
7E M B E D D I N G A N D PA R A M E T E R I Z AT I O N

In the previous chapter, we explored the forward problem of computing distances between points
given a representation of a geometric object. Now, we consider the inverse problem of going from
distances to a geometric representation.

While this description might appear abstract, this problem appears across the computational
literature, from graph theory to data science to mesh processing. Variations of this problem appear
under many names in many disciplines:

• Dimensionality reduction: One motivation for using tools like principal component anal-
ysis (PCA) for dimensionality reduction is that we suspect data to embed well in a lower-
dimensional space; dimensionality reduction arguably is successful when the geometry of high-
dimensional data is preserved well when we project onto the (unknown) lower-dimensional
space.

• Manifold learning: A common schematic in machine learning is to think of a cloud of
data points as cutting out a relatively low-dimensional—but curved—submanifold of the large-
dimensional space in which they are collected. Implicitly or explicitly discovering the manifold
on which the data lives can help design sensible learning procedures that propagate labels
along the manifold instead of diffusing into extrinsic space.

• Data visualization: The majority (arguably the whole) of display technology—from computer
screens to 3D printers—is limited to two or three dimensions. Visualization tools intended to
help data scientists seek patterns in unexplored datasets must embed as much information as
possible from different types of data into R2 or R3.

• Representation learning: A popular topic in deep learning, representation learning is built
on the observation that the space in which your data is embedded is not necessarily the best
space for describing its structure. For example, distances between photographs measured in
pixel color space is less meaningful for many computer vision applications than distances that
take into account image content. In representation learning, the task is to learn a map from
data points into a space that makes their relevant relationships explicit. Recent results in this
discipline are surprising: One well-known paper even computes an embedding of (a piece of)
the English language dictionary into Rn that preserves semantic structure CITE .

• Parameterization: Applications like 3D modeling and medical imaging store data over a wide
variety of shapes. As a classic example, 3D surfaces in graphics and computer-aided design are
often accompanied by dense textures storing color or reflectance per point at a density higher
than the number of vertices on a mesh. In these cases, it may be useful to parameterize a shape
to a canonical domain on which we can accelerate information storage. In surface texturing, a
common practice is to map surfaces into pieces of the plane so that we can store textures in
2D photograph format, capable of relatively high information density. In these applications, we
seek a parameterization into the image plane that distorts surface geometry as little as possible.

7.1 metric spaces

There are many notions of distance, some of which we have encountered in previous chapters.
Perhaps the most familiar example is distance in Euclidean space Rn, d(x, y) := ‖x− y‖2. In the
previous chapter, we defined distances between points on a submanifold of Rn, using the arc

83

84 embedding and parameterization

lengths of curves as a proxy for distances. But many other notions of distances exist. For example,
as mentioned in § REF , the distance between nodes on a graph is well-defined so long as the edge
weights are positive. And sometimes our notions of distance are somewhat fuzzy: In the English
dictionary, we might think of words like red, green, and blue as somehow closer to one another
than red and banana. Note there still is some distance-like triangle inequality in our final example:
We might think of yellow as roughly at a midpoint between banana and red, since it is both a color
and a reasonable descriptor for banana.

A key object of study in mathematics attempts to formalize what it means to be a distance. En-
shrining some of the mathematical intuition built from the examples above, we have the following
definition:

Definition 7.1 (Metric space). A metric space is a pair (M, d) where M is a set and d(·, ·) : M×M→
R is a function satisfying the following axioms for all x, y, z ∈ M:

d(x, y) ≥ 0 Positivity

d(x, y) = 0 ⇐⇒ x = y Indiscernibility

d(x, y) = d(y, x) Symmetry

d(x, z) ≤ d(x, y) + d(y, z) Triangle inequality.

This definition is quite flexible and can be used to interpret the same set more than one way. For
instance, suppose M is a surface embedded in R3. There are two interpretations of M as a metric
space that are not the same: M could be equipped with the extrinsic metric d(x, y) := ‖x − y‖2
from ambient space R3, or M could be equipped with the metric d(x, y) that gives the geodesic
distance from x to y along M.

Metric spaces need not even be finite dimensional:

Example 7.1 (C∞ as a metric space). The set of infinitely-differentiable functions C∞([0, 1]) on the unit
interval [0, 1] is a metric space when equipped with the distance

d(f , g)2 :=
∫ 1

0
(f (t)− g(t))2 dt.

7.2 embedding a metric space

As we can see above, the notion of a metric space is incredibly broad and encapsulates a huge set
of example space of assorted sizes and/or dimensions. Some metric spaces, like subsets of R2, are
easily visualized and understood, while others, like high-dimensional manifolds of data, are less
easily digested. In the latter case, it can be beneficial to try to squeeze a complicated metric space
into one we are more used to processing, while preserving as much structure as possible. This
process is often called embedding.

Suppose (M, d) and (M′, d′) are two metric spaces. We can think of an embedding as a map
φ : M→ M′. In this case, the strongest condition we can put onto φ is that it completely preserves
metric space structure:

Definition 7.2 (Isometry). A map φ : M → M′ between metric spaces (M, d) and (M′, d′) is an
isometry if it preserves pairwise distances. That is, for all x, y ∈ M we have

d(x, y) = d′(φ(x), φ(y)).

If there exists a bijective isometry between two metric spaces, we call those spaces isometric.

