a non-linguistic semantic input and

translating it into a new linguistic representation, preserving as much meaning as

possible.

The final exchange paradigm is reconciliation. Reconciliation is somewhat like
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parsing and generating simultaneously. In this paradigm, both linguistic and non-

linguistic input are presented to the system, and it is assumed that there is a good

chance the two inputs are related. Both of these inputs are expected to contain

ambiguities and missing information; therefore it is the job of the reconciliation system

to make the best use of all the information available at both inputs to try to resolve

the ambiguities.

It is worth noting that these three paradigms can be generalized to settings

that do not involve language. Cognitively Complete Systems which are rife with

exchange channels connecting various representational domains, many of which are

non-linguistics. In such situations, the paradigms can be given the generic names

forward translation, backward translation, and reconciliation.

This thesis focuses on the reconciliation problem for several reasons. First, the

reconciliation paradigm is critical for Cognitively Complete Systems to reach their

full potential, because it enables representational cooperation. Furthermore, parsing

and generation can be viewed as degenerate cases of reconciliation in which either

the linguistic or non-linguistic side of the system is devoid of useful context. Thus,

solutions to the reconciliation problem also provide for the parsing and generation

problem. Finally, the reconciliation problem is the least explored of the paradigms,

partly because it is the hardest, and partly because research environments often focus

on a single input modality, where reconciliation cannot prove its worth.

2.2 Approaching the Reconciliation Problem

In the previous section, we observed that the linguistic input domain has an implicit

semantic structure, while the non-linguistic semantic domain has an explicit struc-

ture. If we can make the semantic structure of the linguistic domain explicit, then

intuitively we can approach the reconciliation task through structural alignment of

semantic structures. The remainder of this chapter provides a very brief outline of a

system architecture for reconciliation. As the rest of the thesis progresses, the outline

presented here should serve the reader as a roadmap for how the various subsystems
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will fit together to achieve the larger goal of reconciliation.

2.2.1 Linguistic Processing: Semantics from Linguistic Input

Making explicit the semantics of a linguistic input requires two things: a grammatical

framework and a search procedure.

It the function of a grammar to determine how words from the lexicon may com-

bine together, as well as to determine and what the semantics of this combination

will be. The grammar used in this thesis is Combinatory Categorial Grammar ([14],

Section 3.2), a grammar based on functional representations of syntactic categories.

This grammar uses Lambda Calculus expressions to handle semantics.

A search procedure is required to determine how the rules of grammar should be

applied to a given linguistic input. Because this system focuses on bidirectional ex-

change of information, I have chosen a bidirectional search technique called Streams

and Counterstreams ([16], Section 3.4). This technique is attractive because of its cog-

nitive plausibility and its extensibility. However, it is difficult to find implementations

of Streams and Counterstreams, therefore part of this research has been to formulate

and implement a serial version of Streams and Counterstreams (Section 4.4). Finally,

it is unclear whether this technique has been implemented outside of the visual pro-

cessing domain, the domain in which it was suggested. Thus, another aspect of this

research is the application of Streams and Counterstreams to linguistic processing

using CCG (Section 4.5).

2.2.2 Structural Alignment and Bidirectional Exchange

Because we want information to flow bidirectionally, we cast the grammatical pro-

cessing subsystem in terms of a constraint propagation network, with each constraint

representing the application of a single grammatical rule (Section 4.3). In this way,

linguistic and non-linguistic semantic inputs can be presented at opposite sides of

the constraint network, and the network will minimize ambiguity. Gaps in the in-

put domains are filled using structural alignment (Section 3.5), a process in which
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corresponding elements in two structured representations are identified by matching.

Correspondence between non-matching elements is then implied by the structural

constraints of the representations. For the present system, this structural alignment

is actually implicit in the operation of the constraint network and the construction

of the constraint network topology using bidirectional search.

2.2.3 Semantic Representation

In order to perform structural alignment, the representation for the semantic domain

must have several key properties:

• The domain must be a structural representation and it must be symbolic, in

order to allow alignment of symbols.

• For inferences made from structural alignment to be valid, the representation

must obey the principle of compositionality.

• The representation should contain orthogonal elements (i.e. the same piece of

semantics is not encoded into multiple symbols) so that there are canonical

ways of expressing particular meanings.

• Finally, the semantic representation must be lexicalized, implying that the se-

mantics of any linguistic phrase can be cleanly divided amongst the phrase’s

constituent words. Each word should get a single connected semantic structure

that does not share semantic symbols with any other word.

With all of these properties in mind, we choose Lexical Conceptual Structures

(LCS, [9], Section 3.1) as the basis for our semantics. Because our grammatical

framework operates on Lambda-Calculus semantic functions, we will need to extend

LCS with lambda calculus (Section 4.1). Due to reasons we will consider later, it will

be preferable to using a variant of lambda calculus called Label-Selective Lambda Cal-

culus (Section 3.3) for this extension. Supporting Label-Selective Lambda Calculus

will also require an extension to CCG (Section 4.2).
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Chapter 3

Foundational Techniques

In this chapter, I describe several techniques which serve as a foundation for the

reconciliation system. Each topic is independent and presented in its own section.

These foundational techniques will then be built into a complete system in Chapter 4.

A complete explanation of any of these topics could easily fill this thesis. Therefore,

only enough of each topic is presented here for the reader to understand the general

technique an the role it plays in the present system. The techniques presented are:

• Section 3.1: Lexical-Conceptual Semantics (LCS), the semantic representation

framework

• Section 3.2: Combinatory Categorial Grammar (CCG), the grammar framework

for the parser

• Section 3.3: Label-Selective Lambda Calculus (LS λ-calculus), which will be used

to extend CCG to support LCS.

• Section 3.4: Streams and Counterstreams, a priming-based bidirectional search

technique

• Section 3.5: Structural Alignment, an method for transferring information across

partially dissimilar structures.
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3.1 Lexical Conceptual Structures

The system described in this thesis captures semantic information using Lexical-

Conceptual Semantics (LCS), developed by Ray Jackendoff [9]. LCS is a formalized

semantic representation focusing on spatial relations, and is tailored to represent how

humans conceive of the world, particularly in the context of explaining the world

with language. LCS is a recursive frame-based representation, where each frame has

a primitive type and a set of parameters to be filled. To get a flavor for the LCS

representation, consider the following structure representing “The boy threw the ball

toward the lake:”1

[
<Thing BOY>

[
<Thing BALL>


[
<Thing LAKE>

<Place AT>

<Path >

<Event GO>

<Event CAUSE>
LCS identifies several classes of frames. Most basic are Thingss, which correspond

to objects in the world. Building on this are Places, which identify a location in

space, typically using a Things as a reference. Next are Paths, which describes

connected progressions through space-time. Finally, there are States and Events,

which describe how Thingss interact with Paths and Places.

3.1.1 Virtues of LCS

The LCS framework is designed around the notion that the semantics of any word

can be decomposed into a few orthogonal primitives. This is in contrast to clas-

sical semantic frameworks such as Logical Form (LF), in which nearly every word

in a language has its own incomparable primitive function [1]. For example, in LF

every manner of motion gets its own primitive, such as fly(x,y,z), walk(x,y,z), and

1This style of LCS notation has been adopted for clarity. The traditional style LCS notation for
this sentence is: [EventCAUSE[ThingBOY][EventGO[ThingBALL][PathTO[PlaceAT[ThingLAKE]]]]]

30



slither(x,y,z) [1]. Schank’s Conceptual Dependency (CD) semantics is similar to LCS

in its primitive-based decomposition, but still does not achieve the orthogonality of

LCS. For example, CD primitives ATRANS, PTRANS, MOVE, and PROPEL can

all be decomposed into LCS [EventGO] and [CauseX[EventGO]] frames.

Furthermore, LCS has the most thorough treatment of spatial place and path

semantics. First, LCS makes an explicit differentiation between places and paths, so

that it is possible to represent the difference between being at a location and going

towards a location. In addition, LCS identifies two independent properties of paths:

path-types and path-roles. Path-types determine how a reference location relates to

the path, and can be:

• bounded paths, which specify a source location (usually using “from”) or a goal

(usually using “to”)

• directions, which specify a point not actually on the path, using words such as

“away from” or “toward”

• routes, which specify a location in the interior of the path, for example with the

verb “passes” or the preposition “via”

Path-roles determine the function of the path. Given a path, a thing may:

• traverse, such as “The mouse skittered toward the clock”

• extend, such as “The sidewalk goes around the tree”

• orient, such as “The sign points toward Philadelphia”

Taking these two factors together, LCS identifies 9 different classes of path,

whereas previous schemes (by Schank and Johnson-Laird) omitted entire classes of

paths [9].

