Linear and Variational Problems

Justin Solomon

6.838: Shape Analysis Spring 2021

Motivation

Extremely debatable perspective!

Part I:

Linear algebra \subseteq **Geometry**

"Geometry of flat spaces"

Part II:

Geometry \subseteq **Optimization**

Quick intro to variational calculus

Motivation

Part I:

Linear algebra \subseteq **Geometry**

"Geometry of flat spaces"

Review and Notation

(Column) vector:
$$\mathbf{x} \in \mathbb{R}^n$$

Matrix: $A \in \mathbb{R}^{k \times \ell}$
Transpose: $\mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}, A^{\top} \in \mathbb{R}^{\ell \times k}$

Useful shorthand:Dot product:
$$\mathbf{x}^{\top} \mathbf{y}$$
Quadratic form: $\mathbf{x}^{\top} A \mathbf{y}$

More Notation

$$\mathbf{v}^{"} = \left(\begin{array}{c} v^{1} \\ \vdots \\ v^{n} \end{array} \right)$$

Standard basis: $\{\mathbf{e}_{k}\}_{k=1}^{n}$
 $\implies \mathbf{v} = \sum_{k} v^{k} \mathbf{e}_{k}$

Two Roles for Matrices

$$Linear operator (map):$$

$$L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}]$$

$$L[c\mathbf{x}] = cL[\mathbf{x}]$$

$$L[\mathbf{x}] = A\mathbf{x}$$
Cuadratic form (dot product):
$$g(\mathbf{u}, \mathbf{v}) = g(\mathbf{v}, \mathbf{u})$$

$$g(a\mathbf{u}, \mathbf{v}) = ag(\mathbf{u}, \mathbf{v})$$

$$g(\mathbf{u} + \mathbf{v}, \mathbf{w}) = g(\mathbf{u}, \mathbf{w}) + g(\mathbf{v}, \mathbf{w})$$

$$g(\mathbf{u}, \mathbf{u}) \ge 0$$

$$g(\mathbf{u}, \mathbf{u}) \ge 0$$

$$g(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\top} B\mathbf{v}$$

$$L[\mathbf{x} + \mathbf{y}] = L[\mathbf{x}] + L[\mathbf{y}]$$
$$L[c\mathbf{x}] = cL[\mathbf{x}]$$
$$L[\mathbf{x}] = A\mathbf{x}$$

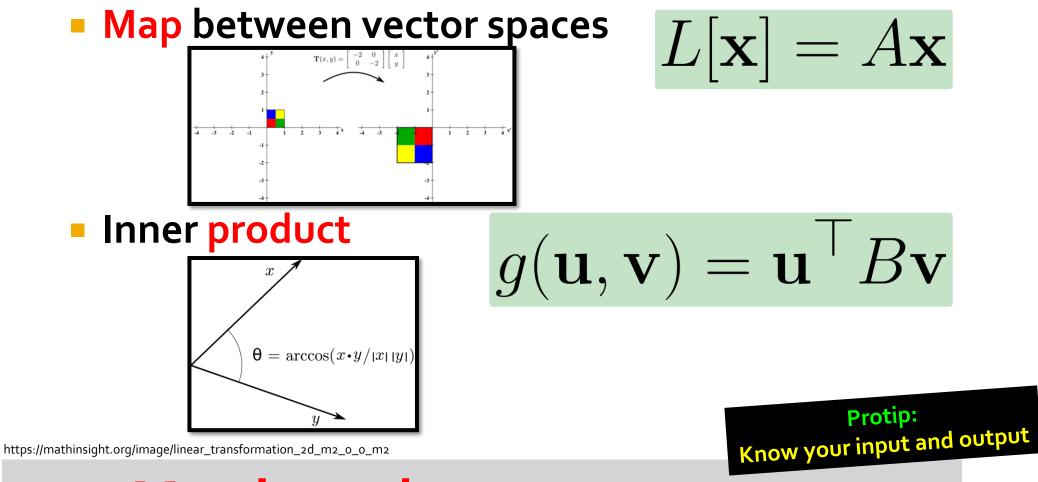
$$g(\mathbf{u}, \mathbf{v}) = g(\mathbf{v}, \mathbf{u})$$

$$g(a\mathbf{u}, \mathbf{v}) = ag(\mathbf{u}, \mathbf{v})$$

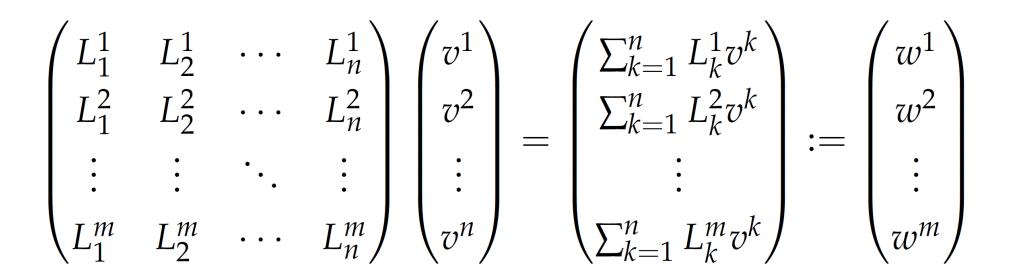
$$g(\mathbf{u} + \mathbf{v}, \mathbf{w}) = g(\mathbf{u}, \mathbf{w}) + g(\mathbf{v}, \mathbf{w})$$