7.2 embedding a metric space 85

Example 7.2 (Isometry). Suppose G = (V, E) is the graph with three vertices connected together into a
triangle with edge lengths equal to 1. This is a discrete metric space when equipped with the shortest-path
metric along graph edges. This space embeds isometrically into R2 by taking

φ(v1) = (0, 0)

φ(v2) = (0, 1)

φ(v3) = (1/2,
√

3/2).

The condition that one space embeds isometrically into another is strong, and a priori there
is no reason to expect an isometry to exist given an arbitrary pair of spaces (M, d) and (M′, d′).
Considerable mathematical effort goes into characterizing the embedding capacity of assorted met-
ric spaces (M, d), that is, the likelihood that another metric space (M′, d′) embeds into (M, d)
isometrically.

Disappointingly, there are plenty of useful spaces that do not embed isometrically into our
favorite space computationally, Euclidean space Rn. Our counterexample consists of a four-point
metric space CITE :

Example 7.3 (Embedding into Rn). Consider the four-element space M = {a, b, c, d} with equipped
with the distance metric d defined via:

d(a, b) = d(a, c) = d(b, c) = 2

d(a, d) = d(b, d) = 1

d(c, d) = 1.5.

Since this space is finite, we can check manually that (M, d) satisfies the criteria in Definition 7.1 to be a
metric space.

We cannot, however, embed this space into any Rn. To see this, notice that (a, b, c) would form an
equilateral triangle of edge length 2, from the first set of conditions on d. From the second, the point b must
be on the midpoint from a to b. As shown in Figure REF , in Rn this would constrain d(c, d) to be the
height of the triangle, which is not 1.5.

Different spaces have more embedding capacity than Rn for any n. Following CITE , as an
example in the opposite direction consider the space `∞(Rn), defined to be Rn equipped with the
norm

‖x‖∞ := max
k
|xk|.

We can show the following:

Proposition 7.1. Every finite space embeds isometrically into `∞(Rn) for some n.

Proof. Take a finite metric space (M, d) where M = {a1, a2, . . . , an}. Define a map φ : M → Rn as
follows:

φ(ak) := (d(a1, ak), d(a2, ak), . . . , d(an, ak)).

To check that this map is an isometry, we need to verify that distances are preserved:

‖φ(ai)− φ(aj)‖∞ = max
k
|d(ak, ai)− d(ak, aj)|.

We will bound this quantity above and below by d(ai, aj). Taking k = i in the max above shows
‖φ(ai) − φ(aj)‖∞ ≥ d(ai, aj), since d(ai, ai) = 0. To show the reverse, we can apply the triangle
inequality:

d(ai, aj) + d(aj, ak) ≥ d(ai, ak) =⇒ d(ak, ai)− d(ak, aj) ≤ d(ai, aj)

d(ai, aj) + d(ai, ak) ≥ d(aj, ak) =⇒ d(ak, aj)− d(ak, ai) ≤ d(ai, aj)

=⇒ |d(ak, ai)− d(ak, aj)| ≤ d(ai, aj)

86 embedding and parameterization

Hence,

max
k
|d(ak, ai)− d(ak, aj)| ≤ max

k
d(ai, aj)

= d(ai, aj),

as needed.

The proof above even extends to infinite-sized metric spaces so long as we suitably extend
the definition of `∞. This proof in some sense shows that `∞(Rn) has better embedding capacity
than Rn equipped with the standard Euclidean metric. But before we begin replacing all our
applications of Euclidean space with `∞, we should note the limited utility of Proposition 7.1:
Once we embed a space into `∞, it is not clear that it is any easier to process or visualize, and the
dimensionality of the embedding equals the number of points in the space.

7.3 approximate embedding

Given the negative results above, it appears we should relax the isometry condition when embed-
ding spaces into one another and instead seek an approximate isometry. This leads to a key topic
that will appear and reappear in our discussion of different geometry problems: Constructing a
measure of distortion of a map φ, in this case of deviation from isometry.

A few standard distortion measures appear in the embedding literature. Given a map φ : M →
M′, some standard measures of distortion are CITE :

expansion(φ) := supx,y∈M
d′(φ(x),φ(y))

d(x,y)

contraction(φ) := supx,y∈M
d(x,y)

d′(φ(x),φ(y))

distortion(φ) := expansion(φ) · contraction(φ).

(7.1)

An isometry has distortion equal to 1. As distortion increases, the map φ stretches or shrinks the
two spaces more and more.

A classical result in the theory of metric embedding into Euclidean space indicates that we can
do much better than the negative examples for isometric embedding if we allow for some wiggle
room in the form of distortion. Define `p(Rn) to be the space Rn equipped with the p-norm
‖x‖p := (∑i |xi|p)1/p. A classical result in the theory of embedding shows that any finite metric
space embeds well into `p(Rn) for remarkably small n [4]:

Proposition 7.2 (Bourgain’s Theorem). Suppose (M, d) is a metric space consisting of n points, that is,
|M| = n. Then, for p ≥ 1, M embeds into `p(Rm) with O(log n) distortion, where m = O(log2 n).

Matousek improved the distortion bound to log n/p [14].
From a practical perspective, the embedding result in Proposition 7.2 is far more practical than

the isometric embedding provided in Proposition 7.1, for many applications. In particular, if we
are willing to pay in the form of distortion, we can use a dimensionality that is logarithmic in
the number of points in M. In contrast, the construction in Proposition 7.1 requires as many
dimensions as there are points in M, limiting the algorithmic utility of that result.

