
Genesis’s implementation substrate

Patrick H. Winston

Updated May 2015

Sources and deprecation of System.out.println

You can run the code examples given here by way of demonstration class in the tutorials package in
the Genesis system.

Note that we do not use ordinary print statements in genesis. The reason is that our fancy print statements
print on the Eclipse console with a clicable pointer to the place in the code wher the fancy print statement
lies. Hence:

Genesis is implemented on a substrate of four Java classes

• The Entity class, so called so as not to conflict with Java’s Object class. A entity instance has no
internal structure, other than a bundle of threads (unrelated to Java’s Thread class; alas, a name clash we
have decided to live with), which specify class membership. Entities are used, for example, to represent
particular physical objects.

• The Function class, so called so as to suggest that instances are derived from an object.

• The Relation class. A relation indicates how one object is connected to another object.

• The Sequence class. A sequence contains any number of elements.

From the Java perspective, functions are entities and relations are functions. Sequences are also entities.
Thus, because entities have threads, so do functions, relations, and sequences.

The Entity class

The most fundamental class is the Entity class. Every instance has a unique name and bundle of threads.
To create a new entity, identified as both a ball and a baseball, you execute the following:

Entity x = new Entity ("ball");
x.addType("baseball");

Then, you can inspect the result via a print statement:

Mark.say(x.toXML);
-->
<entity>
<name>baseball-0</name>
<bundle><thread>entity ball baseball</thread></bundle>

</entity>

Alternatively, if you just print the entity, you get less, but more readable information:

1

(ent baseball-0)

The first thread of possibly many threads in the thread bundle is considered the primed thread. Whenever
you add a type to a entity, using the addType method, that new type goes to the end of the primed thread.

The isA predicate tests for class membership by checking all the threads. Hence x.isA("ball")
returns true, but x.isA("person") returns false.

The Function class

The Function class is a direct subclass of the Entity class, used, for example, to represent Jackendoff’s places
and path elements. The Function class provides getSubject and setSubject accessors. The subject
is to be filled with an Entity instance or an instance of an Entity subclass. The following example
shows how to construct a function that represents the top of a table:

Entity e = new Entity("table");
Function f = new Function("top", e);

Then:

Mark.say(f);
-->
(fun top (ent table-1))
Mark.say(f.getSubject());
-->
(ent table-1)

The Relation class

The Relation class is a direct subclass of the Function class. The Relation class simply adds an
object slot to the Function class, with getObject and setObject accessors.

Entity d = new Entity("door");
Entity w = new Entity("window");
Relation r = new Relation("between", d, w);
Mark.say(r);
-->
(rel between (ent door-4) (ent window-5))
Mark.say(r.getSubject());
-->
(ent door-4)
Mark.say(r.getObject());
-->
(ent window-5)

The Sequence class

The Sequence class is a direct subclass of the Entity class. Sequences appear, for example, when Genesis
produces role frames from English. Given John killed Peter with a knife, for example, Genesis produces a
sequence containing two roles, one for the object, Peter, and one for the instrument, the knife.

Sequence roles = new Sequence("roles");
roles.addElement(new Function("object", new Entity("Peter")));
roles.addElement(new Function("with", new Entity("knife")));
Relation k = new Relation("kill", new Entity("John"), roles);

2

Mark.say(roles);
-->
(seq roles (fun object (ent Peter-8)) (fun with (ent knife-10)))
Mark.say(k);
-->
(rel kill (ent John-12)

(seq roles (fun object (ent Peter-8)) (fun with (ent knife-10))))

Role frame descriptions exploit the substrate.

Much of what Genesis reads ends up in what linguists call thematic role frames, role frames for short, which
consist of an actor along with an act or property and optionally various entities that fill varous roles in the
act. Thus, in Macbeth murdered Duncan, Macbeth is the actor, murder is the act, and Duncan is the object.
Thus the word object regrettably has three possible meanings in Genesis: it could refer to the object of a
substrate-level relation or the object in a higher-level role frame or the grammatical object in a sentence,
which is often the same as the object in a higher-level frame..

In Macbeth murdered Duncan with a knife, the knife entity, marked by a with preposition, fills what
linguists would call the instrument role.

