
1I N T R O D U C T I O N

Geometry is unavoidable.
One of the earliest branches of mathematics, geometry naturally attracted the attention of early

artists, scientists, philosophers, and engineers seeking order in the world around them. It is hardly
a leap of faith to find value in geometric reasoning: Complex geometric figures abound in nearly
any environment. Organic and man-made figures alike are informed by their interaction with
space, and nearly any task in architecture, art, mechanics, or physics begins with reasoning about
shape.

Jumping forward several millennia, computational tools developed to engineer the Pyramids
and reason about Platonic solids no longer suffice. With the advent of 3D scanning, additive manu-
facturing, advanced medical devices, and high-resolution imaging, modern algorithms must cope
with complex curved and noisy shapes. Computational systems must gracefully store, manipu-
late, and find meaning in shapes composed of intertwined handles, singularities, and regions of
varying curvature. Notions of bending and stretching are intertwined with semantic meaning; the
folds of a brain’s gray matter, for example, are not only geometric features but carry functional
value derived from evolution and biological development. These challenges inspire advanced al-
gorithms in computer vision and digital geometry processing that assemble multimodal, noisy,
and conflicting signals about shape into a coherent model of the environment suitable for robotic
guidance, computer-aided design (CAD), custom manufacturing, prosthetic design, and a host of
other tasks.

Even more recently, the intuition we developed for low-dimensional shapes embedded in three-
dimensions has proven valuable for high-dimensional problems involving abstract clouds of data
points. Reasoning about distances, similarities, embedding, and structure makes perfect sense
when discussing types of data we do not typically associate with shape, from corpora of text
to flows of users through the links on a website. Some recent exploratory techniques are even
designed to identify low-dimensional manifold structure in data for which a simple geometric
explanation is not readily available.

Merging our understanding of these and other appearances of geometry in computation sug-
gests the necessity and broad application of geometric data processing, considered in two senses:

1. Geometric data´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Object

processing
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Action

: Algorithms for processing geometric data, and

2. Geometric´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Adjective

data processing
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Action

: Data processing using geometric techniques.

With these related but distinct applications in mind, here we aim to widen the scope of “geometric
data processing” from a specialized branch of statistics (see e.g., [12, 13]) to a broad field encapsu-
lating the mathematical theory, algorithms, and computational applications of shape processing
applied to abstract datasets and scans of physical objects alike. By combining theoretical underpin-
nings with algorithm development and detailed understanding of key applications across disci-
plines, we can develop geometric problem-solving methodologies with rigorous foundations and
the potential to be used across the sciences and humanities.

In these notes, we attempt to merge insight from various corners of the computational world into
a general and (at times) unified approach to “Shape Science.”1 Our focus is neither on algorithmic
complexity nor on theorem-proving, but rather we demonstrate how ideas from differential and

1 With apologies to my friend and colleague Prof. Amir Vaxman, who continues to try to “make ‘Shape Science’ happen.”
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Figure 1: The first printed edition of Euclid’s Elements (1482).
Image credit: Folger Shakespeare Library Digital Image Collection (INC E86)

discrete geometry form a powerful modeling toolbox. Even as computer science moves toward
data-driven rather than prescriptive techniques, the appearance and reappearance of common
geometric themes and techniques throughout past applications underscores the relevance of basic
skills in this discipline.

1.1 the mathematician’s toolkit

Although engineers continue their formal education in calculus and algebra into college, typically
their first and last encounter with geometry is in a single high school class focusing on techniques
pioneered by Euclid circa 300 BC. Euclid’s Elements no doubt establish fundamental ideas of proof
and logic, but from a modern geometric perspective they are lacking. A quick glance at a page
from the Elements (see Figure 1) reveals an issue: The shapes it considers are too simple! While a
compass and straightedge may suffice for measuring and constructing polygons and circles, the
reader is challenged to use the same equipment to extract equally accurate measurements from
coffee mugs, door handles, fingers, and toes.