Behind Proposition 7.2 is a simple algorithm that explicitly constructs the embedding. Following
CITE , define the Fréchet embedding as follows:

Definition 7.3 (Fréchet embedding). Suppose (M, d) is a metric space that S1, . . . , Sr ⊆ M. We define
the Fréchet embedding of M with respect to {S1, . . . , Sr} to be the map φ : M→ Rr given by

φ(x) := (d(x, S1), d(x, S2), . . . , d(x, Sr)), (7.2)

where d(x, S) := miny∈S d(x, y).

7.4 multidimensional scaling 87

The construction in the proof of Proposition 7.1 could be considered a special case of Fréchet
embedding where Si = {ai} for i ∈ {1, . . . , n}.

An easily-implemented probabilistic algorithm justifies Proposition 7.2. Construct a number
of subsets Sij ⊆ M by sampling each node in M independently with probability 2−j. Then, the
embedding achieving O(log n) distortion is the Fréchet embedding of M with respect to Sij, where
j ∈ {1, . . . , dlog ne} and i ∈ {1, . . . , 576dlog ne}. One surprising aspect of this construction is that
there is no p dependence: The same embedding is effective for all p ≥ 1. Formally justifying
that this algorithm achieves the proper distortion is outside of the scope of our discussion since
it involves probabilistic techniques we have not introduced, but given a few commonly-applied
probabilistic inequalities the proof is technical but fairly elementary; the weakest version of the
proof shows that the probabilistic algorithm has nonzero probability of succeeding.

7.4 multidimensional scaling

Bourgain’s Theorem is a constructive, approximate result for embedding. Although the guaran-
tee of limited distortion provided by Bourgain’s construction is attractive, in many applications
we want better control over the dimensionality of the target space, even if this means we cannot
perform as well at embedding theoretically. Rather than employing randomized, constructive al-
gorithms, in this case it might make sense to optimize for the best possible embedding given a fixed
target space and measure of distortion; these algorithms are more numerical than combinatorial
in nature.

A class of algorithms known as multidimensional scaling (MDS) techniques aims to embed a
finite metric space into Rm for some fixed m. The n-point metric space is given as input in the form
of a matrix D0 ∈ Rn×n

+ . Put differently, we wish to find a set of embedding points {xi}n
i=1 ⊂ Rm

so that ‖xi − xj‖2 ≈ D0ij. The objective function used to evaluate the quality of the set of xi’s
determines the particular variant of MDS.

7.4.1 Classical MDS

Suppose we go in the (much easier) reverse direction, computing a distance matrix from a set
of points xi ∈ Rm. Algebraically, it is more convenient to work with the squared distance matrix
Pij := ‖xi − xj‖2

2 rather than non-squared distances D. For convenience, we will also define a
matrix X ∈ Rm×n whose columns are the xi’s.

Define the Gram matrix of the xi’s as follows:

Definition 7.4 (Gram matrix). Given a collection of points x1, . . . , xn ∈ Rm, the Gram matrix associated
to the xi’s is the matrix G ∈ Rn×n

+ whose entries are given by Gij := xi · xj. If X ∈ Rm×n is the matrix
whose columns are the xi’s, then G = X>X.

A simple relationship relates G to P. Expanding the square:

Pij = ‖xi − xj‖2
2 = ‖xi‖2

2 + ‖xj‖2
2 − 2xi · xj = Gii + Gjj − 2Gij.

Hence, we can write
P = −2G + diag(G)1> + 1diag(G)>, (7.3)

where diag(G) ∈ Rn denotes the vector composed of diagonal elements of the matrix G and
1 ∈ Rn denotes the vector of all ones.

Now we turn our discussion backward and try to estimate the columns of X—and hence the
embedding of our data—from the pairwise squared distance matrix P. We will first consider the
case where Pij = ‖xi − xj‖2

2 exactly for a set of xi’s that we have somehow lost, and our job is to
recover the xi’s; we then relax to the approximate case.

88 embedding and parameterization

Unfortunately, given G or P, it is usually impossible to recover X. Take any orthogonal matrix
R ∈ O(m). Then, the Gram matrix of the rotated point set RX is

G′ = X>R>RX = X>X = G.

Similarly, shifting the xi’s uniformly by any constant vector v–or applying R—does not affect P.
Instead, we satisfy ourselves with computing any set of points that is isometric to the original set
of xi’s.

By construction, the Gram matrix G is positive semidefinite with rank r = min{n, m}. Hence,
it admits an eigendecomposition G = QΛQ>, where Q ∈ Rn×r has orthonormal columns and
Λ ∈ Rr×r

+ is a diagonal matrix of eigenvalues. Define X :=
√

ΛQ>; then, G = X>X. Reversing (7.3)
shows that the pairwise squared distances between the columns of X agree with P. That is, given
G we can find an isometric embedding of our data as the columns of X.

Define the centering matrix

J := In×n −
1
n

11>.

By construction, J projects onto the subspace of Rn orthogonal to 1. If we assume our xi’s sum to
0 (a safe assumption since shifting a point set by a constant does not affect pairwise distances),
then by (7.3) we have

G = −1
2

J>PJ. (7.4)

Motivated by this formula, the classical MDS algorithm CITE for embedding a pairwise distance
matrix D0 into Rm proceeds as follows:

1. Squared distance computation: Compute the squared distance matrix P with entries Pij :=
D2

0ij.