In Genesis, role frames are implemented thusly: the actor entity is the subject of a relation whose type
indicates the act or property involved. All the role fillers—the object and instrument roles for example—are
collected into a sequence that becomes the object of the relation. Each role mentioned in the sequence is
embedded in a function indicating something about the role played. Thus, the object role is embedded in a
object function; the instrument role is embedded in the marking with preposition.

The Bonawitz view of Role Frames

The printed form of entities, functions, relations and sequences is far from transparent. Accordingly, when
such instances are presented in a GUI they appear in a form conceived by Keith Bonawitz. In figure ??, you
see a Bonowitz rendering of the role frame for Macbeth murdered Duncan with a knife.

Note the color coding: entities in gray, functions in blue, relatioins in red, sequences in black.
In figure 2 you see a more complicated example in which two role frames are embedded in a stucture

that ties antecedents (here only one) to consequents.
Note that when you role over various parts of the diagram, you see the various threads Genesis associates

with each entity.

Genesis’s translator produces innerese frames from Genesis English

Having slogged through all the explanation of how to work with entities, functions, relations, and sequences,
you are ready to learn that you generally do not have to ever construct such objects. Genesis does it for you
by translating from English:

String sentence = "John marries Mary because John loves money";
Translator translator = Translator.getTranslator();
Entity entity = translator.translate(sentence);
Mark.say(entity);
-->
(seq semantic-interpretation

(rel cause (seq conjuction (rel love (ent john-93)

3

16:51:35 EDT 21-May-2016

ContinueRerunDebug 3Debug 2Debug 1AboutRecordReadLibraryDemonstrations

murder

1207

macbeth
1177

roles

1206

object

1208

duncan
1179

with

1209

knife
1182

Start viewer

RetellingSummaryResultsSourcesInspectorElaboration graphExpertsStart viewerControlsViewsPop|||

Macbeth murdered Duncan with a knife.
Commentary

ReSuReSoInsElaboExStaCoVP

Commentary

RetellingSummaryResultsSourcesInspectorElaboration graphExpertsStart viewerControlsViewsPop|||

2790 M

GenAssist

Test translator/generator

Genesis

Genesis systems

About

Figure 1

(seq roles (fun object (ent money-103)))))
(rel marry (ent john-93) (seq roles (fun object (ent mary-100))))))

Genesis also features an English generator. The following thus produces the same English that is pro-
vided:

Generator generator = Generator.getGenerator();
Mark.say(generator.generate(translator.translate(sentence).getElements().get(0)));
-->
John marries Mary because John loves money.

Convenience constructors build role frames

If you need to construct a role frame, rather than just producing one from English, the work can be tedious
and error prone. Fortunately there are convenience constructors that help. The following, for example,

4

Figure 2

shows how to create a role frame and how to add an additional role to an existing role frame:

Relation rf = Constructors.makeRoleFrame(John, "kill");
Mark.say(rf);
-->
(rel kill (ent John-14) (seq roles))
rf = Constructors.makeRoleFrame(John, "kill", Peter);
Mark.say(rf);
-->
(rel kill (ent John-14) (seq roles (fun object (ent Peter-15))))
rf = Constructors.addRole(

Constructors.makeRoleFrame(John, "kill", Peter), "with", knife);
Mark.say(rf);
-->
(rel kill (ent John-14)

(seq roles (fun object (ent Peter-15)) (fun with (ent knife-17))))

The following shows how to create a role frame involving a path object:

Entity tree = new Entity("tree");

5

// Create a place relative to entity
Function place = JFactory.createPlace("top", tree);
// Create a path element using place
Function pathElement = JFactory.createPathElement("from", place);
// Create a path
Sequence path = JFactory.createPath();
// Add path element
path.addElement(pathElement);
// Use path to create a trajectory
Entity trajectory = JFactory.createTrajectory(bird, "fly", path);
// Create another path element
Function origin =
JFactory.createPathElement("to", JFactory.createPlace("at", new Entity("rock")));

// Add it to the path
JFactory.addPathElement(path, origin);
// Have a look
Mark.say("Amended trajectory role frame: " + trajectory);
-->
Amended trajectory role frame: (rel fly (ent bird-16)

(seq roles (fun object (seq path (fun
from (fun top (ent tree-44)))

(fun to (fun at (ent rock-71)))))))

6

