


Geodesic Distances




Geodesic distance
[jee-uh-des-ik dis-tuh-ns].

Length of the shortest path,
constrained not to leave the

manifold. E




Complicated Problem

Local minima



Reality Check

Extrinsic may suffice for near vs. far



ed Queries

https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html http://www.sciencedirect.com/science/article/pii/S0010448511002260



Approach

Computer Scientists’

W Ay,
CAEAT
\vr.ﬂ.....vo«)ﬂa-wﬁn.

http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

eshes are graphs




Pernicious Test Case










Distances




What Happened

Asymmetric
Anisotropic

May not improve
under refinement



Conclusion 1

Graph shortest-path
does not converge to
geodesic distance.

0ﬁw{ an aceep Lable @a/o/w/}rm tion,



Conclusion 2

Geodesic distances
need special discretization.

So, we need to understand the theory!

\begin{math}



Three Possible Definitions

Globally shortest path

Local minimizer of length

Locally straight path



Geodesic Distance: Global Definition

Definition 6.1 (Geodesic distance). The geodesic distance between two points p,q € M on a subman-
ifold M is given by

4

inf.015m L[]
dri(p,q) = 4 subject to y(0) =p (6.1)
(1) =q

Here, the curve 7y connects p to q, and we are minimizing arc length as defined in (3.2). A curve <y realizing
this infimum is known as a global (minimizing) geodesic curve.
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Energy of a Curve

b
_ / Iy (8)]] dt

Fasier to mwg with:

f I (1)]2 dt

Lemma: L* < 2(b—a)E

Equality exactly when parameterized by arc length. Proof on board.



First Variation of Arc Length

Proposition 6.2. Let 7y : [a,b] — M be a family of curves with fixed endpoints p, q € M on submanifold
M, and for convenience assume -y is parameterized by arc length at t = 0. Then,

d B b d’}/f(S) . ;
o —/n ( T 'pro]TYf(s)[(‘Yt (S)}) ds. (6.5)

EE[”M

Here, we do not assume s is an arc length parameter when t # 0.

Proposition 6.3. If a curve 7y : |a,b| — M is a geodesic, then
proj  a[7"(s)] =0 (6.6)

fors € (a,b).




Projr .., M 7' (s)] =0

The only acceleration is out of the surface
No steering wheel!




Two Local Perspectives

Projr .., M 7' (s)] =0

Boundary value problem
Given: y(0),y(1)

Initial value problem (ODE)
Given: y(0),y'(0)



Exponential Map

CXPp (V) == (1)

vY,(1) where y,, is
(unique) geodesic from p
with velocity v.

https://en.wikipedia.org/wiki/Exponential_map_(Riemannian_geometry)



Instability of Geodesics

http://parametricwood2o11.files.wordpress.com/2011/01/cone-with-three-geodesics.png



Cut Locus

Cut point:
Point where geodesic
ceases to be minimizing

http://www.cse.ohio- d/ maldey/paper/geodesic/cutloc.pdf

Set of cut points from a source p



Eikonal Equation

‘V’UJP o=1VpeM

eikonal = “image” (Greek)

https://www.mathworks.com/matlabcentral/fileexchange/24827-hamilton-jacobi-solver-on-unstructured-triangular-
grids/content/HJB_Solver_Package/@SolveEikonal/SolveEikonal.m



\end{math}



Initial Value Problem:
Straightest Geodesics

Polthier and Schmies. “Shortest Geodesics on Polyhedral Surfaces.”
SIGGRAPH course notes 2006.

Trace a single geodesic exactly




Intuition: Unfolding

Spherical Vertex Euclidean Vertex Hyperbolic Vertex
21‘5-29i>0 Zn'zei=0 21t-zei<0



Are They Shortest Paths?

\
N ,

Figure 5: Locally shortest geodesics cannot be extended through a spherical vertex
p and there exist multiple continuations at a hyperbolic vertex gq.

K>o (spherical): Straightest geodesic is never shortest
K<o (hyperbolic): Multiple shortest but one straightest




Globally Shortest Path?

Graph shortest path algorithms are
well-understood.

Can we use them (carefully) to compute geodesics?



Useful Principles

“Shortest path had to
come from somewhere.”

“All pieces of a shortest path
are optimal.”