$$g(\mathbf{u}, \mathbf{u}) \ge 0$$

$$g(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\top} B \mathbf{v}$$

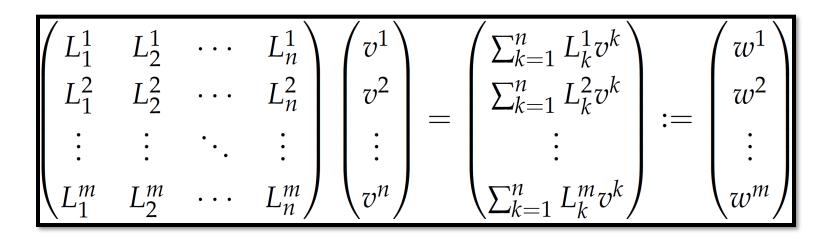

Einstein Notation

$$\mathbf{v} = v^k \mathbf{e}_k$$


Sum repeated upper/lower indices

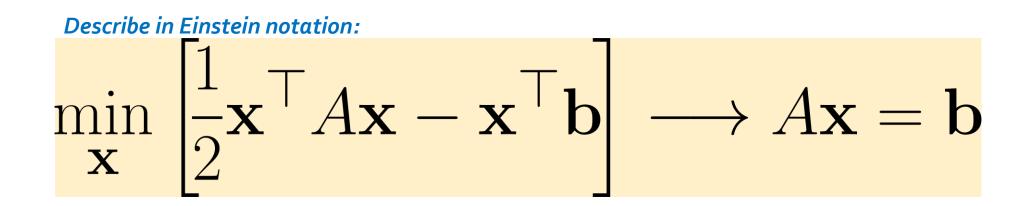
Same Data Structure, Two Uses

Matrices obscure geometry

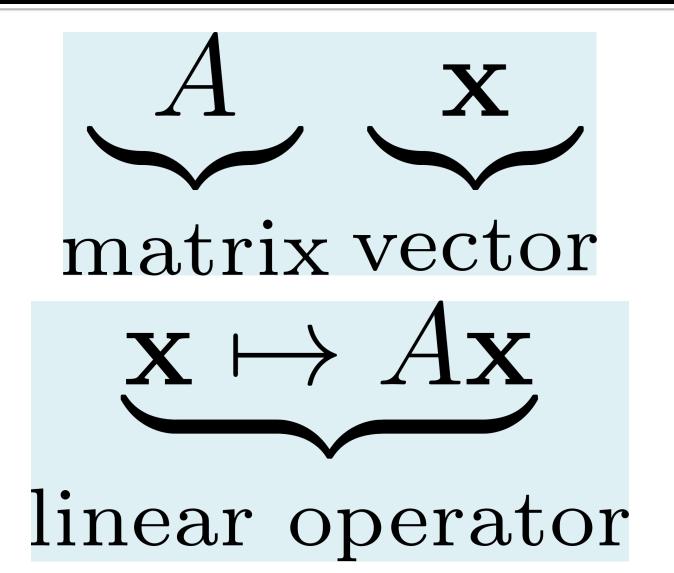

Linear Map

Quadratic Form

$$g(\mathbf{u}, \mathbf{v}) = g(u^{k} \mathbf{e}_{k}, v^{\ell} \mathbf{e}_{\ell})$$
$$= u^{k} v^{\ell} g(\mathbf{e}_{k}, \mathbf{e}_{\ell})$$
$$= u^{k} v^{\ell} g_{k\ell}$$


Typechecking

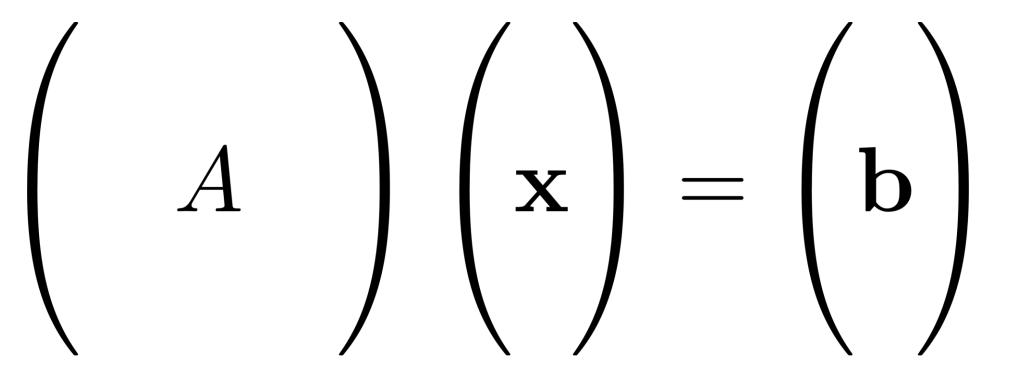
$$\begin{split} g(\mathbf{u},\mathbf{v}) &= g(u^k \mathbf{e}_k, v^\ell \mathbf{e}_\ell) \\ &= u^k v^\ell g(\mathbf{e}_k, \mathbf{e}_\ell) \\ &= u^k v^\ell g_{k\ell} \end{split}$$


Upper/lower indices matter

To Ponder At Home

What's up with A?

New Terminology



Abstract Example: Linear Algebra

 $C^{\infty}(\mathbb{R})$ $\mathcal{L}[f] := -d^2 f/dx^2$

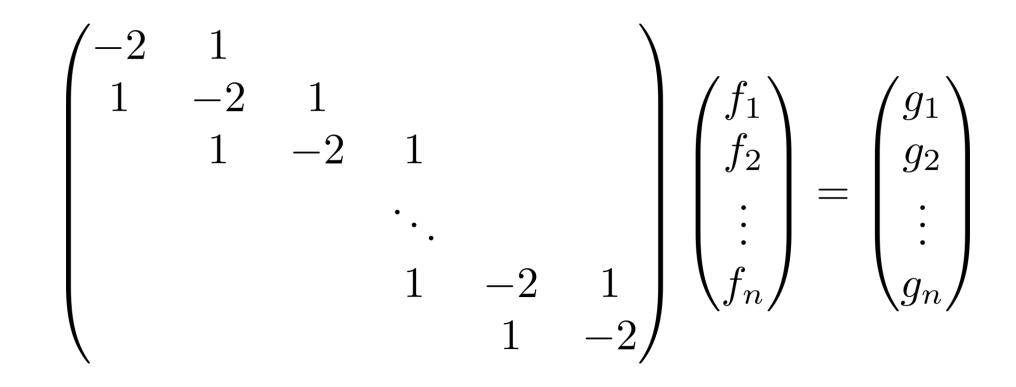
Eigenvectors? ["Eigenfunctions!"]

Simple "inverse problem"

Common Strategies

Gaussian elimination

- O(n³) time to solve Ax=b or to invert
- **But:** Inversion is unstable and slower!
- Never ever compute A⁻¹ if you can avoid it.