Because LCS provides superior decomposition and coverage, it is an outstanding

choice for capturing spatial semantics from vision.
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3.1.2 Formal coverage of LCS

Here we present an abbreviated version of the LCS formalism [9, 1]. The complete

formalism is presented in Table A in Appendix A.

Table 3.1: An abbreviation version of Lexical Conceptual Semantics [9, 1].

<Thing> ← [<Thing x>

<Place> ←
[

<Thing>

<Place PlaceFunc>
where PlaceFunc ∈ (AT, ON, IN, ABOVE,

BELOW, BEHIND, . . . )

<Path> ←
[

<PathElement>*

<Path >
where <PathElement>* indicates any number of

PathElements

<PathElement> ←
[

Thing

<PathElement PathFunction>
where PathFunction ∈ (TO, FROM, TOWARD,

AWAY-FROM, VIA, ALONG, . . . )

<Event> ←
 <Thing>

<Path>

<Event Go>

←
 <Thing>

<Event>

<Event Cause>

<State> ←
 <Thing>

<Place>

<State Be>

←
 <Thing>

<Path>

<State Orient>

←
 <Thing>

<Path>

<State Extend>

3.1.3 Extensions to LCS

The variant of LCS used throughout this thesis differs from Jackendoff’s original

system in its treatment of Paths and in its inclusion of modifiers.

First, PathElements do not exist as frames in Jackendoff’s analysis. Instead,
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Paths simply have a number of slot-pairs which are each filled with a PathFunc-

tion and a reference Thing or Place. The inclusion of PathElements simply

clarifies this idea. Also, the present formalism requires that PathFunctions take

only Places, not Things, as their arguments. In most cases, conversion from the

original system to the present system merely requires wrapping the reference Thing

in an [PlaceAT[Thing]] clause.

Second, the framework here permits modifiers to be attached to Things and

Events. Following the lead of Dorr [4], Propertys, such as BIG, RED, or SOFT,

can be attached to Things. Similarly, Manners, such as QUICKLY, BRIEFLY, or

FORCEFULLY, can be attached to Events. These modifiers permit the semantic

recovery of adjectives and adverbs while parsing. As an example of the usage of

modifiers, consider the following semantics for “the red ball:”

 MODIFIER
[
<Property RED>

<Thing BALL>

3.2 Combinatory Categorial Grammar

Any system that interacts with language requires an appropriate grammar and lex-

icon. The lexicon contains all the words in the language, along with word-specific

information required by the grammar, such as syntactic category and semantics (or

in common terms, part of speech and meaning, respectively). It is then the function

of the grammar to determine how words from the lexicon may combine together and

what the resultant semantics is.

Clearly, choosing a grammar system is an important decision. There are many

grammars systems to choose from, including Probabilistic Context Free Grammars

(PCFG), Head-Driven Phrase Structure Grammar (HPSG), Tree Adjoining Grammar

(TAG), and many more.
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3.2.1 Mechanics of CCG

The grammar framework chosen for this system is Combinatory Categorial Gram-

mar (CCG) [14]. CCG has many advantages in this system. First, there are only

a handful of rules for combining constituents, and these rules are explicit and well

defined. These qualities facilitate this system’s usage of grammatical rules as the

basis for constraints in a constraint propagation network. In addition, CCG is adept

at parsing around missing information, because it was designed to handle linguistic

phenomena such as parasitic-gapping2. The ability to gracefully handle incomplete

phrases is crucial in our system, because it enables us to parse around ambiguities

and gaps.

The defining feature of categorial grammars such as CCG is that syntactic cate-

gories are either:

• One of a small set of atomic elements. Usually this set is {S, N, NP} corre-

sponding to Sentence, Noun, and Noun Phrase.

• A functor, taking other syntactic categories as arguments, and specifying whether

to expect these arguments to the left or to the right. The functor also indicates

what syntactic category is formed if all the arguments are satisfied.

For example, the syntactic category for “ball” is N, and the category for a determiner

such as “the” is NP requiring N to the right. It follows that the phrase “the ball”

should have the syntactic category NP, because “ball” satisfies the argument required

by “the.”

Syntactic category functors are expressed in argument-rightmost curried notation,

using slashes to indicate on which side arguments are expected: / indicates an argu-

ment to the right, and \ indicates an argument to the left. Thus NP/N indicates a NP

requiring a N to the right (and is therefore the syntactic category of a determiner),

2An example of a sentence with parasitic gapping is “John hates and Mary loves the movie,”
where both verbs share the same object. CCG handles this by treating “John hates” and “Mary
loves” as constituents, which can then be conjoined by “and” into a single “John hates and Mary
loves” constituent (traditional grammars are unable to recognize “John hates” as a constituent.)
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while (S\NP)/NP indicates an S requiring one NP to the left and one to the right

(this is the category of a mono-transitive verb).

These syntactic categories combine using a few simple productions, such as the

following functional application and composition rules:

X/Y Y ⇒ X (> forward application)

Y X\Y⇒ X (< backward application)

X/Y Y/Z ⇒ X/Z (>B forward composition)

Thus, our intuitive derivation for “the ball” was formally an invocation of forward

functional application (>) for NP/N N.

Semantics in CCG are lambda calculus expressions, and each syntactic rule also

specifies how to combine the semantics. X:f is used to represent semantic category

X with lambda calculus semantics f . The previously stated function application and

composition rules, together with their semantic implications, are:

X/Y:f Y:a ⇒ X:fa (> forward application)

Y:a X\Y:f ⇒ X:fa (< backward application)

X/Y:f Y/Z:g ⇒ X/Z:λx.f(gx) (>B forward composition)

For a full description and analysis of CCG, see [14].

3.2.2 CCG Derivations

CCG derivations are standardly written with a horizontal line indicating the appli-

cation of a rule. The line is labeled to the right with a symbol representing the rule.

The symbols are shown in the rule descriptions above. The resulting syntactic cat-

egory and semantics are written below the line. For example, the derivation for the

sentence “The boy kicks the ball” is:
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the boy kicks the ball

NP/N N (S\NP)/NP NP/N N
λx.x boy′ λy.λx.(kicks′ x y) λx.x ball′

> >B

NP (S\NP)/N
boy′ λy.λx.(kicks′ x y)

>

S\NP
λx.(kicks′ x ball′)

<

S
(kicks′ boy′ ball′)

CCG allows a single phrase to have many different derivations all of which produce

the same final results, both syntactically and semantically. For example, consider the

following equivalent derivations of “the red ball.”

the red ball

NP/N N/N N
λx.x λy.(red′ y) ball′

>

N
(red′ ball′)

>

NP
(red′ ball′)

or

the red ball

NP/N N/N N
λx.x λy.(red′ y) ball′

>B

NP/N
λx.(red′ x)

>

NP
(red′ ball′)

In the lefthand derivation, the functional application rule was applied twice, first

to join “red” and “ball” into “red ball” (with category N), and then to join “the”

with “red ball” producing a noun phrase. In contrast, the righthand derivation first

uses the functional composition rule to create the non-classical constituent “the red”,

with syntactic category NP/N. This is then joined with “ball” to complete the noun

phrase.
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3.3 Label-Selective Lambda Calculus

Label-selective lambda calculus (LS λ-calculus) is a variant of lambda calculus ex-

tended to include named parameters [5]. These named parameters provide greater

flexibility over parameter ordering and omission.

3.3.1 Why LS λ-Calculus is Useful

To understand why one might want to use LS λ-calculus, let us first examine the

limitations of traditional λ-calculus. The rules of λ-calculus are based on application

ordering, which gives rise to asymmetries in its usage. For example, let us assume

that we have a function f : A×B → C. If we let M be the lambda calculus body of

f , then we can express the function as:

f ≡ λx.λy.M

. Now, if we want to apply an argument on the outermost parameter x, that is, we

want to let x equal the constant A, while y remains a free parameter, then we can

simply write:

(λx.λy.M)A→ λy.[A/x]M

On the other hand, if we wish to apply an argument on the inner parameter y, that

is, we want to let y equal the constant B while x remains a free parameter, then we

must write the more awkward:

λz.((λx.λy.Mz)B)→ λz.[B/y][z/x]M

This same argument is presented in [5], using Curry’s logical combinators S and

K:

λx.f(a, x) = fa

but

λx.f(x, b) = Sf(Kb)
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Either way, the conclusion is the same. Applying an argument to the outermost

parameter is simple, applying to an inner parameter is more difficult. Moreover,

to apply to an argument to particular lambda (eg, to get the argument substituted

into a particular location in the body M ,) one must know how deep in the lambda

chain the correct parameter is. This in turn requires tracking which enclosing lambda

abstractions have already been reduced away.

In our system, we we will be using lambda calculus to maintain the semantics

of partial parses. In particular, these partial parses may have gaps in them, where

some parameters have yet to be filled (they will be filled as the parse is completed).