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex 7

S = Vertices with known optimal distance

Initialization:
do =0
d; =00 Vi >0
S =1}



Dijkstra’s Algorithm

Vo = Source vertex
d; = Current distance to vertex 7

S = Vertices with known optimal distance

Ilteration k:

k =arg min d
"UkEV\S

S Vi
dy < min{dy, d; + di¢} V neighbors vy of vy

During each iteration, S
remains optimal.



Advancing Fronts




Example

http://www.iekucukcay.com/wp-content/uploads/2011/09/dijkstra.gif



Fast Marching

Dijkstra’s algorithm, modified to
approximate geodesic distances.



Problem




Planar Front Approximation
.




At Local Scale

dx)=n'x+c

Infl2 =1




Planar Calculations

X
3 Given:
d1 — HTXl -+ C
X9 do =n' Xq+c
d=X"n+cl
Find:

0
ds=n'x5+c=c

X1

Derivation from Bronstein et al., Numerical Geometry of Nonrigid Shapes



Planar Calculations

d=X"n+cl

!
n=X '(d-cl)

l=n'n

—n1'x' X))+ 21" (X" X)) dle+ [dT (X T X) 7]

Quadratic equation for ¢ = d;!



Two Roots

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal



Larger Root: Consistent

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Two orientations for the normal



Additional Issue

L1 L2

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Front from outside the triangle



Condition for Front Direction

L1 L2

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Front from outside the triangle



Obtuse Triangles

Bronstein et al., Numerical Geometry of Nonrigid Shapes

Must reach x, after x, and x,



Fixing the Issues

Alternative edge-based update:
dg < min{dg, di1 + H.CUlH, do + H.CL’QH}

Add connections as needed
[Kimmel and Sethian 1998]

Obstuse angle
and splitfing section



Fast Marching vs. Dijkstra

Modified update step

Update all triangles
adjacent to a given vertex



Eikonal Equation

Vdj| =1

Infj2 =1

Solutions are geodesic distance



A WARNING

STILL AN
APPROXIMATION




Modifying Fast Marching

[Novotni and Klein 2002]:
Circular wavefront



Modifying Fast Marching

Bronstein, Numerical Geometry of Nonrigid Shapes

Grids and parameterized surfaces



Alternative to Eikonal Equation

Algorithm 1 The Heat Method

I. Integrate the heat flow u = Aw for time t.
[1. Evaluate the vector field X = —Vu/|Vul.
III. Solve the Poisson equation A¢p = V - X,

Crane, Weischedel, and Wardetzky. “"Geodesics in Heat.” TOG 2013.



Tracing Geodesic Curves

Trace gradient of distance function



Exact Geodesics

SIAM J. COMPUT. 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 4, August 1987 005

THE DISCRETE GEODESIC PROBLEM*

JOSEPH S. B. MITCHELL?t, DAVID M. MOUNT+ AND CHRISTOS H. PAPADIMITRIOUS§

Abstract. We present an algorithm for determining the shortest path between a source and a destination
on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and
distances are measured according to the Euclidean metric. Our algorithm runs in time O(n®logn) and
requires O(n?) space, where n is the number of edges of the surface. After we run our algorithm, the distance
from the source to any other destination may be determined using standard techniques in time O(log n) by
locating the destination in the subdivision created by the algorithm. The actual shortest path from the source
to a destination can be reported in time O(k+log n), where k is the number of faces crossed by the path.
The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface,
where n is now the maximum of the number of vertices and the number of sources.

Key words. shortest paths, computational geometry, geodesics, Dijkstra’s algorithm

AMS(MOS) subject classification. 68E99



MMP Algorithm: Big ldea

w

Surazhsky et al. “Fast Exact and Approximate Geodesics on Meshes.” SIGGRAPH 2005.



Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky

University of Osle

Tatiana Surazhsky
University of Oslo

Abstract

The computation of geodesic paths and distances on triangle
meshes 15 a common operation m many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First, we describe an implementation of the exact “single source,
all destination™ algorithm presented by Mitchell. Mount, and Pa-
padimitrion (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algorithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact
and approximate shortest (Le. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra aloo-
rithm for shortest paths.

The computation of geodesic paths
computer graphics applications.

mesh often inmvolves cutting the
(e [Ershnamurthy and Levov 1906; Sander et al. 20037, and

Daml Kirsanov

Harvard University

Steven J. Gortler

Harvard University

Hugues Hoppe
Microsoft Fesearch

Figure 1: Geodesic paths from a source veriex, and isolines of the
geodesic distance function.

tance function over the edges, the implementation is actually prac-
tical even though, to our knowledge, it has never been done pre-
viously. We demeonstrate that the algonthm’s worst case munning
time of O(n-logn) is pessimistic, and that in practice, the algo-
rithm muns in sub-guadratic time. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a

O{n log n) time even for small error thresholds.