Interesting Perspective

								-		×		
[1201.6035] How Accurate × +												
(all https://arxiv.org/abs/1201.603	5	C	Q Search		☆	Ê	+ 1		9	≡		
Cornell University Library					We	gratefi		ie Simo	e suppo ons Fou ber inst	ndation		
arXiv.org > cs > arXiv:1201.6035	Search or Article ID inside arXiv	/ All	papers 🗸 🔍	Broaden you	ır sea	arch u	sing Ser	nantic	Schola	r Q		
<	(<u>Help Advanced search</u>)											
Computer Science > Numerical A	nalysis					De		- d -				
How Accurate is inv(A)*b? Alex Druinsky, Sivan Toledo							 Download: PDF Other formats (license) 					
(Submitted on 29 Jan 2012)							Current browse context: cs.NA < prev next > new recent 1201					
Several widely-used textbooks lead the reader to believe that solving a linear system of equations Ax = b by multiplying the vector b by a computed inverse inv(A) is inaccurate. Virtually all other textbooks on numerical analysis and numerical linear algebra advise against using computed inverses without stating whether this is accurate or not. In fact, under reasonable assumptions on how the inverse is computed, x = inv(A)*b is as accurate as the solution computed by the best backward-stable solvers. This fact is not new, but obviously obscure. We review the literature on the accuracy of this computation and present a self-contained numerical analysis of it.												
							Change to browse by:					
							cs math math.NA					
Subjects: Numerical Analysis (cs.NA); Numerical Analysis (math.NA) Cite as: arXiv:1201.6035 [cs.NA]								NASA ADS				
(or arXiv:1201.6035v1 [cs.NA] for this version)							1 blog link (what is this?)					
Submission history							DBLP - CS Bibliography listing bibtex					
From: Alex Druinsky [view email]							Alex Druinsky					
[v1] Sun, 29 Jan 2012 12:55:30 GMT (20kb,D)							Sivan Toledo					
Which authors of this paper are endorsers? Disable MathJax (What is MathJax?)						Bookmark (what is this?) ■ ぷ ☎ ■ ☆ ☆ 🚟						

Link back to: arXiv, form interface, contact.

Example of a Structured Problem

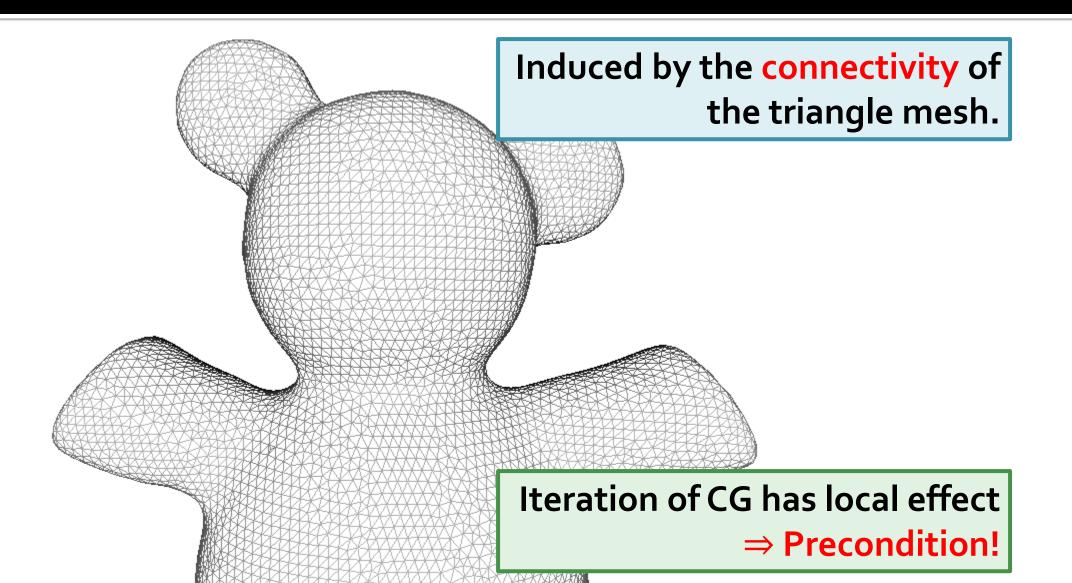
$$\frac{d^2f}{dx^2} = g, f(0) = f(1) = 0$$

Linear Solver Considerations

Never construct A⁻¹ explicitly (if you can avoid it)

Added structure helps

<u>Sparsity</u>, symmetry, positive definiteness, bandedness


$inv(A)*b \ll (A'*A) \setminus (A'*b) \ll A \setminus b$

Two Classes of Solvers

Direct (explicit matrix)

- Dense: Gaussian elimination/LU, QR for least-squares
- Sparse: Reordering (SuiteSparse, Eigen)
- Iterative (apply matrix repeatedly)
 - Positive definite: Conjugate gradients
 - Symmetric: MINRES, GMRES
 - Generic: LSQR

Very Common: Sparsity

No need to implement a linear solver

If a matrix is sparse, your code should store it as a sparse matrix!

👶 Sparse Arrays · The Julia Languag 🗙 🕂			– 🗆 ×						
← → C	/v0.7.0/stdlib/SparseArrays/	\$	a 🗅 🖌 🥵 :						
julia	» Standard Library » Sparse Arrays	C Edit on Git	itHub						
	Sparse Arrays								
Search docs	Julia has support for sparse vectors and sparse matrices in the Span		sare						
Home	arrays that contain enough zeros that storing them in a special data execution time, compared to dense arrays.	📣 Sparse Matrices - MATLAB & Sim 🗙 🕂	+	- 🗆 X					
Manual		← → C 🔒 https://www.mathwo	orks.com/help/matlab/sparse-matrices.html	☆ 💩 🙆 🧐 🗄					
Getting Started	Commence d Street Column (CSC) Street N	Contact Us How to Buy Justin							
Variables	Compressed Sparse Column (CSC) Sparse M	MathWorks® Products	Solutions Academia Support Community Events						
Integers and Floating-Point	In Julia, sparse matrices are stored in the Compressed Sparse Colu		amples Functions	Search R2018b Documentation Documentation Q					
Numbers	the type SparseMatrixCSC {Tv, Ti}, where Tv is the type of the st storing column pointers and row indices. The internal representation			📮 Trial Software 🛛 📮 Product Updates 🛚 🚯 Translate This Page					
Mathematical Operations and Elementary Functions	storing column pointers and row indices. The internal representation	« Documentation Home	Sparse Matrices	R2018b					
Complex and Rational Numbers	<pre>struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSpa m::Int</pre>		Elementary sparse matrices, reordering algorithms, iterative methods, sparse linear algebra Sparse matrices provide efficient storage of double or logical data that has a large percentage of zeros. While full (or dense) matrices store every single element in						
Strings	colptr::Vector{Ti} # Column i is in colptr[:	Elementary Math		ts and their row indices. For this reason, using sparse matrices can significantly reduce the					