2. Double centering: Compute the centered Gram matrix G := − 1
2 J>PJ.

3. Eigendecomposition: Factor G = QΛQ> where Λ contains the largest m eigenvalues of G.

4. Embedding: Take the final embedding to be the columns of X :=
√

ΛQ>.

By our argument above, when D0 truly contains pairwise distances between points in Rm, G will
have rank ≤ m; in this case, classical MDS is guaranteed to recover an embedding that reflects the
pairwise distances exactly.

Recovering pairwise distances from an exact distance matrix is hardly an interesting problem.
Classical MDS can be applied without change, however, when D0 encodes any finite metric space.
While there are fewer guarantees in this case, the use of the m largest eigenvalues guarantees that
we have recovered the best rank-m approximation of G in the Frobenius norm CITE .

7.4.2 Landmark MDS

The assumption that MDS takes as input an n × n matrix of pairwise distances is somewhat
limiting: It requires O(n2) storage and implies we know all possible relationships between the
entities in our metric space. A small extension of MDS known as landmark MDS addresses this
issue, by assuming instead that we have distances from a few landmark points to all others in the
space we wish to embed CITE .

Before introducing landmarks, we derive a useful formula from MDS. Continuing in the nota-
tion of the previous section, recall G = X>X and that X =

√
ΛQ>. Since we chose only to keep the

top eigenvalues of G, we have Q>Q = Im×m (but possibly QQ> 6= In×n); furthermore, assuming
we remove the zero eigenvalue thanks to double-centering, we know Q>1 = 0.

7.4 multidimensional scaling 89

Plugging these identities into (7.3) shows

XP = −2Λ3/2Q> +
√

ΛQ>diag(QΛQ>)1>

= −2ΛX + Xdiag(QΛQ>)1>

=⇒ X = Λ−1X(P− diag(QΛQ>)1>).

Reading this expression column-by-column, if we take xi to be the embedding of point i we have

xi =
1
2

Λ−1X(pi − g), (7.5)

where g := diag(X>X) and pi is the i-th column of P, that is, the squared distances from xi to
each of the other points.

Landmark MDS simply extrapolates (7.5) to new points. Suppose we do MDS to embed exclu-
sively the landmark points to obtain X and the other matrices above. Then, given a new point we
wish to embed, we compute its squared distances to the landmarks in a vector p, and plug this
unseen p into (7.5). This landmark-based embedding has the property that if p = pi, then the
embedding agrees with xi, while reasonably extrapolating linearly to points nearby.

7.4.3 SMACOF and Variants

Classical MDS is reasonable if we expect our input distance matrix already to be approximately
Euclidean. When G does not admit a rank-m eigenfactorization exactly, however, it is unclear the
extent to which classical MDS recovers a reasonable embedding into Rm. To alleviate this issue,
other MDS algorithms approach the embedding problem variationally, defining the embedding as
the minimizer of some optimization problem that directly measures distortion. As an example
algorithm here we consider “scaling by majorizing a complicated function,” or SMACOF for short
CITE . This algorithm searches for a local optimum of a nonconvex problem to find an embedding,

directly reducing a measure of distortion from the input distance matrix D0.
In particular, SMACOF considers the following objective function:

f (X) := ∑
ij
(D0ij − ‖xi − xj‖2)

2. (7.6)

The function f (·) takes as input an embedding encoded in the columns of X and outputs a
least-squares objective measuring how well X conforms with the prescribed distances in D0; this
particular choice of objectives is sometimes known as the (squared) stress function CITE . Inside of
the square is a vector norm, making f (·) nonconvex.

Expanding the square in (7.6) yields three terms:

∑
ij

D2
0ij = const.

∑
ij
‖xi − xj‖2

2 = tr(XVX>), where V = 2nJ

−2 ∑
ij

D0ij‖xi − xj‖2 = −2 ∑
ij,xi 6=xj

D0ij

‖xi − xj‖2
· ‖xi − xj‖2

2

= −2tr(XB(X)X>), where Bij(X) :=

− D0ij
‖xi−xj‖2

if xi 6= xj and i 6= j

0 if xi = xj and i 6= j

−∑j 6=i Bij if i = j.

The fraction in the definition of B(X) replaces the norm ‖xi − xj‖2 with the squared norm ‖xi −
xj‖2

2, which is amenable to easier numerical methods for least-squares optimization.

90 embedding and parameterization

Define a function
τ(X, Z) := const. + tr(XVX>)− 2tr(XB(Z)Z>). (7.7)

By the expressions above, we have f (X) = τ(X, X). Furthermore, we can prove that τ(·, ·) provides
a majorizer for f :

Proposition 7.3. For matrices Z ∈ Rm×n, we have τ(X, X) ≤ τ(X, Z) with equality exactly when
X ∝ Z.

Proof. This proposition follows from the Cauchy–Schwarz inequality REF . In particular, a direct
consequence of this inequality is

(xi − xj) · (zi − zj) ≤ ‖xi − xj‖2‖zi − zj‖2,

with equality when xi − xj = zi − zj. Rearranging this inequality gives a lower bound for the
distance between two points:

‖xi − xj‖2 ≥ (xi − xj) ·
zi − zj

‖zi − zj‖2
.

Now, we expand part of the value of τ:

−2tr(XB(X)X>) = −2 ∑
ij

D0ij‖xi − xj‖2 by definition

≤ −2 ∑
ij

D0ij(xi − xj) ·
zi − zj

‖zi − zj‖2
by the inequality above

= −2 ∑
ij

D0ij

‖zi − zj‖2
(xi − xj) · (zi − zj) after rearranging

= −2tr(XB(Z)Z>).