Centuries of effort have gone into broadening geometric language and theory, providing the for-
malism needed to measure and compare objects of varying form, dimensionality, roughness, and
connectivity. Here, we briefly highlight just a few of the many branches of modern mathematics
we will employ in developing machinery for geometric data processing:

differential geometry. Shortly after calculus revolutionized the way we think about func-
tions, mathematicians began applying analogous techniques to analyzing shape. This reasonable
application of derivatives and integrals led to the development of differential geometry, which un-
derstands shape through the lens of infinitesimal calculations. Differential geometry will be the
primary tool we will use in the first part of our discussion, dedicated to local analysis of geometric
structure.

The basic object of interest in differential geometry is the manifold, a locally k-dimensional object.
For example, k = 1 defines a curve and k = 2 defines a surface. The earliest treatments of differen-
tial geometry required manifolds to be embedded in d-dimensional Euclidean space, where d ≥ k,
but later purely intrinsic versions were able to relax this assumption. By equipping manifolds with
means of computing angles, distances, and areas, e.g. using the restriction of Rd to an embedded
manifold, one can define notions of curvature, shortest paths between points (geodesic curves),
tangency, differentiation of functions, and deformation.
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Draw me!

Figure 2: Riemannian geometry is based on the observation that the length of a vector is determined by its
base point.

The main difficulty initially is to define all these objects without dependence on a choice of co-
ordinate system: Quantities in differential geometry “should” depend only on shape rather than
on the choice of a parameterization. Hence, a large part of introductory differential geometry in-
volves calculations to show that a given definition—perhaps for convenience given in terms of a
mapping from k-dimensional space into the manifold—is independent of the choice of mapping.
After these basic constructions, classical differential geometry derives elegant relationships be-
tween local and global geometry. For instance, the celebrated Gauss–Bonnet theorem shows that
integrating local measures of curvature gives a topological invariant, that is, a value dependent
only on the number of holes in a surface distinguishing e.g. donuts and coffee mugs from tennis
balls. Other threads of differential geometry characterize local behavior of vector fields, describe
what it means for a manifold to have bounded or constant curvature, and understand the effects
of perturbing an object’s shape on angles and areas, to name a few big ideas from this gargantuan
branch of mathematics.

differential equations . Differential equations specify relationships between derivatives of
a function; for example, Newton’s second law F = ma relates acceleration—a second derivative in
time—and force—typically a function of position, velocity, and time. Both ordinary (derivatives in
one variable) and partial (derivatives in multiple variables) differential equations arise as natural
tools for expressing and analyzing relationships between different quantities on manifolds and
other pieces of geometry.

Ordinary differential equations (ODEs) are used to describe parallel transport, the procedure of
dragging a vector along a manifold while maintaining tangency without spinning unnecessarily;
parallel transport on the plane involves simply displacing the base point of a vector, but on a
curved surface the vector must change to account for changing tangent planes from point to
point. Behavior of physical partial differential equations (PDEs) like the heat equation qualitatively
reflects the geometry of a shape; a metal plate, for instance, conducts heat differently than a metal
sphere. Finally, geometric flows are PDEs that modify geometry over time; a famous example is
mean curvature flow, which performs gradient descent on surface area to produce minimal surfaces
like soap films.

riemannian geometry. Arguably a branch of differential geometry, but one worth calling
out independently for its immense contributions to the geometry world, Riemannian geometry is
a model that divorces shape from topology, or connectivity. As a motivating example, consider a
map of the world rolled flat onto a table. The map is sufficient to understand which land masses
are connected to which: A path drawn in pencil along the map can be realized as a path on the
surface of the earth. On the other hand, we know instinctively that the geometry of the map as a
sheet of paper is meaningless: Distances between points on the paper measured in inches are not
true distances along the surface of the earth.