Motivation

Part I:

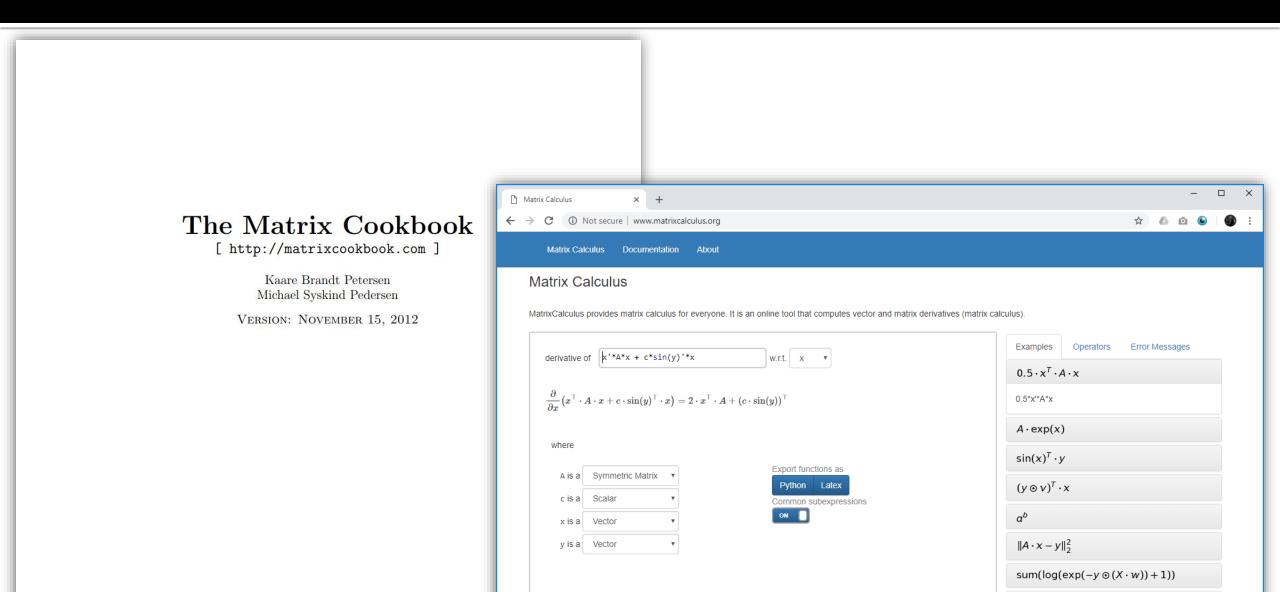
Linear algebra \subseteq **Geometry**

"Geometry of flat spaces"

Part II:

Geometry \subseteq **Optimization**

Quick intro to variational calculus


Motivation

Part II:

Geometry \subseteq **Optimization**

Quick intro to variational calculus

Aside: Matrix Calculus

Optimization Terminology

$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{f(\mathbf{x})}{\operatorname{s.t.} g(\mathbf{x})} = 0$ $h(\mathbf{x}) \ge 0$

Objective ("Energy Function")

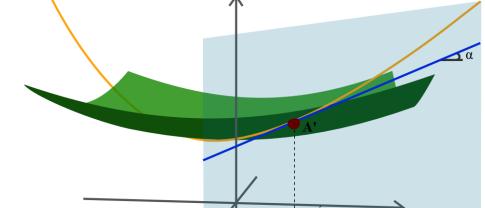
Optimization Terminology

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t.} \ g(\mathbf{x}) = 0 \\ h(\mathbf{x}) \ge 0$$

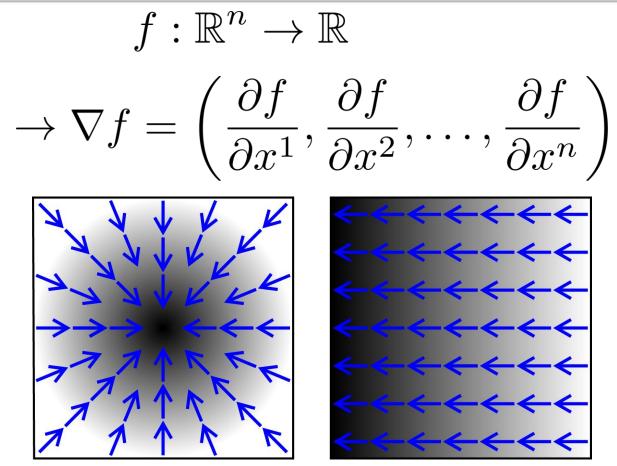
Equality Constraints

Optimization Terminology

$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t. } g(\mathbf{x}) = 0 \\ h(\mathbf{x}) \ge 0$

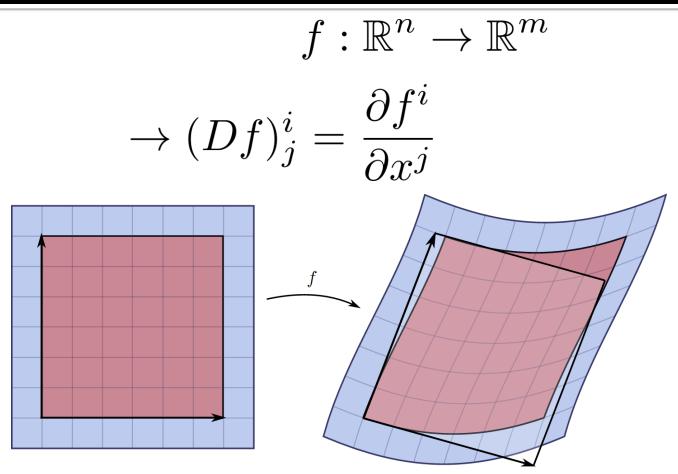

Inequality Constraints

Differential


$$df_{\mathbf{x}_0}(\mathbf{v}) := \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{v}) - f(\mathbf{x}_0)}{h}$$

Proposition. df_{x_0} is a linear operator.