Plugging into (7.7) shows τ(X, X) ≤ τ(X, Z). The equality case follows directly from equality for
Cauchy–Schwarz.

A function τ with the property in the statement of Propostion 7.3 enables a simple optimization
algorithm known as the Majorization-Minimization (MM) algorithm CITE :

Xk+1 ← arg min
X

τ(X, Xk). (7.8)

We can find an explicit expression for Xk+1 in terms of Xk since our majorizer leads to a least-
squares problem. In particular, to solve the minimization over X we write

0 = ∇Xτ(X, Xk) = 2XV − 2XkB(Xk).

Solving this expression for X = Xk+1 gives an explicit iteration for optimizing SMACOF:

Xk+1 ← 1
2n

XkB(Xk)

(
In×n −

11>

n

)
. (7.9)

Exercise 7.5. verifies that this is the solution to the linear system.
A key property verifies that our iteration above improves the SMACOF objective value in every

step:

Proposition 7.4. For Xk defined in (7.9), we have f (Xk+1) ≤ f (Xk) for all k.

7.5 intrinsic-to-extrinsic embedding 91

Proof. The proof is a standard one for MM algorithms. We have:

f (Xk+1) = τ(Xk+1, Xk+1) by (7.7)

≤ τ(Xk+1, Xk) by Proposition 7.3

≤ τ(Xk, Xk) by (7.8)

= f (Xk) by (7.7)

This proposition shows that the objective value for SMACOF converges under iteration (7.9). More
challenging proofs verify cases in which the iterates converge CITE , which is a more difficult
property to verify.

Example 7.4 (Shape-from-operator). JS: fill this in some day

Sammon CITE introduced a slightly modified version of the stress function

f̄ (X) := ∑
ij

(D0ij − ‖xi − xj‖2)
2

D0ij
. (7.10)

This objective function measures relative changes in distances, and hence is more sensitive to pre-
serving short distances than the stress function (7.6). Our MM algorithm above is easily extended
to this objective function, as explored in problem 7.7..

Example 7.5 (Comparing SMACOF to Sammon mapping). JS: add a plot

7.5 intrinsic-to-extrinsic embedding

JS: Add text distinguishing terms “intrinsic” and “extrinsic”

So far, the algorithms we have considered assume as input that we are given a metric space
as input, e.g. in the form of a matrix of pairwise distances. This is not always the most practical
way to express a metric space, since it take O(n2) storage and requires knowledge of a complete
set of relationships between the different elements in the space. As an alternative, a wide class
of algorithms takes as input a Euclidean embedding of a set of points x1, . . . , xn ∈ Rm, where
m is extremely large. The task is to embed these points into a lower-dimensional space, while
preserving their key relationships.

One possibility is that our data points are sampled from a submanifold of Rm whose dimensional-
ity is far less than m. In this case, we have a hope of embedding our data into a lower-dimensional
space. This hope is not simply optimistic but actually comes from a few theoretical results in mod-
ern differential topology. For instance, the Whitney embedding theorem states that we can embed
any smooth m-dimensional manifold into R2m CITE :

Theorem 7.1 (Whitney embedding theorem). Any smooth, real k-dimensional manifold maps smoothly
into R2k.

This theorem does not guarantee an isometry, just that we can embed the manifold without self-
intersections or singularities. The dimensionality 2k is a tight bound: k-dimensional real projective
space does not embed into R2k−1. If we care about obtaining an isometric map, a second famous
result comes to the rescue CITE :

Theorem 7.2 (Nash–Kuiper embedding theorem, simplified). Any k-dimensional Riemannian mani-
fold admits an isometric, differentiable embedding into R2k.

Submanifolds of Rm are a special case of Riemannian manifolds, covering the definitions we
introduced in § REF .

There are plenty of situations in which we observe manifold structures in data in practice. For
instance, consider the following examples:

92 embedding and parameterization

Example 7.6 (S1 in data). Suppose we collect a video sequence of a carousel moving in circles, as illustrated
in Figure REF . If each frame of the video sequence is an image of size r× c, then we can think of the frames
as data points in Rrc containing one grayscale value per pixel. This is an extremely high-dimensional
space! But thanks to the circular motion of the carousel, the data points lie roughly on a one-dimensional
submanifold of Rrc isomorphic to the circle S1. The embedding theorems above show that we can embed that
circle into R2 without any distortion of geodesic distance.

Example 7.7 (Protein folding). JS: Proteins fold with a fixed set of intrinsic degrees of freedom

The proofs of the theorems above are extremely involved and not well-suited to designing algo-
rithms that cope with noisy data, uncertain intrinsic dimensionality, and other confounding factors.
A set of algorithms, however, attempts to find embeddings of data given local relationships that
resemble the manifold structures needed for the theorems above to apply. These popular tech-
niques may not come with guarantees linking them to the theory above but can be effective tools
embedding in a way that reveals the intrinsic structure in data that may originally be embedded
in a high-dimensional space.

7.5.1 Isomap

The Isomap algorithm, introduced in CITE , attempts to find an embedding that realizes intrinsic
distance as extrinsic distance. That is, if we think of a submanifold M as a set of points equipped
with the geodesic distance metric dg : M×M→ R+, Isomap attempts to find a map φ : M→ Rp

from M into a subset of Rp so that Euclidean distances in the Rp embedding resemble geodesic
distances along M.