Furthermore, there may be parameters which never get filled. Both of these points

will be explained in more detail in Section 4.1, where we describe the complete se-

mantic system built from Lexical-Conceptual Semantics [9] and LS λ-calculus. The

conclusion, though, is that classical λ-calculus complicates the job of out-of-order and

optional argument application.

3.3.2 Explicit Function Application Notation

Traditional λ-calculus has implicit application operators, such as the implied operator

in the middle of fa. In contrast, LS λ-calculus makes this operator explicit, using

the ˆ symbol to indicate application. Thus, fa becomes f â. With the application

operator being made explicit, we can define the term entity to mean either a lambda

abstraction (λ) or a function application (̂ ).

3.3.3 The LS λ-Calculus System

Label-selective λ calculus weakens the ordering requirements of λ-calculus through

the use of labels associated with each λ term and application term. In the full label-

selective system, the labels are pairs a, b where a is a string indicating a symbolic label,

and b is an integer index indicating argument ordering ordering within that channel.

Subsets of this system provide calculi in which:

• only the symbolic label is employed (symbolic selective λ-calculus)
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• only the index is employed (numerical selective λ-calculus)

Because the fundamental concepts of LS λ-calculus can be understood by considering

only symbolic selective λ-calculus, because this is the easiest to understand variant

of LS λ-calculus, and because it is most important to this system, the balance of this

section will deal only with the symbolic selective variant. The complete label-selective

λ-calculus reduction system be found in Table A in Appendix A.

3.3.4 Symbolic Selective λ-Calculus

Symbolic selective λ-calculus is similar to normal λ-calculus, except that each lambda

abstraction and each function application is assigned a symbolic label. A lambda ab-

straction with label a is denoted as λa, while a function application with label b is

denoted as b̂. Labels are used to control when β-reduction is permitted to occur.

Recall that β-reduction is the process of taking a lambda abstraction/function appli-

cation pair and performing substitution based on them. In classical λ-calculus, this

rule is denoted (using the explicit application operator):

Classical β-reduction: (λx.M )̂ N → [N/x]M

In symbolic selective λ-calculus, β-reduction is only permitted when the labels

of the lambda abstraction and the function application are identical. If the labels

are not identical, then a reordering rule (rule 3, below) instead applies to the pair,

allowing the lambda abstraction to be moved outside the application. Finally, two

reordering rules (rules 1 and 2, below) allow pairs of lambda abstractions or pairs of

function applications to commute, so that their labels are in lexicographical order.

Thus, the rules for symbolic selective λ-calculus, as presented in [5], are given in the

table below.

Together, these rules effectively establish a different “channel” of application for

each symbol, where the ordering of lambda abstractions and function applications

within a particular channel is relevant, but the ordering between channels (ie, of

abstractions or applications with different labels) is ignored. Each of these channels

can be construed of as a named parameter for a function, and we can make an
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Table 3.2: Rules of Symbolic Selective λ-Calculus.
β-reduction

(β) (λax.M)âN → [N/x]M

Reordering
(1) (λax.λby.M → λby.λax.M a > b
(2) M âN1b̂N2 → M b̂N2âN1 a > b
(3) (λax.M )̂bN → λax.(M b̂N) a 
= b, x ∈ FV (N)

application to a particular function parameter without concerning ourselves with the

relative position of the lambda abstraction in the lambda chain.

3.4 Streams and Counterstreams

A crucial part of any parsing or generation algorithm is a search procedure. Because

we have context coming in from both sides of the search space (linguistic and non-

linguistic semantic sides), a bidirectional search is most appropriate. In choosing

a bidirectional search strategy, extra merit should be given for neural plausibility,

for ability to support observed facets of cognition, and for ability to be extended to

support other contextual clues. All of these factors support the choice of Shimon

Ullman’s Streams and Counterstreams [16] model for bidirectional search.

3.4.1 The search model

To understand the Streams and Counterstreams model, let us first start with a search

space consisting of states and transitions, such as in Figure 3-1. In a typical unidi-

rectional search model, a small number of states are marked as source states. One

or more goal states are also designated, either explicitly or indirectly by specifying a

class of goal states which satisfy a particular success criterion. A search process starts

at the source state, and uses some strategy to choose sequences of state-transitions,

in hopes of finding a path to a goal state.

In contrast, Bidirectional search models treat the source and goal symmetrically;

the search-space is traversed both forward from the source states and backward from
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the goal states. The search processes operating in each direction interact with each

other whenever their paths intersect in the search-space. This interaction provides

hints for quickly completing the remainder of the search. For example, in the sim-

plest bidirectional search models, the forward and backward search processes operate

independently, until such time as the forward searcher reaches a state already encoun-

tered by the backward searcher. At this point, the forward searcher quickly reaches

the goal by tracing the backward-path. (See Figure 3-2).

The specific style of bidirectional search employed in this system is based on

Streams and Counterstreams [16], in which forward and backward search processes

interact with each other by means of primed pathways. For each transition, two

priming values are maintained: a forward priming and backward priming3. Primings

are used when a decision must be made between several possible transitions that could

extend a search path; those transitions that have a higher priming are preferred

for expansion, using the forward priming for forward searches, backward priming

for backward searches. Transition primings in a particular direction (either forward

or backward) are increased whenever a search path traverses the transition in the

opposite direction. The net influence of the primings is that transitions previously

traversed in one direction are more likely to be explored in the opposite direction,

if the opportunity arises. By extension, primings provide clues for finding a path

from any state to the target state. In the example shown in Figure 3-2, Streams and

Counterstreams would have primed the center frame’s darkened transitions in the

direction opposite of the arrow. When the upward search reaches the F node in the

final frame, the search would be more likely, though not guaranteed, to make F→B

the transition explored in the upward direction.

3Ullman [16] actually presents Streams and Counterstreams in terms of primed state-nodes, rather
than primed transitions. The underlying concept is the same; because this system actually uses the
transition-priming variant, it is presented here to avoid later confusion.
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Figure 3-1: This figure depicts a typical unidirectional search space, with circles
indicate states and arrows indicating transitions. A unidirectional searcher seeks to
find a path from the source state to one of the goal states. The depicted search space
contains only one such path, highlighted with bold transition arrows.

3.4.2 Advantages for Streams and Counterstreams

The streams and counterstreams model is attractive in terms of its neural plausibility,

its support for observed phenomena, and its extensibility.

In his presentation of Streams and Counterstreams, Ullman [16] makes it a point to

back the model up with supporting neurological evidence. A model is laid out showing

how Streams and Counterstreams could be achieved by neural groups. Furthermore,

much neurological evidence is presented in support of the model’s viability, including

the extremely reciprocal nature of bottom-up and top-down pathways in the cortex,

and the observation that the cortex is formed of several layers, with regular patterns

of forward, backward and lateral connections. These data help to convince us that

Streams and Counterstreams is not an outlandish proposal.

Furthermore, the model supports many observed facets of cognition. Cognitive

science literature is rife with observations of primed concepts and associations. Prim-

ing is often implicated in situations where people are presented with a situation, and
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Figure 3-2: This figure shows a typical search space for bidirectional search. The
“source” and “goal” states of the unidirectional search space have been replaced
with “top” and “bottom” states. The bidirectional searcher seeks to find a pathway
between the “top” and “bottom” states. The left frame shows that space at the
beginning of the search. The searcher works from both the top and the bottom states
simultaneously. The middle frame shows the search in progress, before the bottom-up
and top-down processes meet. Nodes that have been discovered have bold edges, the
transitions used to discover these nodes are also marked in bold. In this example,
breadth-first search is being conducted from each of the source states. The G and
J have been discovered by upward search from K. The F and I nodes have been
discovered by downward search from B. The E and H nodes have been discovered
by downward search from C. Let us assume that upward search from K is the next
to expand, and that it expands to F next. Because F has already been found by
downward search from B, the upward search from B will quickly follow the trail used
by the downward searcher. The completed search is shown in the last frame.
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they either make different choices or are faster to reach a correct answer, based on

what types of experience they have had in the very recent past. Priming can be con-

sidered a cognitive advantage because it is often the case that a new problem situation

is similar to, or at least related to, other recently considered situations. Therefore,

recently activated concepts and associations are likely to continue to be useful; the

priming mechanism keeps these highly available. One convincing example of just how

deeply priming can affect thought is the work done by Lera Boroditsky [3] in which

visual priming of spatial reasoning concepts leads to different interpretations of time

metaphors such as “move the deadline forward two days.” In the experiments, sub-

jects were led to think about spatial scenarios before interpreting time metaphors.