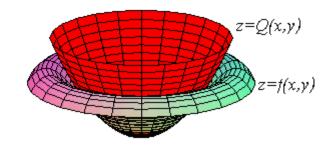
$$df_{\mathbf{x}_0}(\mathbf{v}) = \nabla f(\mathbf{x}_0) \cdot \mathbf{v}$$


Notions from Calculus

https://en.wikipedia.org/?title=Gradient

Gradient

Notions from Calculus

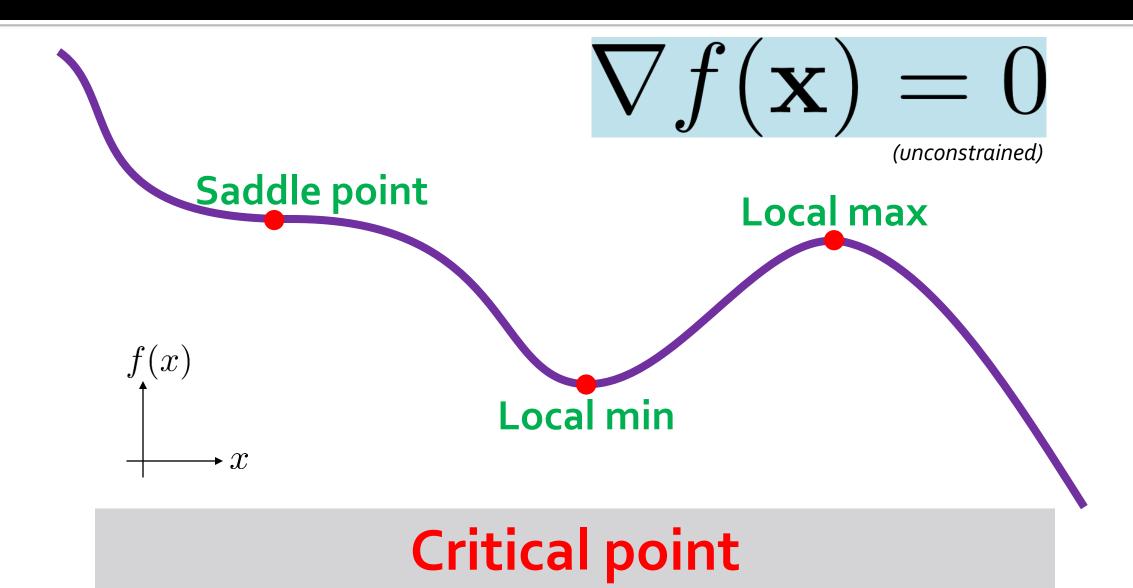


https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian

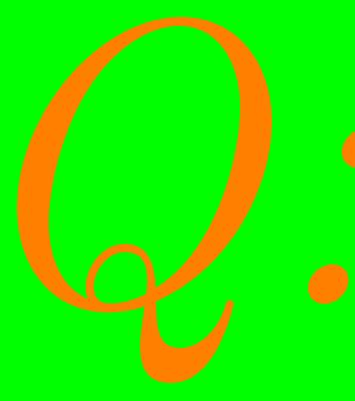
Notions from Calculus

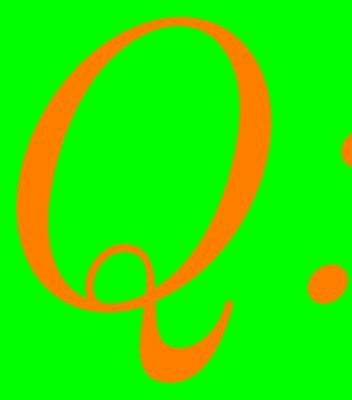
$$f: \mathbb{R}^n \to \mathbb{R} \to H_{ij} = \frac{\partial^2 f}{\partial x^i \partial x^j}$$



$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\top} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^{\top} H f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$

http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif


Optimization to Root-Finding


Encapsulates Many Problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t.} g(\mathbf{x}) = 0 \\ h(\mathbf{x}) \ge 0$$

$$A\mathbf{x} = \mathbf{b} \leftrightarrow f(\mathbf{x}) = ||A\mathbf{x} - \mathbf{b}||_2$$
$$A\mathbf{x} = \lambda \mathbf{x} \leftrightarrow f(\mathbf{x}) = ||A\mathbf{x}||_2, g(\mathbf{x}) = ||\mathbf{x}||_2 - 1$$
Roots of $g(\mathbf{x}) \leftrightarrow f(\mathbf{x}) = 0$

How effective are generic optimization tools?

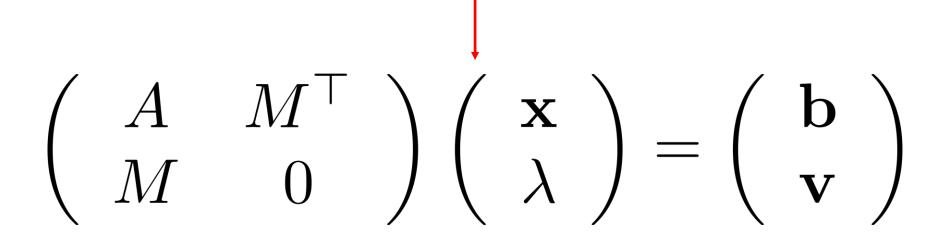
How effective are generic optimization tools?

Not very!

Generic Advice

Try the simplest method first.

Quadratic with Linear Equality


(assume A is symmetric and positive definite)