As illustrated in Figure REF , the task for Isomap is fairly rigid. In particular, if M is a k-
dimensional submanifold of Rm, the image φ(M) in Isomap is considered as a region in Rp

rather than as a k-dimensional submanifold of Rp. That is, we equip φ(M) with the Euclidean
metric rather than geodesic distances.

The Isomap algorithm, illustrated in Figure REF , is straightforward given the techniques we
have already derived:

1. As input, Isomap takes a set of points x1, . . . , xn ∈ Rm as well as a dimension p into which the
points should be embedded and an integer k.

2. A k-nearest neighbor graph is constructed on the xi’s, whose edge lengths are chosen to be
Euclidean distances in Rm.

3. We compute a pairwise distance matrix D ∈ Rn×n between all the vertices in the graph, e.g.
using n instances of Dijkstra’s algorithm on graphs outlined in §6.4.1 or using the (easily-
implemented) Floyd–Warshall all-pairs-shortest-path algorithm CITE . D is intended to approx-
imate pairwise geodesic distance between the xi’s.

4. We use classical MDS to embed D into Rp, as outlined in §7.4.1.

Note that D is subject to all the drawbacks of k-nearest neighbor distances for approximating
geodesics outlined in § REF ; given the approximate nature of Isomap, however, this is likely not
the largest source of error or distortion in the technique.

Figure REF shows an example of Isomap in action. JS: say some qualitative things The parameter k also
has a critical effect on the behavior of this algorithm: When k is too large, “short circuit” errors add
spurious edges to the graph that make the distances in D too small, while small k can disconnect
the graph.

The landmark MDS algorithm from §7.4.2 is directly relevant to a landmark-based variant of
Isomap CITE . In this version, we construct the same graph as in classical Isomap but only compute
distances from a few landmark points to the remainder of the dataset; we then employ landmark

7.5 intrinsic-to-extrinsic embedding 93

MDS instead of classical MDS. Shortest-path computation on a graph can be expensive to carry
out and store, making this variant valuable in practice.

7.5.2 Locally-Linear Embedding (LLE)

As mentioned in the previous section, Isomap is rigid in that it attempts to capture the distance
between every pair of points when embedding a pointset into Rp. As a point of contrast, the
locally-linear embedding (LLE) algorithm attempts to compute an embedding that only preserves
local structure.

Before providing technical details, Figure REF shows a classic example comparing Isomap to
LLE. Here, a punctured planar shape is unrolled to R2. From the perspective of geodesic distance,
the top and bottom of the hole are farther apart than they would be had that hole been filled; this
causes Isomap to pull apart the two sides of the puncture. LLE is less (but not negligibly) affected
by this incomplete data, treating the hole as a less significant feature.

The basic idea of LLE is illustrated in Figure REF : We express a point as a weighted average
of its neighbors, and then we find an embedding that preserves this weighted average structure.
These two steps are explained in detail below:

analysis step. As with the other embedding methods above, LLE takes as input a point set
x1, . . . , xn ∈ Rm. In the analysis step, our goal is to approximate how each point xi as a weighted
average of nearby points, giving some notion of a local neighborhood to each xi.

Concretely, the analysis step computes a matrix W ∈ Rn×n that satisfies a few criteria:

xi ≈ ∑j W j
i xj Barycentric approximation

Wi
i = 0 ∀i No self weight

∑j W j
i = 1 Weighted average

W j
i = 0 when ‖xi − xj‖2 � 0 Local

To fulfill the criteria above efficiently, the matrix W is computed one row at a time. For row i,
the collection of k nearest neighbors for xi in the point cloud is collected. For convenience we will
denote those neighbors n1, . . . , nk ∈ Rm with entries ω1, . . . , ωk in W; so, we will take W j

i = ω`

if xj = n`. We will set W j
i corresponding to points outside those k nearest neighbors to zero; this

achieves the locality property.
To determine the ω j’s, we solve the following problem

minω1,...,ωk

∥∥∥xi −∑j ω jnj

∥∥∥2

2

subject to ∑j ω j = 1.

Write the ω j’s in a column vector ω and take N to be the matrix whose columns are the nj’s. Then,
we can write the problem as

minω1,...,ωk ω>N>Nω− 2x>i Nω

subject to 1>ω = 1,

where 1 denotes the vector of all ones. Introducing a Lagrange multiplier λ for the constraint, we
can recover ω by solving the linear system:(

N>N 1

1> 0

)(
ω

λ

)
=

(
N>xi

1

)
. (7.11)

94 embedding and parameterization

embedding step. From the analysis step, we now have a matrix W so that X ≈ XW>, where
the rows of W are computed using the technique above and X ∈ Rm×n is the matrix whose
columns are the xi’s. The next step of LLE embeds the columns of X into Rp for some p < m by
preserving this relationship.

Suppose Y ∈ Rp×n is the matrix containing the embeddings of the xi’s. Then, we compute Y
using the following problem

minY ‖Y−YW>‖2
Fro

subject to YY> = Ip×p

Y1 = 0.

(7.12)

The objective here tries to preserve the relationship X ≈ XW> in the lower-dimensional embed-
ding encoded by Y. This relationship, however, is scale-independent: For example, taking Y = 0
would preserve it exactly! Hence, we add the constraint YY> = Ip×p to yield a nontrivial con-
straint. The second constraint removes non-uniqueness due to shifting the columns of Y by a
constant vector.