The results showed that if subjects were led to think of themselves moving through

a stationary environment, then the above time metaphor is much more likely to in-

terpreted as meaning there are two additional days before the deadline. In contrast,

if the subjects are lead of themselves as stationary while the environment moves past

them, then they are significantly more likely to interpret the metaphor as implying

that there are two fewer days before the deadline. Thus, priming in the spatial domain

is found to bias the interpretation of language involving the time domain! Because

the Streams and Counterstreams model has priming at its core, it is ideally positioned

to investigate cognitive priming in an artificial intelligence environment.

Finally, the model is extendible. Many factors may come to bear on the final

solution of difficult cognitive problems such as parsing. The choice between techni-

cally correct and incorrect options is often clear. However, there are regularly many

technically correct options, and the best of these (in relation to the current situation)

must be chosen. Many hints as to the best choice are available, not only directly

through priming, but also through other heuristics, often acquired through experi-

ence. For instance, much research has gone into statistical heuristics for pruning

the parsing search space. Deniz Yuret’s work on Lexical Attraction [20], for exam-

ple, shows amazing ability to infer phrase structures of novel linguistic inputs purely

through statistical analysis of the co-occurrence of words it inputs that the system

has previously parsed. A parser based on Streams and Counterstreams can incor-

44



porate Lexical Attraction by arranging for transitions which bring together lexically

attracted words to have primings that are naturally higher than they would be other-

wise. We conclude that Streams and Counterstreams is in a good position to benefit

from such statistical hints, because the biases can easily be integrated into the system

as primed pathways.

3.5 Structural Alignment

Structural alignment is a process presented by Gentner and Markman [6] for trans-

ferring information between partially dissimilar representational structures. Dur-

ing structural alignment, corresponding elements in two structures are identified by

matching. Correspondence between non-matching elements is then implied by the

structural constraints of the representations. For example, in Figure 3-3, structural

alignment first matches A, E, and F between the two representations. Then, based

on structural constraints, 1 is inferred to correspond with C, and 2 with B(D).

In its original presentation, structural alignment was used as an engine to conduct

analogy. Commonalities between the two elements related under the analogy were

aligned, bringing dissimilar elements into alignment. These aligned differences were

then used as candidate locations for inference between the analogy elements. In the

present architecture, structural alignment of the semantics of partial parse structures

with semantic structures in the target domain (the non-linguistic semantics during

parsing, and the semantics of words in the linguistic domain during generation) will

be used to reduce ambiguities by transferring clarifying information across alignment

points.

3.5.1 Steps for Structural Alignment

Gentner and Markman [6] identify structural consistency as the criterion for successful

structural alignment. Structural consistency requires two main features:
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Figure 3-3: Structural alignment between these two structures infers the correspon-
dences C↔1 and 2↔B(D). Structural alignment between semantic representations
will bring unknown words into correspondence with their probable semantics.

• Parallel Connectivity: Matched entities related by a structural relation are re-

quired to be related by the same structural relation ship. For example, in

figure 3-3, if we assume that children in the tree are ordered (that is, being the

left-child of node P is semanticly different from being the right-child of node

P), then the alignment A↔A and 2↔1 is illegal, because in the first structure,

2 is the left-child of A, while in the second structure 1 is the right-child of A.

• One-to-One Correspondence: When an element appears multiple times in a

representation, it is limited to always match the same element in the other

representation.

In order to achieve these structural consistency requirements, Gentner and Mark-

man propose conducting structural alignment in three stages. First, individual ele-

ments are matched locally between representation, without regard to structural prop-

erties. Second, structurally consistent sets of local matches are calculated. Finally,

these structurally consistent matches are used to align large, partially dissimilar sec-

tions of the representation.
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Chapter 4

System Construction

This chapter describes how the techniques presented in Chapter 3 are combined and

extended to realize a bidirectional reconciliatory exchange between linguistic and non-

linguistic semantic inputs. This chapter has one section devoted to each major feature

of the system.

• Section 4.1: λ-LCS, a unification of Lexical Conceptual Semantics with Label

Selective λ-Calculus.

• Section 4.2: Label-Selective CCG (LS-CCG), an extension of CCG to employ

Label Selective λ-Calculus as its semantic system. Together with λ-LCS, this

provides the linguistic framework (grammar and semantics) for the system.

• Section 4.3: CCG-based Constraint Propagation, parsing and generation using

CCG rules as constraints in a constraint propagation network

• Section 4.4: Serialized SCS, an implementation of Streams and Counterstreams

on a serial processor.

• Section 4.5: SCS Parsing, using Serialized SCS to bidirectionally construct the

appropriate LCS/CCG constraint network topology for specific linguistic and

non-linguistic inputs.
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4.1 Lexical Conceptual Structures and Lambda Cal-

culus

This section describes a unification of Lexical Conceptual Semantics (LCS) with

Label-Selective Lambda Calculus (LS λ-Calculus). This will serve the basis semantics

in the system, for words in the lexicon, for non-linguistic semantics, and for partial

parses during reconciliation.

4.1.1 Why parameterize LCS with LS-λ calculus?

The semantic manipulations of CCG are founded on λ-calculus, so it is natural to stick

with some variant of λ-calculus for our parameterization of LCS semantics. However,

understanding the motivation for choosing the label-selective variant of λ calculus

requires us to investigate the relation we need to establish between CCG and LCS.

CCG associates a syntactic category with each linguistic constituent during pars-

ing. When parsing begins, each word has its own syntactic category. As the parse

continues, syntactic categories are assigned to phrases, even traditionally incomplete

phrases such as “Anna married.” As described in Section 3.2, the syntactic categories

assigned are functional descriptions based on the number, type, and directionality of

expected arguments. This is all straightforward for grammatical constructions which

take a fixed number of parameters. For example, a mono-transitive verb such as

“married” always takes a subject noun phrase to the left, and an object phrase to the

right. Therefore, its syntactic category is simply (S\NP)/NP.
The story gets a little more complicated when we consider grammatical construc-

tions which take a variable number of parameters, such as a noun taking adjectives or

a verb taking prepositional phrases. Because the number of optional adjuncts cannot

be known ahead of time, the question is: what are the appropriate syntactic cate-

gories for nouns and adjectives? Clearly we cannot have a construct such as N\Adj,
because we don’t know how many adjective parameters to include. Therefore, the

standard CCG approach is to allow the syntactic category for nouns to remain N,
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while making the category for adjectives be N/N. That is, an adjective takes a noun

on the right and produces a noun when it combines. In this way, any number of

adjectives can be chained onto a noun.

This choice has implications for the semantics of expressions. Specifically, it forces

us to write the semantics of an adjective as a function that takes a noun-semantics

as its argument. For example, in standard CCG semantics the phrase “the bouncy

red ball” would produces the semantic structure bouncy(red(ball)). While successful

logic systems have been built using semantic structures such as these, some important

questions are raised. For example, what is the relation between bouncy(red(ball)) and

red(bouncy(ball))? Does red(ball) return the same type of semantics that ball alone

does, because they can both be parameters to bouncy()?

Furthermore, LCS does not support having the adjectival construction surround

the noun construction. In all other LCS frames, the outer frame by itself provides a

semantic pattern, whose details are filled in by sub-frames. For example, a GO frame

by itself already conveys the gist of any substructure that could be rooted at that

GO frame. The parameters of the GO frame merely specify details of the GO. In

contrast, an Adjective frame which takes a Thing frame as a parameter would not

follow this paradigm. Furthermore, other LCS frames which require Things, such as

the GO frame: 
<Thing>

<Path>

<Event Go>

would be incompatible with the adjective-enhanced thing frame:


[
<Thing BALL>

<Adjective RED>

Instead, the LCS-style treatment of adjectives [4, 9] is to embed them under the

Thing frame, so “red ball” becomes:

 MODIFIER
[
<Property RED>

<Thing BALL>
.
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Unfortunately, the structural relationship of the entities in the LCS structure are

opposite of those of the typical CCG red(ball) construction. One possible solution

would be to keep the red(ball) surface appearance, letting ball get replaced with[
<Thing BALL> , and writing a non λ-calculus implementation of red as a mutator

which modifies
[
<Thing BALL> by inserting the

[
<Property RED> modifier.

This would introduce an additional layer of complication, because the actual seman-

tics of red could not be expressed in λ-calculus. This means that the semantics of

red in the lexicon would be incomparable with the semantics of red after it has been

applied to a noun, without a matcher that non only supports LCS matches and λ

calculus matches, but also matches on whatever format the red mutator is actually

written. Since matching will be a critical part of constraint propagation, this solution

is avoided in favor of the more unified approach of label-selective lambda calculus.

Using LS λ-calculus, we can remain completely in the domain of λ-calculus through-

out the semantic manipulation and matching process. In this paradigm, we can write

the semantics for a noun as a λ expression which takes an unrestricted number of

optional parameters for property modifiers. That is, the semantic representation for

“ball” is:

λproperty,∗p.