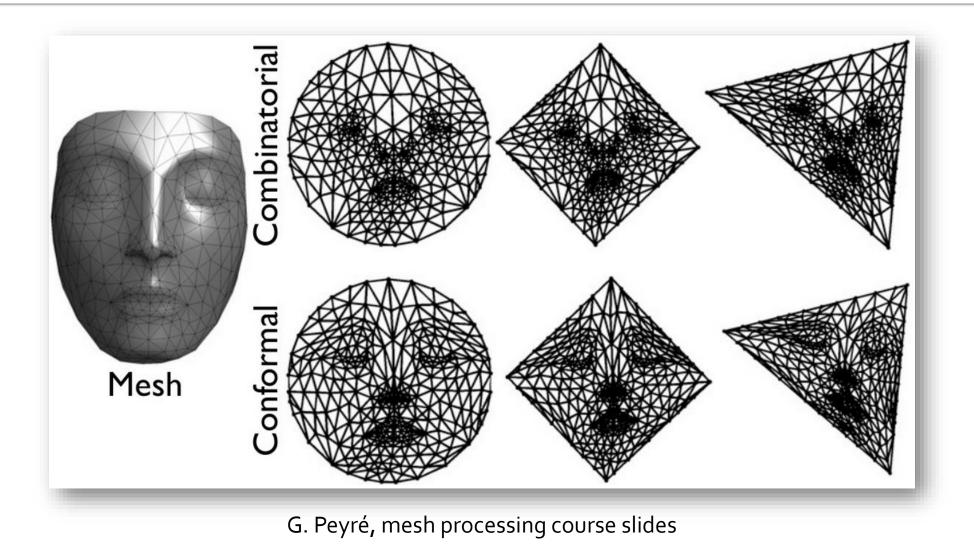
 $\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{\top} A \mathbf{x} - \mathbf{b}^{\top} \mathbf{x} + c \\ \text{s.t.} \quad M \mathbf{x} = \mathbf{v}$

Quadratic with Linear Equality

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{\top} A \mathbf{x} - \mathbf{b}^{\top} \mathbf{x} + c \\ \text{s.t.} \quad M \mathbf{x} = \mathbf{v}$$

(assume A is symmetric and positive definite)

Special Case: Least-Squares


$$\min_{\mathbf{x}} \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|_2^2$$

$$\to \min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^{\top} A^{\top} A \mathbf{x} - \mathbf{b}^{\top} A \mathbf{x} + \|\mathbf{b}\|_2^2$$

$$\implies A^{\top}A\mathbf{x} = A^{\top}\mathbf{b}$$

Normal equations (better solvers for this case!)

Example: Mesh Embedding

Linear Solve for Embedding

$$\min_{\mathbf{x}_1, \dots, \mathbf{x}_{|V|}} \quad \sum_{(i,j) \in E} w_{ij} \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

s.t. $\mathbf{x}_v \text{ fixed } \forall v \in V_0$

w_{ij} ≡ 1: Tutte embedding *w_{ij}* from mesh: Harmonic embedding

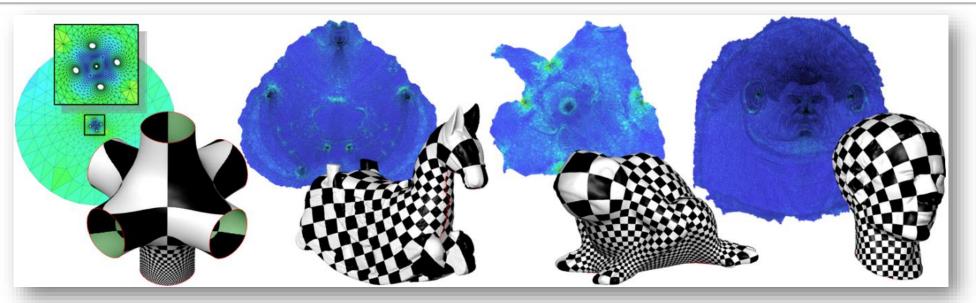
Assumption: w symmetric.

Returning to Parameterization

$$\min_{\mathbf{x}_1, \dots, \mathbf{x}_{|V|}} \quad \sum_{(i,j) \in E} w_{ij} \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

s.t. $\mathbf{x}_v \text{ fixed } \forall v \in V_0$

What if
$$V_0 = \{\}$$
?

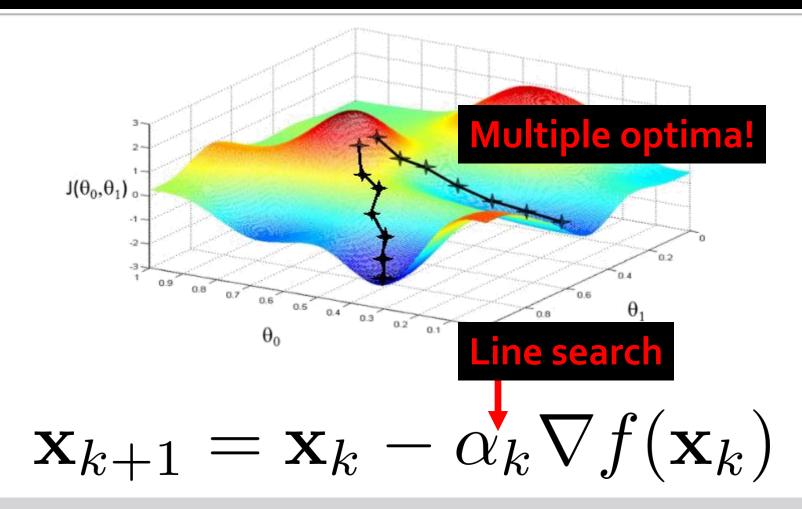

Nontriviality Constraint

$$\left\{\begin{array}{cc} \min_{\mathbf{x}} & \|A\mathbf{x}\|_{2} \\ \text{s.t.} & \|\mathbf{x}\|_{2} = 1 \end{array}\right\} \mapsto A^{\top}A\mathbf{x} = \lambda \mathbf{x}$$

Prevents trivial solution $x \equiv 0$.

Extract the smallest eigenvalue.

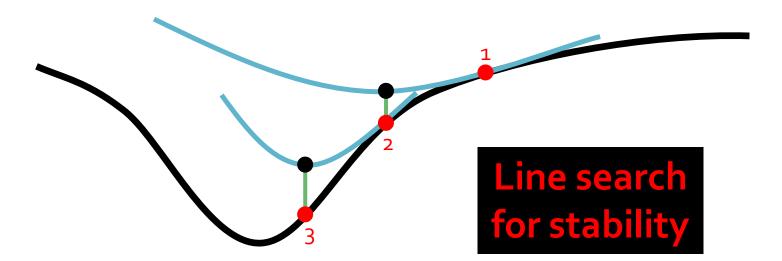
Back to Parameterization


Mullen et al. "Spectral Conformal Parameterization." SGP 2008.