Bernhard Riemann’s model of geometry considers Riemannian manifolds, which couple topolog-
ical spaces (e.g. the sheet of paper with a map drawn on it) with a means of computing lengths
and angles on the true geometry (e.g. the longitude/latitude lines). The latter is encapsulated as
an inner (dot) product function per point on the map, which can vary depending on where you
are. As illustrated in Figure 2, if you draw a one-inch vector on the map based in South America,
the length of that vector interpreted as a vector on the surface of the earth would be different from
the length of the same one-inch vector based in Antarctica, which is usually more stretched out
on a planar map of the earth.
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Theorems in differential geometry take elegant form in Riemannian language, and a general-
ization to four-dimensional “pseudo-Riemannian manifolds” forms the basis for Einstein’s theory
of general relativity. In the computational context, we will be less concerned with physics and
more with how Riemannian formalism broadens the scope of ideas of curvature and vector fields
to higher-dimensional manifolds relevant to data analysis. We will minimize our use of daunt-
ing mathematical notation appearing in the Riemannian world largely due to Albert Einstein;
application-oriented computer scientists are understandably scared away thanks to expressions
like the following for the (extremely practical) Laplace–Beltrami operator:

∆ f =
1√
|g|

∂i

(√
|g|gij∂j f

)
.

The geometric intuition for operators like ∆ is often quite simple, however, despite the unfamiliar
language.

metric geometry. Manifolds are relatively “strong” geometric structures, in the sense that
the requirements on a space that lead it to be an embedded or Riemannian manifold are relatively
strong. In contrast, some models of geometry are weaker, allowing us to apply intuition about
shape to a much broader class of problems.

As one particularly general case, metric geometry involves the geometry of metric spaces, or
spaces that admit metric functions. A metric d(x, y) is distinguished by just a few properties:

d(x, y) ≥ 0 (nonnegativity)

d(x, y) = 0 ⇐⇒ x = y (Leibniz’s Law)

d(x, y) = d(y, x) (symmetry)

d(x, y) ≤ d(x, y) + d(y, z) (triangle inequality).
These four properties axiomatize what it means to be a “distance.” For example, the path from
one point to another has the same length as the path in the reverse direction (symmetry), and the
distance directly from one point to another is never more than the length of a path that stops at
some intermediate location (triangle inequality).

Many spaces admit metric structure even if they are not manifolds. A critical example in the
computational world is a graph or network, described as a collection of nodes connected by edges.
On a graph, a distance metric is obtained by computing shortest-paths along edges. Even though
objects like graphs may not admit derivatives and tangent spaces, geometric reasoning can go a
long way toward designing algorithms that process metric-structured data efficiently and with
theoretical justification.

optimal transport. While the luckiest data scientist may find that a cloud of data points
truly admits differentiable structure, most datasets are noisy and incomplete. To address this is-
sue, recent techniques have explored the feasibility of extending geometric data processing to the
case where features are known with uncertainty. One promising theoretical tool in this regime
is optimal transport, which lifts distances between points to distances between probability distri-
butions. This way, even if we do not know the exact location of a feature point on a surface but
just a fuzzy idea of where it might be, we can still attempt to carry out computations downstream
such as computing shortest paths. Transport has also proven valuable in machine learning, provid-
ing a geometrically-motivated alternative to constructions in information theory used to measure
similarity of probability distributions, suitable for parameter estimation and inference.

1.2 computational themes

Existence and uniqueness proofs hardly suffice for practical purposes. As computer scientists
and engineers working with geometric data, we must take relevant models and ideas from the
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Figure 3: Many possible ways to represent a shape.

theoretical literature and make them work numerically. This task presents new challenges at the
interface of abstraction and application. Here we mention a few of the many questions that must
be answered when designing a modern geometric algorithm.

what is shape? A central design decision in any geometric system is the choice of representa-
tion. There are many options, illustrated in Figure 3:

• The simplest geometric representation is a point cloud, or collection of points {x1, . . . , xk} em-
bedded in Euclidean space Rn. Point clouds are the easiest geometric representations to obtain
and store but are unstructured; they do not, for example, indicate which points compose a local
neighborhood around a center point.

• Meshes, composed of points connected into networks of basic elements like triangles and tetra-
hedra, give connectivity information not present in a point cloud. The complexity of a mesh
depends on the dimensionality of the data, however, and it is not clear how to assemble a mesh
from a point cloud if it is not given.