 MODIFIER p*

<Thing BALL>

In this semantics, the * indicates the collapsed inclusion of an infinite number of

indexed lambda-abstractions on the label property. This makes full use of the indexing

features of LS λ-calculus, in addition to the symbolic labeling features. The details

of these indexing operations are not critical, so long as it is understood that LS-λ

calculus provides the support for managing and reducing these indexed constructions.

For simplicity, the remainder of this thesis will not explicitly use this infinite index

set notation.

With this semantic representation for “ball”, we can then define the semantics of

“red” to be:

λnounn.
(
n ̂property

[
<Property RED>

)
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4.1.2 Unified representation of LCS and LS-λ calculus

In order to keep a consistent and coherent representation and notation, the current

system treats λ-calculus entities for lambda abstraction and functional application as

frames similar to the LCS frames. Thus, the following equivalences are introduced:

λax.M ≡
 M
<λa x>

M âN1 ≡


M

N1

<â >

Using the unified representation, the semantics for “red” and “ball” are given by:

red :=




n[
<Property RED>

< ̂property >

<λnoun n>

ball :=


 MODIFIER p

<Thing BALL>

<λproperty p>

We then derive the semantics of “red ball” as follows:

red n̂oun ball →






n[
<Property RED>

< ̂property >

<λnoun n>
 MODIFIER p

<Thing BALL>

<λproperty p>

<n̂oun >
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→




 MODIFIER p

<Thing BALL>

<λproperty p>[
<Property RED>

< ̂property >

→
 MODIFIER

[
<Property RED>

<Thing BALL>

4.2 Extending CCG with Label-Selective Lambda

Calculus

In order to complete our integration of label selective λ-calculus into the grammat-

ical and semantic framework, we must extend the CCG framework to support the

management of LS λ-calculus labels.

4.2.1 Labeled Syntactic Categories

The first step in adapting CCG to Label Selective λ-calculus is to note that syntactic

categories are responsible for tracking the function arguments, and therefore they

should also track the label with which those arguments should be applied. Let us

continue with the “red ball” example from the previous section. In traditional CCG,

“red” has the syntactic category N/N, while “ball” has the category N. However,

inspecting the LS-λ calculus, we find that we also need to know that we should apply

the semantics of “ball” to the semantics of “red” using the label noun. We can

record this information if we extend the syntactic category definition of “red” to be

N/N.noun, where the “.noun” clause indicates that the syntactic category function

argument immediately to its left should be applied on the noun channel.

52



4.2.2 Labeled Syntactic Rules

The second step in adapting CCG to Label Selective λ-calculus is to adapt the syntac-

tic rules to make use of the labeled syntactic categories when generating semantics.

This is essentially a matter of analyzing which semantic parameter is being filled,

finding its corresponding syntactic parameter, and using the same label. For exam-

ple, in plain CCG, the simple functional application and composition rules were:

X/Y:f Y:a ⇒ X:fa (> forward application)

Y:a X\Y:f ⇒ X:fa (< backward application)

X/Y:f Y/Z:g ⇒ X/Z:fg (>B forward composition)

In Label-Selective CCG, these rules become:

X/Y.label:f Y:a ⇒ X:f l̂abela (> forward application)

Y:a X\Y.label:f ⇒ X:f l̂abela (< backward application)

X/Y.fX:f Y/Z.gX:g ⇒ X/Z.gX:f f̂Xg (>B forward composition)

4.3 CCG-based Constraint Propagation

This section describes how λ-CCG with LCS semantics can be used as the foundation

for a constraint propagation network.

4.3.1 The Reconciliation System as a Constraint Propaga-

tion Network

The reconciliation system for linguistic and non-linguistic semantic inputs may be

viewed as a single large constraint, as in Figure 4-1. This constraint has two inputs:

on one side, it takes a set of semantic representations with non-linguistic origin. On

the other side, it takes a linguistic input string, together with possible meanings for

each word in the string, as determined by a lexicon (treating unknown words as having

any possible meaning). As output, the constraint eliminates, in each input set, all

meanings which do not lead to a successful structurally aligned parse.

In order to achieve such a complicated constraint, it is useful to decompose the

constraint into a network of simpler constraints, each working over a local domain
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Reconciliation System

“flies”

N : [<Thing INSECT FLY>

S\NP.subject :


 x

[<Path >
<Event GO FLY>

<λsubject x>


“dove”

N : [<Thing BIRD DOVE>

S\NP.subject :


 x

[<Path >
<Event GO DIVE>

<λsubject x>



S :

 [<Thing BIRD DOVE>
[<Path >

<Event GO FLY>



“The”{
NP/N.noun :

[
x
<λnoun x>

}

Figure 4-1: The reconciliation system functions as a constraint on linguistic and non-
linguistic interpretations, requiring that expressions follow grammatical rules and
that they produce alignable semantics. This example shows the system presented
with the sentence “The dove flies,” and with a corresponding conceptual structure
(coming from the non-linguistic domain). In this situation, the system will eliminate
the interpretations of “dove” as a GO and flies as Things. Furthermore, if the word
“dove” had not been known, the system would still select the verb form of flies (by
alignment), which brings “dove” into alignment with the appropriate fragment of
semantic structure (the Thing frame).

of only a few constituents rather than over the domain of an entire sentence, as in

Figure 4-2. We can then base these subconstraints on grammatical rules over a fixed

number of constituents, and trust the composed network to handle the complete

sentence.

4.3.2 Definitions of constraint terms

The remainder of this thesis will use the following terminology to describe constraints

in the constraint propagation network. Each location in the network containing a

value set will be referred to as a port. The actual constraint, in this case implementing
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System
Reconciliation

Semantics from Non-Linguistic Input

Constraint
Grammar Rule

Constraint
Grammar Rule

“flies”“The” “dove”

“The dove flies”

“The dove”

Figure 4-2: The reconciliation constraint in Figure 4-1 is actually implemented as a
network of simpler constraints, as shown here. Each constraint implements a gram-
matical rule, as shown in Figure 4-3.

one of the CCG rules, will be referred to as a rulebox. Thus, figure 4-3 shows one

rulebox, labeled CCG Constraint, and three ports connected to this rulebox. The

process of applying the rule embodied by a rulebox, in order to restrict the value sets

in the ports connected to that rulebox, is called firing the constraint.

4.3.3 Implementing a Constraint from a CCG rule

Implementing a CCG constraint, such as the one in Figure 4-3, is straightforward

when viewed from the highest level. In the figure, the topmost port corresponds

to the result of reducing according to one of the CCG rules. The bottom ports each

correspond to one of the terms in the rule. We can fire the rule box using the following

algorithm:

Fire(rulebox)
1 results← {}
2 C ← the Cartesian product of the rulebox ports’ valuesets
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CCG Constraint
Backward Application (<)

“The boy went to the lake”

S :


[<Thing BOY>

 [
[<Thing LAKE>

<Place AT>
<PathElement TO>

<Path >
<Event GO>

“The boy”
NP : [<Thing BOY>

“went to the lake”

S\NP.subject :




x

 [
[<Thing LAKE>

<Place AT>
<PathElement TO>

<Path >
<Event GO>

<λsubject x>

Y:a X\Y.label:f ⇒ Y:f ̂label a

Figure 4-3: This figure shows one of the CCG Rules, Forward Functional Application,
being treated as a constraint in a constraint propagation network. Any one of the
three inputs can be left unspecified, and the constraint can completely determine the
value based on the other two inputs.

3 foreach x ∈ C:
4 match each value in x against appropriate CCG rule term
5 if match is conflict-free:
6 y ← instantiate each term of CCG rule, using match bindings
7 results← results⋃{y}
8 update rulebox ports’ valuesets from results

To summarize, this algorithm matches values in ports connecting to a rule box

against the terms of CCG rule embodied by that rule box. If there is a value in

each of the ports such that all the terms of the CCG rule can be matched with

consistent match-bindings, then those values are allowed to maintain in the ports’

valuesets, though they may be modified to remove any ambiguities that could be

resolved through matching.
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4.3.4 Challenges for matching λ-LCS expressions

The difficulty in the constraint firing algorithm given above is creating an appropriate

matching algorithm. For example, let us once more consider the situation in figure 4-

3. For this constraint to fire successfully, it must be able to match the CCG rule

production term against the value in the production port:

Y : f l̂abel a � S :



[
<Thing BOY>




[
<Thing LAKE>

<Place AT>

<PathElement TO>

<Path >

<Event GO>

The challenge here is that the elements that correspond to f , a, and the application

l̂abel in the rule pattern are not explicitly present in the port value datum. These

elements have already been removed by β-reduction, or alternately they were never

explicitly in the datum structure because the datum structure came from a non-

linguistic source. In order to perform matching, we need methods that can undo the

reductions dictated by LS-λ calculus, returning the data structure to its pre-reduced

state.