We can rewrite the objective function as follows:

‖Y−YW>‖2
Fro = ‖Y(In×n −W>)‖2

Fro

= tr(Y(In×n −W>)(In×n −W>)>Y>) by definition of the Frobenius norm

= tr(Y>YM) after defining M := (In×n −W)>(In×n −W)

Hence, we can write our problem in a different form:

minY tr(YMY>)

subject to YY> = Ip×p

Y1 = 0.

(7.13)

After applying symmetry of M and the “no self weight” condition, we find that the rows of Y
are exactly the p eigenvectors of M corresponding to the p smallest nonzero eigenvalues of M;
exercise 7.8. checks this in detail.

Hence, the final step of LLE is to compute eigenvectors of the matrix M, which comprise the
desired embedding. As discussed above, Figure REF shows LLE applied to a sample problem and
compares to Isomap.

7.5.3 Diffusion Maps

From a high level, the LLE algorithm uses as an embedding the eigenvectors of a matrix M
measuring the relationship between a point and its neighborhood. A number of techniques use a
similar approach, constructing matrices that measure affinities or differences between objects in a
metric space and using their eigenvectors as embeddings.

One key approach known as diffusion maps CITE embeds based on (generalized) eigenvectors
corresponding to eigenvalues of a kernel matrix

Kij := e−‖xi−xj‖2
2/ε.

Once again, K measures some notion of affinity between points, in this case via a Gaussian in
extrinsic distances. This easily-implemented method simply uses the eigenvectors of D−1K for the
embedding, where D is a diagonal matrix of row sums of KJS: check me.

We will revisit diffusion maps in § REF , once we have discussed the Laplacian and its role in the
heat equation, to see that it is a natural way to embed based on a Brownian motion interpretation
of distance.

7.6 euclidean to euclidean : pca and the johnson–lindenstrauss lemma 95

7.6 euclidean to euclidean : pca and the johnson–lindenstrauss lemma

JS: not covered in 6.838 beyond a slide or two, so will skip writing for now; use phrase “concentration of measure” in here somewhere,

dimensionality reduction

7.7 representation learning

JS: Nothing too interesting to say here, but basically all the objective functions above can be rolled into deep networks and other

learning pipelines

7.8 more exotic embeddings

JS: tree/snowflake embeddings? Bartal’s theorem? sketching? topological considerations? mapper algorithm? orbifolds?

7.9 t-sne , umap, and variants

JS: Relationship-based embedding

7.10 other problems involving metrics

We have covered a few animals in the huge zoo of potential embedding techniques. Each algorithm
has different theoretical properties, but largely they are straightforward to implement and try. As
with many topics in geometry, probably the easiest way to get a feel for these methods is simply
to give them a try: Choosing an effective embedding is as much an art as a science, and the best
choice largely depends on the application or end user.

Embedding is one of many possible problems involving metric spaces. We conclude here by
mentioning a few additional interesting directions, many of which involve noisy or incomplete
data typical in learning and statistical settings.

7.10.1 Metric Nearness

Embedding in some sense attempts to extract a complete set of relationship between elements of
a metric space: Once they are all placed into the same space, a distance can be measured between
any pair while satisfying axioms like the triangle inequality. But in doing so, we force the structure
of the embedding space onto our data, even if the data does not embed perfectly into that space.

Returning to Definition 7.1 suggests an alternative approach. Take D ∈ Rn×n
+ to be a matrix

of pairwise distances between elements of a metric space consisting of n elements. Then, for all
i, j, k ∈ {1, . . . , n} we have

Dij ≥ 0 Positivity

Dii = 0 Partial indiscernibility

Dij = Dji Symmetry

Dik ≤ Dij + Djk Triangle inequality.

(7.14)

Any matrix that satisfies these four criteria nearly defines a discrete metric space on n elements, the
only missing component being Dij 6= 0 if i 6= j—the reverse part of the indiscernibility property.

A key observation about (7.14) is that these conditions are convex in the entries of D. That is,
if we take D to be the set of matrices D ∈ Rn×n satisfying the expressions in (7.14), this set is
convex. This enables us to carry out optimization problems for metric matrices D ∈ D with global
optimality.

96 embedding and parameterization

As one example, the metric nearness problem proposed in CITE attempts to find the closest ap-
proximation D of a matrix D0 with the constraint that D satisfies the metric axioms (7.14):

min
D∈D
‖D− D0‖Fro. (7.15)

While any convex optimization procedure will suffice to solve this least-squares problem, the
algorithm derived in that paper and shown in Figure REF is particularly simple: Keep choosing
ijk triplets in the current estimate of D and repair them if they do not satisfy the triangle inequality.

7.10.2 Euclidean Matrix Completion

A related problem to metric nearness is Euclidean matrix completion, in which the distance matrix
D is assumed to encode pairwise distances specifically in a Euclidean space Rm rather than a
general metric space. In this case, we can leverage (7.3), developed in our discussion of classical
MDS, which shows that we can compute pairwise squared distances from a Gram matrix G.

This formula shows that any pairwise squared-distance matrix P can be computed directly
from the Gram matrix G of inner products. In fact, we can prove something stronger. Take any
semidefinite matrix G � 0 and apply (7.3) to compute P(G). Then, this matrix P(G) is actually
a Euclidean distance matrix. One way to show this is to apply Cholesky factorization to write
G = X>X for some matrix X; the columns of X are an embedding whose inner products are in G.