Cut Locus

Cut point:
Point where geodesic
ceases to be minimizing

http://www.cse.ohio- d/ maldey/paper/geodesic/cutloc.pdf

Set of cut points from a source p



Fuzzy Geodesics

G, (x) == exp(—|d(p,z) + d(z,q) — d(p,q)|/0)

Function on surface
expressing difference in
triangle inequality

.

Sun, Chen, Funkhouser. “Fuzzy geodesics and consistent
sparse correspondences for deformable shapes.” CGF201o0.

Stable version of geodesic distance
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Distances and

IC

Defect-Tolerant Geodes

Parameterizations.” Eurographics 2011.

Campen and Kobbelt. “Walking On Broken Mesh



All-Pairs Distances

Sample Geodesic Triangulate
points field (Delaunay)

Fix edges (planar
embedding)

Xin, Ying, and He. “Constant-time all-pairs geodesic distance query on triangle meshes."”
13D 2012.



Geodesic Voronol & Delaunay

N = 10000 samples Triangulation

Fig. 4.12 Geodesic remeshing with an increasing number of poinls.

From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)



High-Dimensional Problems

Figure 1: Discrete geodesic computed from two input poses (leftmost and rightmost hand).

Heeren et al. Time-discrete geodesics in the space of shells. SGP 2012.



In ML: Be Careful!

Shortest path distance in random k-nearest neighbor graphs

Morteza Alamgir! MORTEZAOQTUEBINGEN.MPG.DE
Ulrike von Luxburg'* ULRIKE.LUXBURG@TUEBINGEN. MPG.DE
! Max Planck Institute for Intellipent Systems, Tiibingen, Germany

2 Department of Computer Science, University of Hamburg, Germany

Abstract The first question has already been studied in some

special cases. Tenenbaum et al. (2000) discuss the case

Consider a weighted or unweighted k-nearest of - and kNN graphs when p is uniform and D is the

neighbor graph that has been built on n data geodesic distance. Sajama & Orlitsky (2005) extend

points drawn randomly according to some these results to e-graphs from a general density p by
density p on R?. We study the convergepeec - - . -

the shortest path distance in such gra
the sample size tends to infinity. We We prove

that for unweighted kNN praphs, thi that fOI‘ unwelghted kNN graphsj thlS diS—
tance CONVET S to an 1]1.'][]'!‘.&1.‘-‘.?1.“1’. dlis .
tance converges to an unpleasant distance

function on the underlying space whose

erties are detrimental to machine lea function on the underlying space Whose prop-

We also study the behavior of the sh

path distance in weighted kNN graphs. el“ties are detrimental to maChiﬂe learning.

trary doanacity w



In ML: Be Careful!

Geodesic Exponential Kernels: When Curvature and Linearity Conflict
Aasa Feragen Francois Lauze S¢ren Hauberg
DIKU, University of Copenhagen DIKU, University of Copenhagen DTU Compute
Denmark Denmark Denmark
aasaldiku.dk francois@diku.dk sohau@dtu.dk
Abstract Extends to general
Kernel Metric spaces | Riemannian manifolds
. . . Gassian (g — 2) Mo (only if flat) Mo (only if Euclidean)
We consider kernel methods on general geodesic metric Laplacian (g = 1) Yes, iff metric is CND | Yes, iff metric is CND
spaces and provide both negative and positive results. First Geodesic exp. (g > 2) Mot known No
we show that the common Gaussian kernel can only be gen- Table 1. Overview of results: For a geodesic metric, when is the
e ra!iwn" to a p.r;rs'fnfw de ﬁnf!c’ ke mn‘f on a geodesic melric geodesic exponential kernel (1) positive definite for all A > 07
Theorem 2. Let M be a complete, smooth Riemannian

manifold with its associated geodesic distance metric d. As-

f sume, moreover, that k(x,y) = exp(—Ad*(z,y)) is a PD
d eeodesic Gaussian kernel for all A\ > 0. Then the Rieman-

curved spaces, inc f!'m'l"# ‘tﬁ'hﬂfﬁ and hyperbolic spaces. and show the following results, summarized in Table 1.
Our theoretical results are verified empirically. - o - S