4.3.5 Reversing LS λ-calculus reductions: fronting and β-

expansion

There are four reduction rules in LS λ-calculus, and each one of them must be re-

versible in order to allow us to massage the datum structure into a format that

matches the pattern.

The reordering rules are simple to reverse. The rules tell us how to exchange two

entities (λ abstractions or function applications), in addition to providing a condition

on when such an exchange should be considered a reduction (eg, when swapping the

entities brings their labels into lexicographical order). All that we must modify in the

57



reordering rules is the condition on which swapping the entities is preferred to leaving

them unswapped1. To determine this preference, we define a new operation called

fronting. The fronting operation is similar to the operation which reduces λ-calculus

expressions, except that the fronting operation also takes an entity (a specific lambda

abstraction or function application frame) as a parameter. The fronting operation

then applies the reordering rules whenever they bring the specified entity closer to

the outermost position in the entity chain. The operation succeeds if the specified

entity can be brought all the way to the outermost position; otherwise, if there are no

more applicable reordering rules and the entity could not be brought to the outermost

position, the operation fails.

The β-reduction rule is significantly more complicated to reverse, because infor-

mation, such as labels and variables, is lost during β-reduction. To further complicate

matters, for any reduced λ-calculus expression, there exist an infinite number of λ-

calculus structures which will reduce to the given expression. We therefore seek to

write a β-expansion operation, which hallucinates the lost information and which uses

heuristics to limit exploration of the infinite number of possible β-expansions.

We start by observing that β-reduction operation of LS-λ-calculus can only elim-

inate pairs of entities with a λ abstraction embedded inside a function application of

the same label. It follows that the β-expansion operation will only be permitted to

hallucinate pairs of entities with a λ abstraction embedded inside a function applica-

tion of the same label. Therefore, no λ abstractions hallucinated by β-expansion will

be frontable. As we shall see, fronting of an entity will be a requirement for match-

ing. This will mean that β-expansion is only useful for matching against function

application frames in the pattern.

The first step of the β-expansion of a λ-calculus structure M is to compute all

possible locations for extracting a variable from the structure. That is, we find all

locations where a substructure can be replaced with a variable. We use a temporary

variable, let us say x, and compute all these variable extractions. For each variable

1A second case of rule 3 must also be added. As written in section 3.3, rule 3 only permits an
application to be moved from inside to outside a λ abstraction. The new case of rule 3 also permits
an application to be moved in the opposite direction, from outside to inside the λ abstraction.
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extraction, let Mx be the structure M with a substructure replaced by x, and let N be

the substructure that x replaced. Because only complete substructures are replaced,

the number of variable extractions grows in proportion to the number of substructures

in M. Since M must have a finite number of substructures, we know that there are

also a fixed number of variable extractions.

The second step in β-expansion is to use the variable expansions to create λ-

calculus expressions. This is the point at which the set of infinite possibilities is

introduced. However, working with the system has revealed that only two possibilities

are fruitful. These are:

Standard expansion:



 Mx

<λlabel x>

N

<l̂abel >

Inverted expansion:






y

N

<̂label2 >

<λlabel y> Mx

<λlabel2 x>

<l̂abel >
The standard expansion handles most of the semantic derivations. The inverted

expansion makes possible the structure-reversing derivations such as the adjective-

noun derivations discussed in section 4.1. The variables x and y, and the labels

label and label2 are placeholders for actual variable and label names. When the β-

expansions are later matched against a pattern, they will take on the value in that

pattern.

4.3.6 Matching λ-LCS Expressions

Matching of a λ-calculus datum against a pattern then proceeds as follows. The

pattern structure is walked, starting with the outermost frame. If the pattern frame is

not an entity, that is, if the pattern frame is a standard Lexical-Conceptual Semantics
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frame, then standard structural matching is pursued, binding meta-variables2 in the

pattern appropriately.

If the pattern frame is an entity, then the matcher tries to front an entity of

matching type (λ-abstraction or function application) and matching label in the da-

tum structure. If fronting is successful, then the pattern frame is matched with

fronted datum frame and the matcher recurses into the substructures of these frames.

If the pattern frame is an entity, and furthermore it is a function application

frame, then the β-expansion operation is applied to the datum. For each resulting

expansion, the β-expanded entity frame (the function application frame on the label

label in the description above) is fronted. If the fronting operation is successful, then

matching continues as above, with the pattern frame being matched to the fronted

datum frame and the matcher recursing into the substructures of these frames.

4.4 Serialized Streams and Counterstreams

The streams and counterstreams model of bidirectional search, as presented in sec-

tion 3.4 is a parallel search model. It relies on parallel exploration of the search

space in opposing directions. In order to provide a more complete description of how

Streams and Counterstreams could be implemented, while avoiding the difficulties in-

herent in parallelism, we develop here a serial version of Streams and Counterstreams.

4.4.1 Operating in Serial

It is relatively straight-forward to run Streams and Counterstreams serially. Rather

than execute a whole set of parallel search processes (starting from each source state

on both the top and bottom of the search space), we execute one search process at a

time, each starting from one of the source states and proceeding in the appropriate

direction. Each search process executes a beam search, with a beam width of 1. At

each node in the search path, primings are used to stochastically choose which of

2The variables to be bound in the pattern are referred to as meta-variables to differentiate them
from the standard variables used as part of the λ-calculus expressions
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several path-extension transitions the beam should follow, giving preference to highly

primed transitions. Once every source state has been explored in the appropriate

direction, the cycle repeats until an external signal cues that the search should be

terminated.

Because the search cycles repeatedly until interrupted, we may assume that over

time a large number of these beam-search processes originate from each search node.

In the absence of primings, this search should stochastically approximate an exhaus-

tive search. In the presence of primings, the search should function exactly like the

original parallel version of Streams and Counterstreams.

4.4.2 Time-limited answers

As the search continues to cycle, the best answers (according to a heuristic evaluation

function) accumulated so far from one of the probe-searches are always available.

Thus, the search procedure always uses whatever time it has been given to provide

the best answer it can, with the most bidirectional influence. The search can be

terminated if the heuristic determines that the best possible solution has been found.

Alternately, in an interactive system, the search can be terminated or modified in

response to external stimuli.

4.4.3 Implementing Primings

The final aspect of Streams and Counterstreams remaining to be specified is the

method for storing primings. To achieve this, we require that every search transition

can produce a set of priming keys. A priming key can be any constant identifier, for

example a string or a number. There are two critical requirements for the priming

keys:

• All semantically equivalent transitions should produce identical priming keys

• Reciprocal transitions (that is, equivalent transitions in the forward and back-

ward search directions) should produce identical priming keys
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We then implement primings by maintaining tables mapping priming keys to

stored priming values. We keep one table for each of the forward and backward

search directions. The priming for a transition is calculated by getting the transition’s

priming key and looking it up in the the priming table for the current search direction.

Primings are updated whenever the beam-search process finishes a search path. Each

transition on that search path has its priming key generated. The entry in the priming

table for that direction opposite of the current search direction is then increased.

4.5 Constructing the Constraint Topology with Streams

and Counterstreams

As described in section 4.3, we seek to achieve our reconciliation goals by using a

constraint propagation network to bridge the linguistic and non-linguistic inputs.

The constraints in this network are parse rules from Label-Selective CCG using λ-

LCS as its semantics. Because each constraint embodies the application of a parse

rule, the topology of our constraint network necessarily embodies a parse tree3 for

any input it can handle. Because the inputs to our system do not include this parse

tree, we must consider how to generate an appropriate constraint network topology.

The system in this thesis employs the serialized Streams and Counterstreams

bidirectional search technique to construct the constraint network topology required

for reconciliation. In 4.5.1, I discuss possible alternatives to bidirectional search, and

why bidirectional search is preferred. The remainder of this section then describes

how Streams and Counterstreams searching is realized, including the definition of

the search space, the means of generating priming keys, and finally the methods for

closing the priming loop.

3or generation tree, if viewed from the non-linguistic side
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4.5.1 Bidirectional Search is Best for Topology Construction

Several options are available for providing the required constraint network topology.

One such option is to use the same network topology to handle all sentences of

the same length. For example, we can create a constraint network version of the

Chart parsing technique (a dynamic programming parsing algorithm, described in

the context of CCG by Steedman [14]). Such a network would have to contain every

possible parse tree, and thus performing constraint propagation on this network would

essentially result in an exhaustive search of the parse space. While such an approach

is guaranteed to generate all appropriate parse trees, it does so at great cost, because

it still must consider every incorrect parse tree.