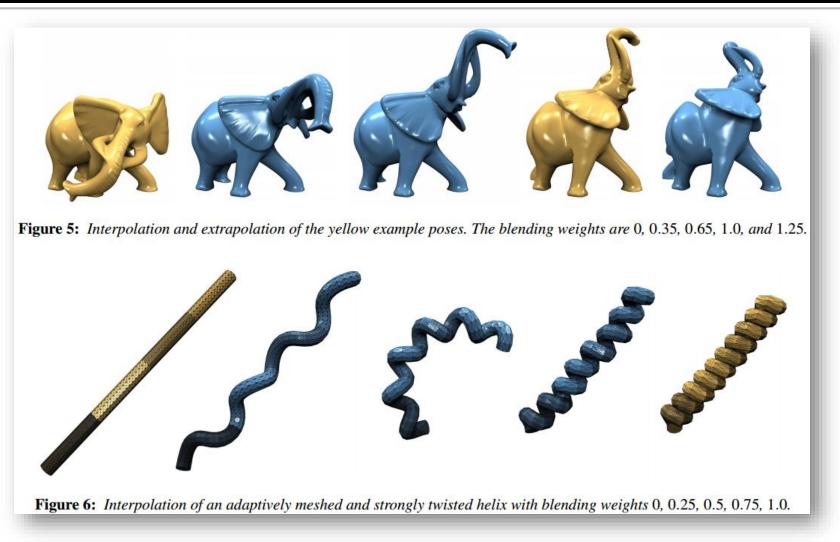
$$\min_{\mathbf{u}} \mathbf{u}^{\top} L_{C} \mathbf{u} \longleftrightarrow L_{c} \mathbf{u} = \lambda B \mathbf{u}$$
$$\mathbf{u}^{\top} B \mathbf{e} = 0 \longleftarrow \text{Easy fix}$$
$$\mathbf{u}^{\top} B \mathbf{u} = 1$$

Unconstrained Optimization

Unstructured.


Basic Algorithms

Gradient descent


Basic Algorithms

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [Hf(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Newton's Method

Example: Shape Interpolation

Fröhlich and Botsch. "Example-Driven Deformations Based on Discrete Shells." CGF 2011.

Interpolation Pipeline

Roughly:

1. Linearly interpolate edge lengths and dihedral angles.

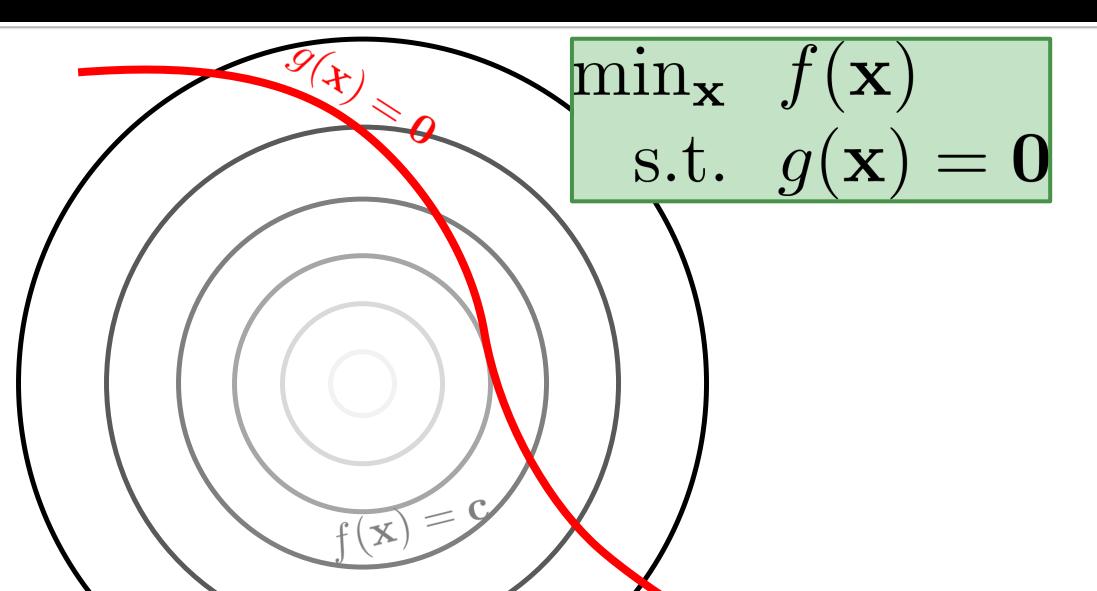
$$\ell_e^* = (1-t)\ell_e^0 + t\ell_e^1$$
$$\theta_e^* = (1-t)\theta_e^0 + t\theta_e^1$$

2. Nonlinear optimization for vertex positions.

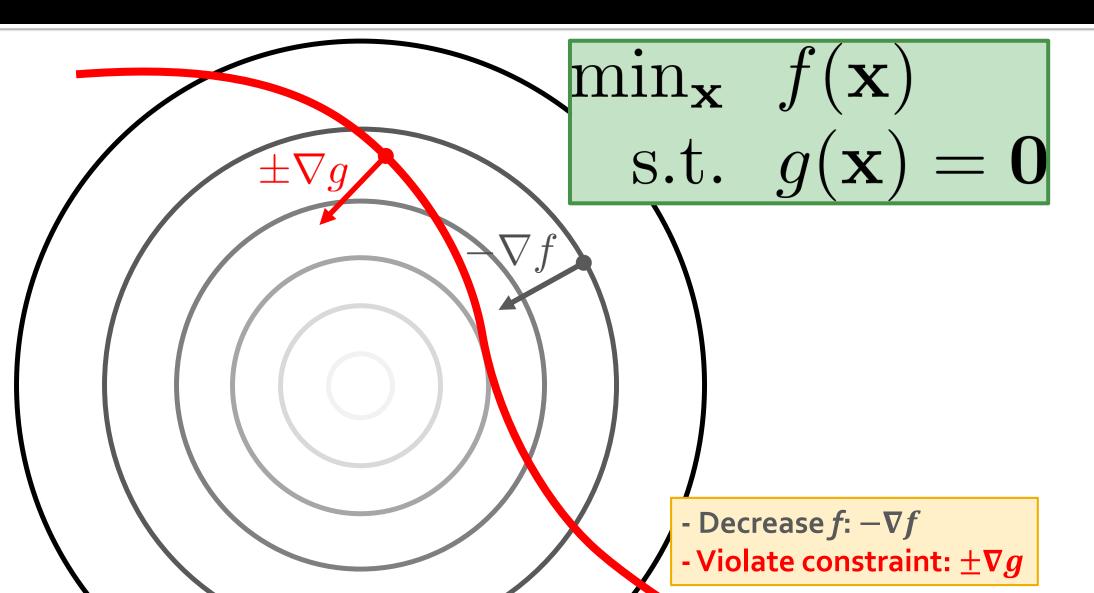
$$\min_{x_1,\dots,x_m} \lambda \sum_e w_e (\ell_e(x) - \ell_e^*)^2$$