The set of semidefinite matrices {G ∈ Rn×n : G � 0} is convex and enforceable in standard
convex optimization algorithms, making G a reasonable proxy for computing pairwise Euclidean
distances. As an example, suppose D0 encodes noisy Euclidean distances between a sparse set
of pairs of points; we define the matrix H ∈ {0, 1}n×n so that Hij = 1 if D0ij is meaningful
and Hij = 0 if D0ij is missing. Then, CITE proposes completing and denoising D0 by solving the
following convex problem:

minG ‖H ◦ (P(G)− P0)‖2
Fro

subject to G � 0.
(7.16)

Here, P0 is the matrix whose entries are squares of the entries in D0, and ◦ denotes the Hadamard—
or entrywise—product, effectively removing entries in the objective term where D0ij is unknown.
The eigenvectors of G can be used to find an embedding into Rn of the data.

A related technique is semidefinite embedding, also known as maximum variance unfolding CITE . In
this setting, we are given some triplets (i, j, D0ij) specifying hard constraints on distances between
some pairs of points. We once again aim to compute a Gram matrix G, but this time our goal
is to maximize the variance of the embedding. In particular, suppose G implies an embedding
y1, . . . , yn ∈ Rm. The variance of this set is:

Var(Y) :=
1

2n ∑
ij
‖yi − yj‖2

2

=
1

2n ∑
ij
(‖yi‖2

2 + ‖yj‖2
2 − 2yi · yj) by expanding the square

= ∑
i
‖yi‖2

2 −
1
n

(
∑

i
yi

)
·
(

∑
j

yj

)
accounting for repeated terms

= ∑
i
‖yi‖2

2 if we assume ∑
i

yi = 0

= ∑
i

Gii for Gram matrix Gij := yi · yj

= tr(G).

7.10 other problems involving metrics 97

Hence, semidefinite embedding solves the following problem:

maxG tr(G)

subject to G � 0

Gii + Gjj − Gij − Gji = D2
0ij ∀(i, j, D0ij) triplets

G1 = 0.

(7.17)

The second constraint is equivalent to constraining the points to have 0 as a center of mass. Again
Cholesky factorization or eigenvalue decomposition can be used to obtain an embedding. This
is a semidefinite program, meaning the problem has a linear objective and constraints optimized
over the set of semidefinite matrices; interestingly, we have eliminated any explicit reference to
the original embedding variables yi in our formulation, enabling this more elegant way to pose
the problem.

Maximum variance unfolding has a curious geometric property due to the variance objective
function. We provide some intuition in Figure REF ; the theory of semidefinite programming fills in
details. Suppose we have a three-point space and constrain only two distances, effectively defining
a hinged structure about the shared vertex. If we maximize the variance, we three points unfold
to a line: A one-dimensional structure! Generically speaking, the rank of G computing using
this technique is often relatively low, providing a means of low-dimensional embedding of data
by discarding eigenvectors corresponding to zero eigenvalues. This idea is related to notions of
tensegrity in semidefinite programming CITE .

Example 7.8 (Maximum variance unfolding of a graph). JS: add knn to the mix; plot the eigenvalues; show we can

just keep the top few

7.10.3 Theoretical Challenges

A number of interesting theoretical challenges are worth considering in the space of embedding
problems. These span the breadth from computer science theory to the mathematical structure of
assorted spaces.

We have introduced a variety of embedding techniques, some of which are numerical in na-
ture. We have not, however, assessed the complexity or conditioning of the embedding problem,
reflected e.g. in the number of iterations needed for an embedding algorithm to converge and/or
the stability of the computed results. In some cases, these are fairly easy to assess: For instance,
classical MDS is an eigenvalue problem that can be carried out in polynomial time CITE , with
well-understood conditioning CITE . On the other hand, CITE shows that optimizing the following
L1 variant of the SMACOF objective function is NP-hard, even when the xi’s are in R1:

f (X) := ∑
ij
|D0ij − ‖xi − xj‖2|. (7.18)

In particular, minimizing this objective can be reduced to a variant of 3SAT. This shows that we
are unlikely to extract the global optimum to the embedding problem, although the techniques
we have introduced often work well in practice. Other embedding problems, e.g. checking if two
spaces are isometric, boil down to other computationally intractable problems like graph isomor-
phism.

Other challenges stem from choosing the appropriate embedding method, assorted parameters,
or even whether embedding is appropriate at all. The well-known theoretical work CITE examines
how to “test the manifold hypothesis,” i.e. to check whether data is sampled from a lower-
dimensional manifold to begin with. In practice, estimating the proper intrinsic dimensionality
of an embedding requires some experimentation and is far from an exact science.

JS: applications to add as examples to this chapter: algorithmic runtime, compression, visualization, sampling

98 embedding and parameterization

7.11 exercises

7.1. Show that the real numbers R is a metric space when equipped with the distance metric
d(s, t) := | log(y/x)|.

7.2. Show that a map φ with distortion (7.1) equal to 1 is an isometry.

7.3. JS: lemma 3.1 of

7.4. JS: some special case of Bourgain theorem

7.5. Verify equation 7.9.

7.6. JS: Sammon mapping instead of SMACOF

7.7. JS: MM algorithm for (7.10)

7.8. JS: Verify eigenvalue problem in for (7.13); maybe also LLE from pairwise distance