A better solution would be to avoid the exhaustive search by constructing a custom

constraint topology for each sentence, using standard heuristic parse techniques. The

drawback to this approach is that we are not interested in finding just any potential

parse of a phrase/sentence, nor even the most statistically probable parse. Because

our intent is to perform structural alignment with input from the non-linguistic do-

main, our goal in parsing is to find the semantic parse structure which aligns best

with the semantic structure input from the non-linguistic domain. It follows that we

should use the non-linguistic input to guide our search.

4.5.2 The Search Space

Here I define the search space for constructing the constraint network topology using

Streams and Counterstreams. This includes defining the states in the search space,

as well as the transitions that lead between them.

First, let us consider what information is included in the states that will serve as

sources for the forward and backward search processes. The “forward” and “back-

ward” directions are symmetric under Streams and Counterstreams, but for clarity

we will call the parsing pass the forward pass, and the generation pass the backward

pass.

The forward, or parsing, process starts with a linguistic input: a list of words, each
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with an associated set of entries defining the syntactic category and semantics of the

various interpretations of the word. Each word corresponds to a port in the constraint

propagation network. As yet, there are no rule-boxes in the network. It will be the

function of the searcher to fill in the rule-boxes which will bring these words’ ports

together into constraint structure that produces a single coherent semantics. Thus,

the forward search process originates at a state defined by a constraint propagation

network with a list of ports and no rule-boxes. Each transition will add a rulebox to

the network. Adding this rulebox will also have the side-effect of adding a new port

to the network containing the result of the rulebox’s CCG rule reduction.

The backward, or generation, process starts with the non-linguistic input: a se-

mantic structure to be expressed4. This semantic structure occupies a port in an oth-

erwise empty constraint propagation network. It will be the function of the searcher

to fill in the rule-boxes which will divide up the semantics into units that can be

associated with words. Thus, the backward search process originates at a state de-

fined by a constraint propagation network with a single port and no rule-boxes. Each

transition will add a rulebox to the network. Adding this rulebox will also have the

side-effect of adding new ports to the network, one for each source term in the CCG

rule.

Thus we have that states in the search space are constraint network topologies,

while transitions record the addition of a rulebox to the the constraint network.

4.5.3 Priming Keys

Now that we have defined the transitions for the search space, we proceed to define

the priming keys for these transitions. Recall that identical priming keys should be

produced by semantically equivalent transitions and by reciprocal transitions. This

still leaves us to define what makes two transitions semantically equivalent in our

search space.

4Actually, the non-linguistic input may also include a set of acceptable syntactic categories for
the phrase to be generated. For example, if the syntactic category S is specified, then the generated
expression will be a sentence.
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Because each transition simply adds to the constraint propagation network a rule-

box embodying a CCG rule, we find that determining the semantic equivalence of two

transitions reduces to determining the semantic equivalence of the two CCG rule ap-

plications. This is not very straightforward, because CCG allows the same linguistic

string to be parsed in multiple equivalent ways. For example, “The red ball” supports

both of the following derivations:

the red ball

NP/N N/N N

>

N

>

NP

or

the red ball

NP/N N/N N

>B

NP/N

>

NP
These derivations are equivalent, despite the fact that the constituents are com-

bined in a different order, that the derivation tree is structurally different, and that

the second version uses the functional composition rule while the first version uses

only functional application. Ideally, we would like to choose a method of generating

priming keys that results in the same keys being generated for both of these deriva-

tions. We can achieve this ideal by noticing what is common between these two

derivations. Both syntactically and semantically, CCG rules describe how arguments

get applied to functions. Therefore, appropriate priming keys should be produced by

monitoring the source of a syntactic or semantic fragment and its destination once it

gets used as as the argument of a function.

4.5.4 Annotating Syntactic Categories

First we look at generating priming keys from syntactic category function application.

In order to track the origins of syntactic categories and their function arguments,

we annotate syntactic categories with identifiers indicating their origins. The exact

nature of these identifiers is not important; rather, it is expected that the system

components that gave to the reconciliation inputs will provide identifiers that are most

appropriate to the input modality. For example, if linguistic input was extracted from
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an audio stream, the identifier for a word might specify a segment of the audio stream

and word it was interpreted as, such as “AudioStream.(sample43234-sample72342,

the)”. For the remainder of this explanation, such an identifier will be abbreviated

as “AS.the”.

With these identifiers in hand, we can proceed to annotate the syntactic category.

We declare two types of annotations:

• originArgument annotation: Every syntactic category argument has an orig-

inArgument annotation which holds the identifier of the word in which the

argument was first specified.

• originHead annotation: Each element of the syntactic category (either a prim-

itive such as “N” or a curried functional frame such as (S\NP)) which is not

the argument of another syntactic category is annotated with an originHead

annotation holding the identifier of the word in which that category was first

specified.

Thus, the annotated syntactic category of words in our example phrase could be:

the := NP{originHead=AS.the} / N{originArgument=AS.the}
red := N{originHead=AS.red} / N{originArgument=AS.red}
ball := N{originHead=AS.ball}

Now that syntactic categories are annotated, we need to modify the constraints in

the constraint propagation network to maintain these annotations. The main change

is that whenever a metavariable from a CCG pattern binds to different instances of

a syntactic category, the annotations for those instances get merged in the bindings.

This has the effect of propagating the annotations through the network. For example,

consider the two derivations we considered before. Abbreviating “originArgument”

as arg and “originHead” as head, the annotated versions of these derivations are:
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the red ball

NP{head=AS.the} N{head=AS.red} N{head=AS.ball}
/ N{arg=AS.the} / N{arg=AS.red}

>

[join arg=AS.red head=AS.ball]
N{head=AS.red}

>

[join arg=AS.the head=AS.red]
NP{head=AS.the}

and

the red ball

NP{head=AS.the} N{head=AS.red} N{head=AS.ball}
/ N{arg=AS.the} / N{arg=AS.red}

>B

[join arg=AS.the head=AS.red]
NP{head=AS.the}
/ N{arg=AS.red}

>

[join arg=AS.red head=AS.ball]
NP{head=AS.the}

Finally, we generate priming records whenever a CCG rule application fills a

syntactic category parameter. The priming record indicates the originArgument of

the syntactic category argument, as well as the originHead of the syntactic category

head. In the above derivation, the priming records have been filled in, enclosed in

square braces. Notice that in both derivations, the same set of priming records is

generated.

4.5.5 Annotating Semantic Structures

Generating priming records from the application syntactic functions is only half the

story; we can also generate priming records from semantic structures. We will once

again appeal to annotations in order to track the origin of each semantic frame.

Furthermore, we will continue to use identifiers generated by the system supplying

the non-linguistic semantics as the basis for our identifiers. Consider for example if the
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visual system had observed a red ball, and had assigned the object a unique identifier

such as ”Vision.Object209”. Using “originSemantic” as our annotation key, the vision

system might annotate the LCS structure representing the red ball as follows:


MODIFIER

<Property RED>

{originSemantic=Vision.Object209.property.red}
<Thing BALL>

{originSemantic=Vision.Object209}

We can then proceed to compute priming keys based on semantic annotations by

observing when applying CCG rule causes one annotated LCS frame to become the

child of another annotated frame. Let us look at the sample derivation above, this

time focusing on semantic annotations.
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the red ball

NP/N.noun N/N.noun N

 x

<λnoun x>




n<Property RED>

{sem=V.O209.property.red}
< ̂property >

<λnoun n>




MODIFIER p

<Thing BALL>

{sem=V.O209}
<λproperty p>

>

[modifier V.O209 V.O209.property.red]

N
MODIFIER

<Property RED>

{sem=V.O209.property.red}
<Thing BALL>

{sem=V.O209}
>

NP
MODIFIER

<Property RED>

{sem=V.O209.property.red}
<Thing BALL>

{sem=V.O209}

and
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the red ball

NP/N.noun N/N.noun N

 x

<λnoun x>




n<Property RED>

{sem=V.O209.property.red}
< ̂property >

<λnoun n>




MODIFIER p

<Thing BALL>

{sem=V.O209}
<λproperty p>

>B

NP/N.noun


n<Property sem=V.O209.property.red>

{RED}
< ̂property >

<λnoun n>

>

[modifier V.O209 V.O209.property.red]

NP
MODIFIER

<Property RED>

{sem=V.O209.property.red}
<Thing BALL>

{sem=V.O209}

Once again, we observe that the same set of priming keys, namely the single

key [modifier Vision.Object209 Vision.Object209.property.red], is generated for both

derivations.

4.5.6 Closing the Loop

At this point, we have methods of generating both syntactic and semantic based

priming keys. Furthermore, the priming keys we generate satisfy the requirement

that semantically equivalent transitions generate identical priming keys.
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The boy kicked the ball

(semantics)

Figure 4-4: This figure highlights head ports and foot ports of a constraint propa-
gation network, as used in the annotation transfer stage of priming key generation.
The blocks represent constraints, and the circles represent ports. In the left frame,
the darkened ports are the head ports, the sites of annotation transfer for forward
search processes. In the right frame, the darkened ports are the foot ports, the sites
of annotation transfer for backward search processes.