• Computer aided design (CAD) benefits from geometric representations of surfaces and volumes
as smooth parameterized functions, e.g. polynomials or rational functions. This representation al-
lows for exact computation of differential quantities like curvature, but the designer is restricted
to a smaller space of possible shapes. It is an open problem to stably assemble a minimal col-
lection of parameterized patches approximating a point cloud or mesh.

• Implicit methods represent a manifold as the set {x ∈ Rn : f (x) = 0} for some function f (x) :
Rn → R. The function f (x) can be stored in any number of ways, from samples on a grid to a
sum of basis functions like Gaussians. Unlike meshed representations, implicit representations
can transition elegantly between different topologies, making them a key representation in the
fluid simulation world. On the other hand, storing values of f (x) far away from the zero level
set is wasteful, making it difficult to achieve a high-resolution expression of geometry.

• Graphs equipped with edge lengths are a first example of geometry that is not embedded in
Rn but can be suitable computationally for understanding the geometry of road networks and
other thin structures.

• Metric spaces can be discretized in the most general as symmetric matrices of pairwise distances be-
tween elements of the metric space. This representation is generic but takes a quadratic amount
of space and does not admit calculus and other fine-grained computation.

The decision of which geometric representation make sense for a given problem has huge bearing
on which operations are and are not possible or efficient, and a poor choice of representation is
difficult to reverse in late stages of an engineering project.

Although many applications dictate the required representation, in others areas this truly is a
degree of freedom. An example is machine learning from shape, e.g. learning to map from a 3D
model to a label or segmentation. There exists little consensus on the most effective shape repre-
sentation for these problems, and the choice of mesh vs. point cloud vs. implicit vs. other options
has strong bearing on performance, availability of training data, and ease of training/evaluation.

discrete or discretized? Quantities in differential geometry such as curvature are defined
in terms of derivatives along a manifold. But, consider the triangle mesh in Figure REF . How do
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Figure 4: Zooming out: From geometry “in the small” to geometry “in the large.”

we speak about its geometry? Is it piecewise flat with infinite curvature at the vertices? Or, do we
view it as a sampling of a smooth surface?

Considerable discussion in geometric computing revolves around the theme of discretized vs.
discrete quantities. The push-pull between these two approaches distinguishes different techniques
applied to the same problem or data:

• Discretized models apply numerical analysis to approximate differential quantities on a sampled
piece of geometry. Mathematical discussion about discretized geometry revolves around the con-
vergence of an approximation as the piece of geometry is sampled more and more densely in the
computational representation, as in Figure REF . Convergence theorems ensure that algorithmic
approximations are representative of a smooth model, but they often do not provide as much
insight on behavior in the finite-data regime. For example, a discretization of curvature on the
mesh in Figure REF might fit a smooth quadratic patch to a neighborhood of each vertex and
use the curvature of that patch as an approximation to the curvature of the surface at the vertex.

• Discrete models deal with geometry as it exists before taking the limit of refinement. These often
redefine notions from differential geometry to be compatible with finitely-sampled models even
if they are sampled coarsely. Discrete measures of curvature on the mesh in Figure REF might
be defined directly in terms of interior angles and edge lengths of the triangles rather than
requiring fitting smooth surfaces to the data locally. A focus of discrete differential geometry
(DDG) is on structure preservation, the idea that combinatorial analogs of theorems about smooth
differential geometry sometimes can be proved exactly in the discrete case, before taking the
limit of refinement. Certain “no free lunch” theorems, however, show that you cannot “have
it all” CITE : Preserving one property exactly may force another to be violated under certain
computational models CITE .

We will illustrate differences between discrete and discretized differential geometry starting with
our treatment of curves in Chapter 3.

how fast? Algorithms for computer graphics must contend with a “magic number:” 29.97

frames per second. This is the frame rate of video for color televisions and monitors; algorithms
that generate output slower than this bound will visibly lag. Software in medical imaging has a
different trade-off, since it might be acceptable to forego efficiency for more accurate diagnosis;
but at the same time, if a medical image analysis algorithm takes too long, a doctor’s appointment
may end, making it difficult to bring the patient back for a second scan if the data is too noisy to
process.

