
Homework 1: Discrete and Smooth Curves
Due March 3, 2021

This is the first homework assignment for 6.838. Check the course website
for additional materials and the late policy. You may work on assignments in
groups, but every student must submit their own write up; please note your
collaborators, if any, on your write up. Submit your code and writeup in
a zip file named 6838-hw1-<yourkerberos>.zip, where <yourkerberos> is
replaced with your MIT Kerberos ID.
Some of the notation used in this homework may be unfamiliar or rusty for
computer science students, but undergrad calculus should be sufficient to an-
swer all the problems. Get started early, and reach out for help during office
hours and/or on Piazza—we will be generous!

Problem 1 (30 points). In this problem, we introduce continuous and discrete methods in varia-
tional calculus, one of the main tools of the differential geometry toolbox.

(a) Suppose you are given a regular plane curve γ : [0, 1] → R2, and take v : [0, 1] → R2 to be a
vector field along γ. Recall that the arc length of γ is given by

s[γ] =
! 1

0
‖γ′(t)‖2 dt.

We can think of γh(t) := γ(t) + hv(t) to be a displacement of γ along v. Differentiate f (h) :=
s[γ + hv] with respect to h at h = 0 to yield an expression for d

dh s[γ + hv]|h=0.

Hint: The “differentiation under the integral sign” rule shows d
dh

! b
a g(t, h) dt =

! b
a

∂g
∂h (t, h) dt.

(b) You can think of each v as an infinitesimal displacement (a “variation”) of the entire curve γ at
once. Explain how the derivative you took in (a) can be thought of as a directional derivative
of arc length in the v “direction.” In variational calculus, this derivative is known as the
Gâteaux or variational derivative of s[·].

(c) Suppose v(0) = v(1) = 0. Define a vector-valued function w(s) so that

d
dh

s[γ + hv]
!!!!
h=0

=
! s(1)

0
v(s−1(s̄)) · w(s̄) ds̄,

where s(t) =
! t

0 ‖γ′(t̄)‖2 dt̄ on the right-hand side is the arc length function and w can be
written in terms of the curvature and Frenet frame of γ.

Note: Your formula for w should not include any term involving v.

Hint: Simplify the left-hand side using your answer to (a). Use integration by parts.
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For coding assignments, you can use either Julia or MATLAB as your pro-
gramming language. The starter code handles visualization/problem setup
and indicates where you should fill in your solutions. If you are using Julia,
we recommend the VS Code extension for development. Plots will then ap-
pear inside VS Code. If you run your code directly from the terminal, change
WGLMakie to GLMakie so that plots will appear in a separate window.

Problem 2 (35 points). In this problem, you will develop a notion of discrete curvature of a plane
curve.

(a) Suppose we have a discrete curve given by a series of points x1, . . . , xn ∈ R2. You can think
of the vertex positions as parameterized by a vector x ∈ R2n. Define an arc length functional
s(x) : R2n → R+; for convenience, it is acceptable to notate s(x) = s(x1, . . . , xn).

(b) Suppose 1 < i < n. Write an expression for the gradient ∇xi s of s(·) with respect to xi and
show that its norm is 2 sin θ

2 , where θ is the turning angle between the two segments adjacent
to xi (see figure).

xi−1

xi

xi+1

θ

(c) Take a look at discreteCurve.m (or discreteCurve.jl). The curve generates an n × 2 ar-
ray representing n points on a discrete two-dimensional curve. Modify the code to plot the
derivative you computed in part (b).

(d) Propose a measure of discrete (unsigned) per-vertex curvature of a 2D discrete curve based
on your answers to 1(c) and 2(b), and draw the curve colored by this value. For this, fill in
code to compute kappa in discreteCurve.m (discreteCurve.jl).

Note: Make sure that your notion of curvature does not go to zero as you increase the number
n of samples. Multiple answers are possible.

(e) For sufficiently small h > 0, one simple way to decrease the length of the curve would be
to replace each point xi with a new point x′i := xi − (∇xi s)h, where ∇xi s is the derivative of
s with respect to xi (make sure you understand why!). Implement this forward integration
scheme with the endpoints fixed, and make sure that if you iterate enough times the curve
approximates a straight line. What happens if h is too large?

Problem 3 (35 points). In this problem, you will implement a special case of the “Discrete Elastic
Rods” paper discussed in class—a closed loop formed from naturally straight, isotropic rod. Take
a look at elasticRods.m (or elasticRods.jl) for starter code.

(a) Add code to compute the 3 × 3 × n array parallelTransport. Each 3x3 page of this array
is a rotation matrix aligning the Bishop frames between successive edges (denoted Pi in the
paper).
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(b) The bending energy has the form

Ebend = α ∑
i

|(κb)i|2

li
,

where li is the dual length of vertex i (see §4.2.1 of the paper). The bending force at vertex i is
thus

−∇iEbend = ∑
j

−2α

l j
(∇i(κb)j)

⊤(κb)j.

Show that

∇i(κb)j =
1

|ej−1||ej|+ ej−1 · ej

"
####$

####%

2[ej] + (κb)j(ej)⊤ i = j − 1
2[ej−1]− (κb)j(ej−1)⊤ i = j + 1
−(2[ej] + (κb)j(ej)⊤ + 2[ej−1]− (κb)j(ej−1)⊤) i = j
0 otherwise,

where [x] denotes a 3 × 3 matrix defined so that [x]y = x × y (see §7.1 of the paper).

(c) Implement the functions computeBendForce and computeTwistForce. Make sure to read the
relevant sections in the paper carefully—in particular, note that li is twice the dual cell length
|Di| (see §4.2.1 in the paper), and pay attention to the transposes in the force equations. To
test your work, run the elasticRods function.

(d) Challenge problem (5 points of the 35). Fixing the material parameters α and β (bendModulus
and twistModulus in the code), plot the maximum displacement over time for a variety of
total twist values. Try to determine the critical twist at which the Michell instability phase
transition occurs. Does it correspond to the theoretical value θ = 2π

√
3α/β? Why or why

not?
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