However, the astute reader will have noticed a shortcoming in the plan: the syn-

tactic annotations originate at the linguistic source, while the semantic annotations

originate at the non-linguistic source. As a result, only the syntactic priming keys

will be available during forward (parsing) search, and only the semantic priming keys

will be available during backward (generation) search. This is at opposition with the

requirement that reciprocal transitions should generate identical priming keys. With

no overlap between the forward and backward priming keys, Streams and Counter-

streams completely falls apart. The solution is to make both syntactic and semantic

priming keys available during both the forward and backward search phases.

To make the semantic priming keys available during forward search, we add an

annotation transfer stage to the priming key generation process. During annotation

transfer stage, the constraint network is scanned for head ports: ports which are not

children of any rule port – that is, ports which are as close as possible to represent-

ing the complete semantics generated by the system, as shown in the left frame of

Figure 4-4. Next, the annotation transfer process tries to align each semantic struc-

ture in each head port with some portion of the semantics from the non-linguistic

source. When an alignment is found, the semantic annotations are copied from the
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non-linguistic semantic structure to the aligned semantic structure from the head

port. Finally, these annotations are propagated back through the constraint network,

and are thus available for priming key generation.

To make the syntactic priming keys available during backward search, we similarly

add an annotation transfer stage during the backward search. This time, we transfer

annotations at foot ports: ports which are not the parent of any rule port – that

is, ports which are as close as possible to representing individual words, as shown

in the right frame of Figure 4-4. For each foot port, we try to match its syntactic

category/semantic pair against those of each the words in the linguistic input. When

a match is made, annotations are copied over, propagated through the constraint

network, and once again are available for priming key generation.

72



Chapter 5

Contributions

5.1 An Implemented Reconciliation System

The previous chapters have outlined an architecture for performing bidirectional rec-

onciliation between the linguistic and non-linguistic semantic domains, in the context

of a Cognitively Complete System such as the Bridge System. As part of this re-

search, I have also implemented the system described throughout this thesis. Thus,

this thesis stands not only as a proposed architecture for reconciliation, but also as

documentation for a system I have successfully constructed. By implementing the

architecture described here, I both validate the tenability of the architecture and

establish a platform for future experimentation.

The architecture in this thesis brings together many subsystems and techniques to

achieve the goal of reconciliation. The result is a system that can act as an ambiguity

resolving constraint between linguistic and non-linguistic inputs. For example, if the

system is presented with the phrase “The orange rolls,” and a non-linguistic input

(perhaps from a vision subsystem) describing the presence of bread (rolls) in the

scene, the system will automatically select the interpretation of the the linguistic

input describing pieces of bread of orange color. Thus, ambiguity is resolved in the

linguistic domain, and the statement that the rolls have the property orange can be

propagated to the non-linguistic semantic domain.
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5.2 Contributions to AI and Related Fields

In pursuing the research in this thesis, several contributions have been made to arti-

ficial intelligence and related fields of research.

A general contribution to Bridge Project is made by creating the system’s first true

reconciliation pathway. One of the primary goals of the Bridge project is to investigate

how information may be shared between different modules and representations in a

manner beneficial to the understanding of all the participating modules. Thus, the

current research advances the goals of the bridge project by providing a model for how

other reconciliatory connectors could be created for mutually beneficial information

exchange.

A specific contribution to Bridge Project is made by implementing a connection

between the linguistic domain and non-linguistic semantic domain. The Bridge Sys-

tem requires continuous pathways between many different domains and processes in

order to reach its full functionality as a Cognitively Complete System. To this end,

the reconciliatory parser implemented as part of this research makes an important

contribution to Bridge by completing the pathway between two subsystems.

A contribution directly to the field of artificial intelligence is made by implement-

ing Streams and Counterstreams. The Streams and Counterstreams model of bidi-

rectional search has the potential to be a very powerful tool for artificial intelligence

researchers. However, it is difficult to find implementations of the model outside of

the simple test system in Ullman’s original paper. Therefore, this research makes a

contribution to the field by providing an implementation of the Streams and Coun-

terstreams model which can be useful either directly as a modular drop-in solution,

or indirectly as a sample for how the model could be implemented.

A contribution directly to the field of artificial intelligence is made by applying

Streams and Counterstreams outside the domain of visual processing. As implemen-

tations of Streams and Counterstreams have been difficult or impossible to find, the

search model has not been applied to problem domains outside of Ullman’s own vision

research, and even there its application seems to have been limited. By applying the
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Streams and Counterstreams model to the novel problem domain of bidirectional nat-

ural language parsing, the flexibility and usefulness of the model is further examined,

and a case study for applying to model to complex problem domains is generated.

A contribution to the field of natural language processing is made by extending

Combinatory Categorial Grammar with Label-Selective Lambda Calculus so that it

may more naturally support semantic representations such as Lexical Conceptual

Structures, in which adjunct semantics may be embedded under the head semantics,

such as embedding a property’s semantics inside the thing it modifies, rather than

vice versa.

A contribution to the fields of computational linguistics and cognitive science is

made by providing a critical component in creating a test bed for further research

involving language in cognitively complete situations. Currently, experimental inves-

tigations into word learning models and language acquisition models are hindered by

the lack of a system to present the learner with matching linguistic and world knowl-

edge representations. By creating a cognitively complete system, the Bridge System

should help enable such research. Furthermore, by providing a strong and flexible

natural language parsing and generation module, this research lays the foundation

for inserting word learning models [2, 10, 15] and language acquisition models [19, 7]

into the Bridge system.
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Appendix A

Tables
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Table A.1: The complete space of Lexical Conceptual Semantics Expres-
sions [9, 1]. See notes in Section 3.1.3 for discussion of variations from
Jackendoff’s original specification.

<Thing> ← [<Thing x>

<Place> ← [<Place Place>
where Place ∈ {HERE, THERE, . . . }

←
[

<Thing>

<Place PlaceFunc>
where PlaceFunc ∈ {AT, ON, IN, ABOVE, BELOW,

BEHIND, . . . }
←

[
<Path>

<Place ON>

<Path> ←
[

<PathElement>*

<Path >
where <PathElement>* indicates any number of

PathElements

<PathElement> ← [<PathElement PathElement>
where PathElement ∈ {UPWARD, DOWNWARD,

EASTWARD, WESTWARD, . . . }
←

[
<Thing>

<PathElement PathFunction>
where PathFunction ∈ (TO, FROM, TOWARD,

AWAY-FROM, VIA, ALONG, . . . )

<Event> ←
 <Thing>

<Path>

<Event Go>

←
 <Thing>

<Place>

<Event Stay>

←
 <Thing>

<Event>

<Event Cause>

←
 <Event>

<Event>

<Event Cause>

←
 <Thing>

<Event>

<Event Let>

(continued on next page)
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Table A.2: Lexical Conceptual Semantics Expressions, continued

<State> ←
 <Thing>

<Place>

<State Be>

←
 <Thing>

<Path>

<State Orient>

←
 <Thing>

<Path>

<State Extend>
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Table A.3: The complete label-selective lambda calculus, as presented in
[5].

Definitions
FV (M) is the set of free variables in M.
[N/x]M is the result of replacing all free occurrences of x with

N in M (or an appropriate α-renaming thereof).

Substitutions
[N/x]x = N
[N/x]y = y if y is a variable and y 
= x
[N/x](M1p̂M2) = ([N/x]M1)p̂([N/x]M2)
[N/x](λpx.M) = λpx.M
[N/x](λpy.M) = λpy.[N/x]M

if y 
= x and y 
∈ FV (N)
[N/x](λpy.M) = λpz.[N/x][z/y]M

if y 
= x and y ∈ FV (N)
and z 
∈ FV (N) ∪ FV (M)

Reductions
β-reduction

(β) (λpx.M)p̂N → [N/x]M

Symbolic reordering
(1) (λamx.λbny.M → λbny.λamx.M a > b
(2) M âmN1b̂nN2 → M b̂nN2âmN1 a > b
(3) (λamx.M)b̂nN → λamx.(M b̂nN) a 
= b, x ∈ FV (N)

Numeric reordering
(4) (λamx.λany.M → λany.λam−1x.M m > n
(5) M âmN1ânN2 → M ânN2 ̂am−1N1 m > n
(6) (λamx.M)ânN → λam−1x.(M ânN) m > n, x 
∈ FV (N)
(7) (λamx.M)ânN → λamx.(M ân−1N) m < n, x 
∈ FV (N)
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