The trade-off between accuracy and efficiency is well-known to computer scientists. It is not hard
to approach asymptotic complexity problems in the geometric domain; simple meshes of two-
dimensional shapes reach thousands to millions of vertices and simplices. Implementation and
modeling options for controlling runtime include the density of the geometric representation—
several adaptive algorithms attempt to resample geometric domains to use fewer points while
capturing the same features—and complexity of the model. In the end, geometric algorithms
range from sparse matrix inversion, to discrete geometry computations like meshing and finding
Voronoi cells, to solving large-scale optimization problems with one variable per sample point;
each incurs a different cost in terms of number of iteration and complexity of a single step.
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1.3 our approach

As our discussion revolves around shape, it is only fitting to organize this course using a geometric
structure: scale. Our approach is illustrated pictorially in Figure 4.

After some preliminaries, we begin our discussion at the micro scale, asking what we can learn
about a shape by holding a magnifying glass up to a single point. We will rediscover a theme
well-known to early differential geometers, that an ant walking along a surface can sense certain
geometric features simply by remembering where it has been and how far it has walked. This
intrinsic perspective can be paired with additional extrinsic data, which characterizes how a piece
of geometry interacts with the space around it; that is, we give our ant the ability to look up
from the ground and observe the nearby horizon. Most of our discussion here will be in the two-
dimensional case of surfaces embedded in 3D space, the most common appearance of geometry
in computer vision and graphics.

Pulling our camera out slightly, we consider relationships between two or more points on a
piece of geometry through use of distances. Spaces in which we can compute distances between
points are known as metric spaces, which encapsulate not only curved surfaces but also many
other weaker geometric objects that may not even be embedded in Euclidean space. This notion
not only provides an alternative abstraction of what it means to be a shape, but also leads to a
fundamental inverse problem: Which geometric spaces can be embedded into one another? For
example, clearly a one-dimensional line can be embedded many ways into two-dimensional space,
but the two-dimensional plane cannot be squeezed onto a line without inadvertently gluing points
together. The theory and practice of embedding will suggest applications in texture mapping for
computer graphics as well as principal component analysis (PCA) and multi-dimensional scaling
(MDS) in statistics.

We take a slight detour to consider an intersection of algebra and geometry provided by Lie
groups and representation theory. In Lie groups and Lie algebras, local geometric structure not
only defines shape but also symmetries and relationships. For example, the group of planar rota-
tions SO(2) is parameterized by the set of angles 0◦ − 360◦, which inherits the geometry of the
unit circle S1. As with many topics covered here, we will only highlight a few interesting and
potentially useful computational applications of Lie groups and algebras, for which a thorough
treatment would require an entire textbook. Even so, we will derive some useful models and algo-
rithms appearing in robotics and microscopy, for which careful treatment and understanding of
Lie groups leads to theoretically well-justified algorithms for cleaning up data with extremely low
signal-to-noise ratios.

Next, we zoom out to see a whole shape instead of just a few isolated points. In particular, we
develop a notion of calculus on a curved geometric figure, including vector fields, rates of change,
integration by parts, and other techniques familiar from college mathematics. While we typically
think of the basic operators from calculus—e.g. “div, grad, curl, and all that” [16]—as differential
in nature, inverting these operators by solving partial differential equations (PDEs) gives us a
global view of geometry inspired by physical intuition; we find that the geometry of a shape deter-
mines how it conducts heat and vibrates. Indeed, the reverse direction of realizing a shape from
its physical properties suggests a famous problem in modern geometry with bearing on shape
retrieval algorithms: Can you hear the shape of a drum? [11] While we will see (spoiler alert!) that
there exist differently-shaped drums that sound the same, we will also use vibration modes and re-
lated quantities computable from a single powerful operator—the Laplacian—to derive algorithms
in shape comparison and semisupervised machine learning.

