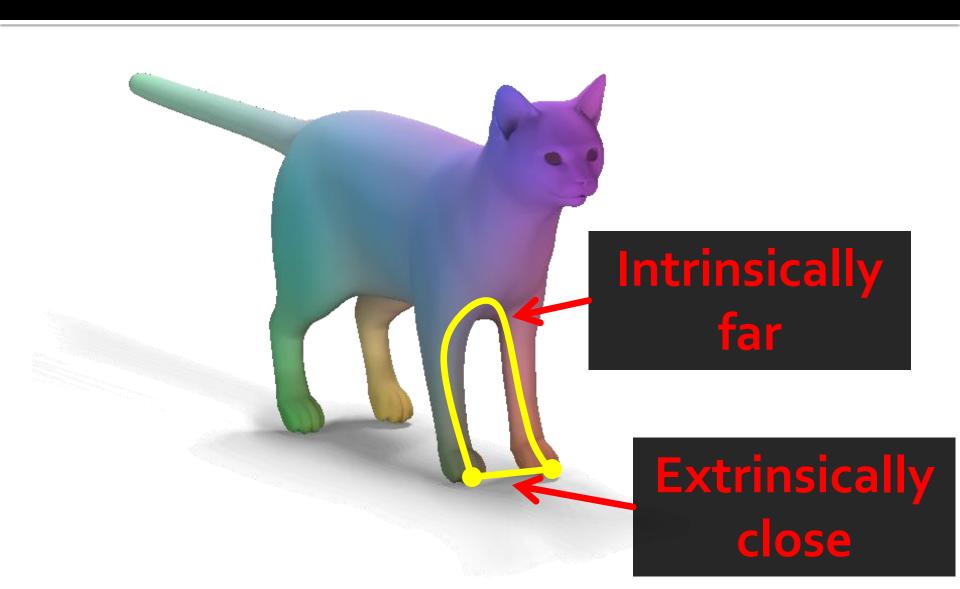


#### Computing Geodesic Distances

Justin Solomon MIT, Spring 2019



#### **Geodesic Distances**

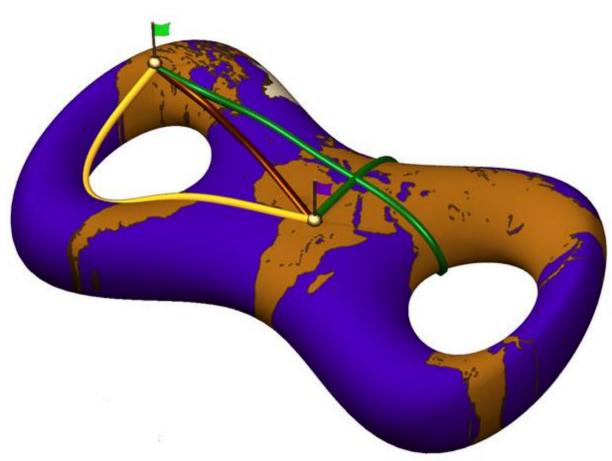


#### Geodesic distance

[jee-uh-des-ik dis-tuh-ns]:

Length of the shortest path, constrained not to leave the manifold.

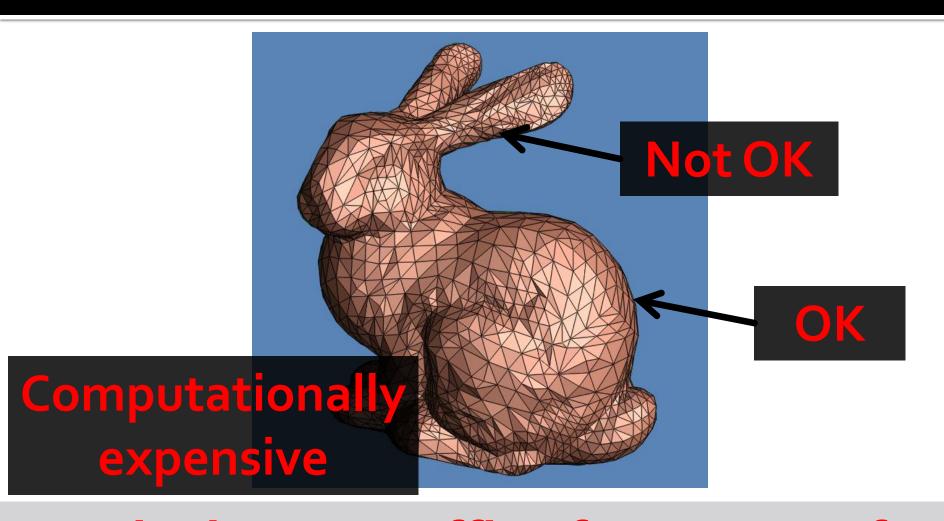
#### **Complicated Problem**



Straightest Geodesics on Polyhedral Surfaces (Polthier and Schmies)