Sum of squares: Gauss-Newton

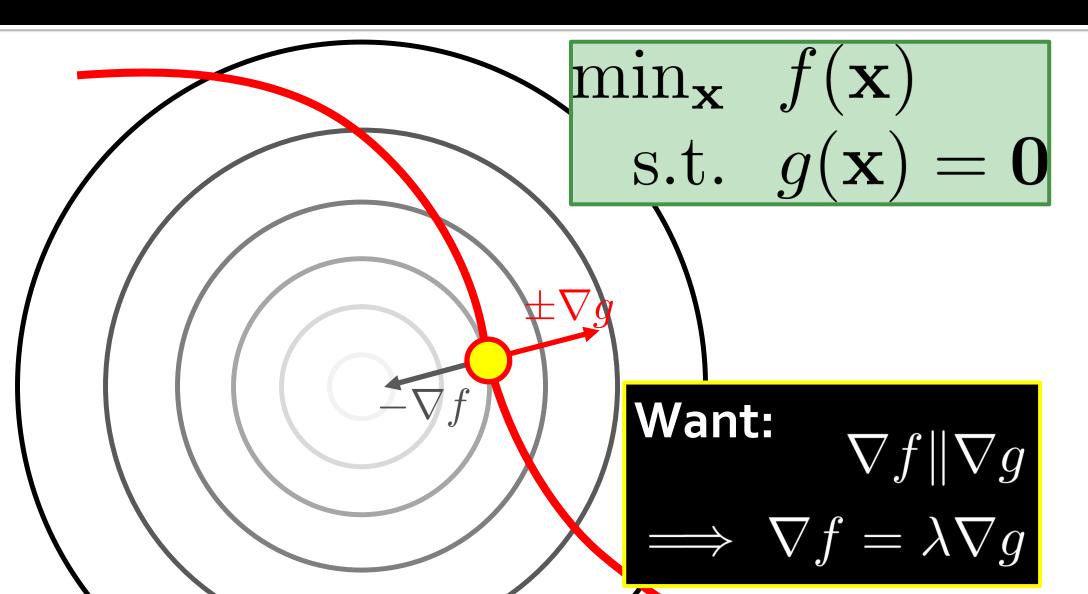
$$\vdash \mu \sum w_b (\theta_e(x) - \theta_e^*)^2$$


Software

Matlab: fminunc or minfunc C++: libLBFGS, dlib, others


Typically provide functions for function and gradient (and optionally, Hessian).

Try several!


Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Example: Symmetric Eigenvectors

$$f(x) = x^{\top} A x \implies \nabla f(x) = 2Ax$$
$$g(x) = \|x\|_2^2 \implies \nabla g(x) = 2x$$
$$\implies Ax = \lambda x$$

Use of Lagrange Multipliers

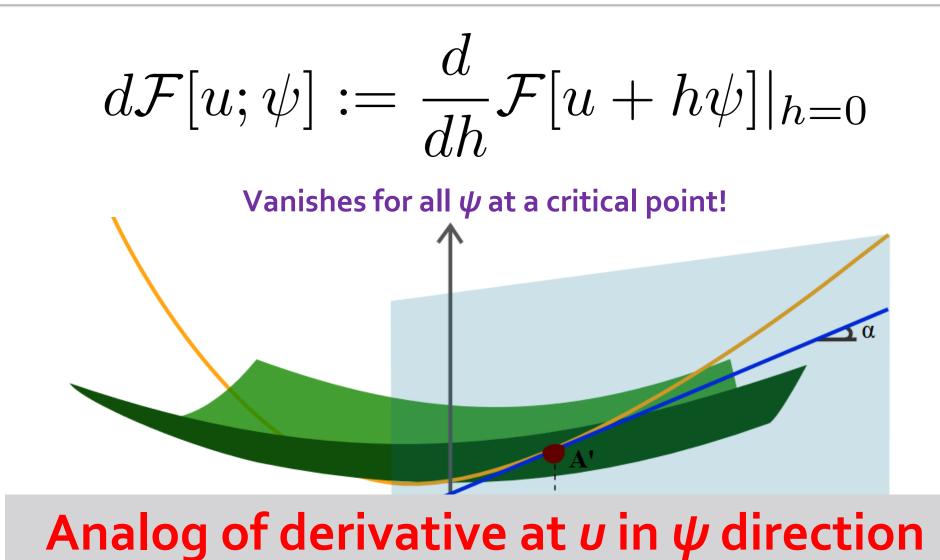
Turns constrained optimization into unconstrained root-finding.

$$\nabla f(x) = \lambda \nabla g(x)$$
$$g(x) = 0$$

Example: Polycube Maps

Huang et al. "L1-Based Construction of Polycube Maps from Complex Shapes." TOG 2014.

$$\begin{aligned} & \underset{X \in \mathcal{A}}{\text{Mign with coordinate axes}} \\ & \underset{X \in \mathcal{A}}{\min_{X}} \sum_{b_{i}} \mathcal{A}(b_{i};X) \| n(b_{i}^{*};X) \|_{1} \\ & \text{ s.t. } \sum_{b_{i}} \mathcal{A}(b_{i};X) = \sum_{b_{i}} \mathcal{A}(b_{i};X_{0}) \\ & & \text{Preserve area} \end{aligned}$$


Note: Final method includes more terms!

Advanced Topic: Variational Calculus

Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

Gâteaux Derivative

 $\min_{f} \int_{\Omega} \|\mathbf{v}(\mathbf{x}) - \nabla f(\mathbf{x})\|_{2}^{2} d\mathbf{x}$

 $\min_{\int_{\Omega} f(\mathbf{x})^2 \, d\mathbf{x}=1} \int_{\Omega} \|\nabla f(\mathbf{x})\|_2^2 \, d\mathbf{x}$

Linear and Variational Problems

Justin Solomon

6.838: Shape Analysis Spring 2021