Continuing to use ideas from calculus to characterize global geometry, we will study the math-
ematics of vector fields and flows, a basic tool in differential geometry needed to understand
signals as they change and flow along a geometric domain. We will motivate some ideas from
Cartan’s exterior calculus, used to generalize basic vector field constructions to higher dimensions.
This formalism is readily adapted to triangulated surfaces and other discrete structures through
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discrete exterior calculus (DEC), which translates exterior calculus operators to sparse matrices
that remarkably preserve topological structures from the smooth case, applied with success to 3D
surface editing and meshing problems.

We wrap up our discussion of calculus on manifolds with two applications. First, we apply
the differential operators we have developed to the shape itself, modeling geometric flows that
can smooth out geometries and eliminate or form singularities. We also take a brief detour to
explore computational applications of optimal transport, a theory linking probability to geometry
that recently has gained traction as a modeling tool for posing problems in both shape matching
and high-dimensional probabilistic reasoning.

Discussion of optimal transport also transitions our perspective to include more than one shape
at a time. As an additional, we consider the task of segmenting a geometric object into mean-
ingful connected pieces, with application to image/shape segmentation as well as unsupervised
clustering of data points embedded in a geometric space. Afterward, our main focus in geomet-
ric comparison is on correspondence, in which we aim to extract a smooth, low-distortion, and
semantically-meaningful mapping from one geometric space into another. Basic machinery for
this task will apply to registration of point clouds from a 3D scanner, to alignment of medical
images and other models to transfer labels or deformations, to abstract transfer learning algo-
rithms designed to cope with distributional differences between training and test data. We will
consider three instances of correspondence: rigid alignment, in which shapes are rotated and trans-
lated into the same coordinate system; nonrigid alignment, in which the shapes can also be bent
and/or stretched to align; and finally intrinsic correspondence, in which a mapping φ : M → N
from space M to a space N is extracted without explicitly warping one onto the other.

We conclude with a panoramic view of geometry, jointly considering all members of large
shape collections or databases. Our discussion begins with a decidedly theoretical—and some-
what philosophical—question: Can we put a geometry on the set of shapes? That is, does the
“space of spaces” [19] itself have geometric structure? Although this infinite-dimensional question
sounds abstract, it leads to means of measuring distances between shapes, helping sort out the
progression of brain surfaces through the course of a neurodegenerative disease, as well as means
of computing a “shortest path” from one shape to another, providing smooth in-betweening an-
imations between poses of a character designed by an artist. Our remaining discussion is more
concrete, examining how a collection of shapes can be put into consistent correspondence, how
machine learning tools can be applied to unstructured shape data, and finally how some recent
techniques exploring how to endow a computer with the creative ability to generate new shapes
given representative samples from a collection.

1.4 what is not covered

In a one- to two-semester course, it is impossible to shed light on every detail of theoretical or
applied geometry. These notes are by no means comprehensive but rather are intended as an
introduction to geometric reasoning in a computational context, including informal highlighting
of unexplored frontiers in this active branch of research.

Here we quickly note the limits of our discussion as a disclaimer to readers seeking a particular
approach or discussion of a particular topic:

• While we attempt to provide self-contained discussion of relevant mathematics, this text should
not be considered a comprehensive introduction to the theory of differential geometry; we refer
the reader to classic texts such as CITE for more careful discussion. In an effort to provide
intuition about a broad mathematical toolset, many theorems from differential geometry will
be quoted and motivated informally rather than proved in generality.

• Similarly, while we do explore constructions of discrete notions of curvature, calculus on man-
ifolds, and related topics, we take a pragmatic approach to shape analysis that includes both
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discrete and discretized geometry in parallel. For detailed discussion of discrete differential geom-
etry (DDG), a mathematical theory that attempts to define a self-contained theory of differential
geometry on simplicial complexes, see CITE .

• We consider applications of geometric data in 3D geometry processing, computer graphics,
machine learning, medical imaging, and other domains. While the core challenges faced in
these disciplines are often geometric, equally important are the many applied developments
that make geometric tools compatible with the particularities of these disciplines. For detailed
discussion of specific applications, see e.g. CITE .

It goes without saying that any text is largely a reflection of the biases, interests, and knowledge
of the author. The author here offers his sincere apologies and a Venti-sized beverage to any
colleagues who feel their work has been omitted or discussed irresponsibly herein.