#### Local minima

#### Reality Check



Extrinsic may suffice for near vs. far

#### Related Queries

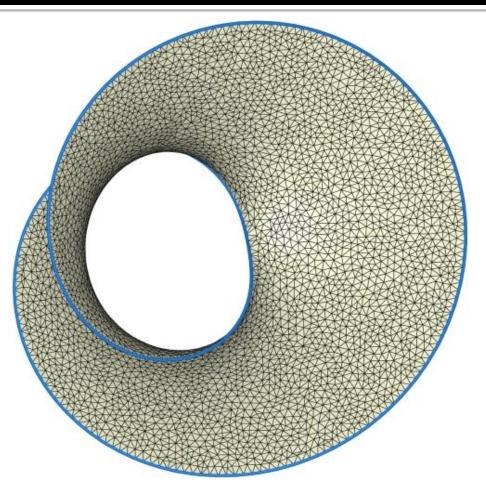








#### Computer Scientists' Approach

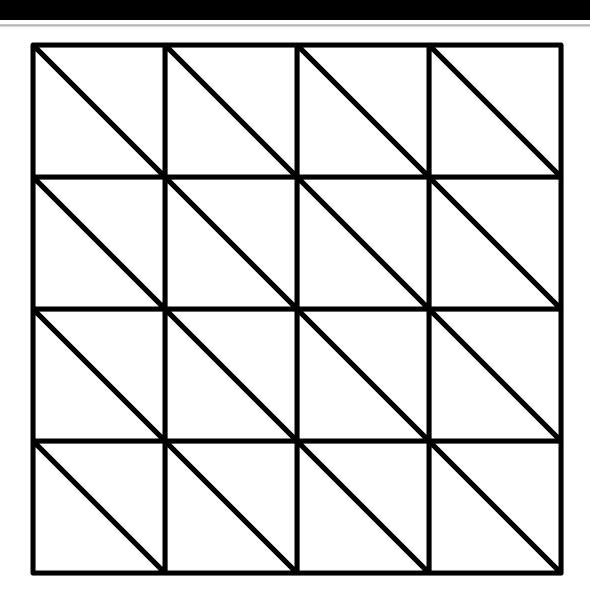


Approximate geodesics as paths along edges

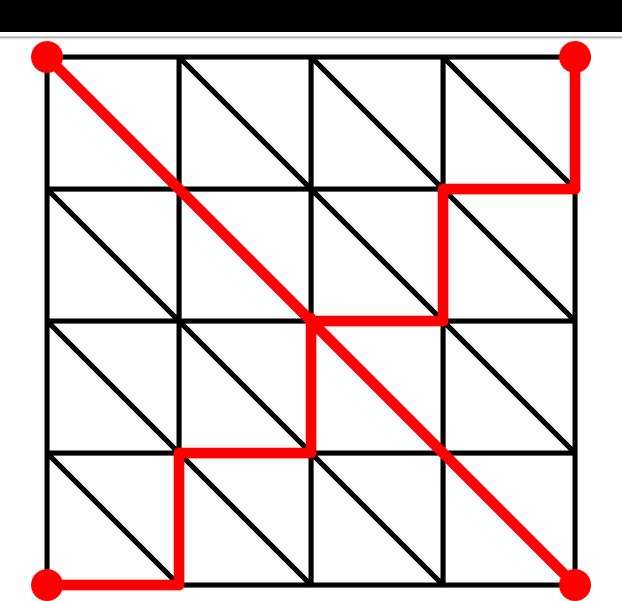
http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

#### Meshes are graphs

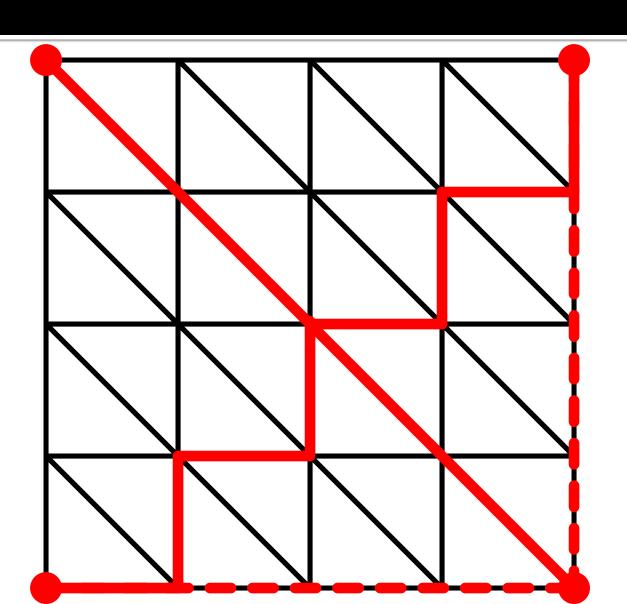
#### Pernicious Test Case



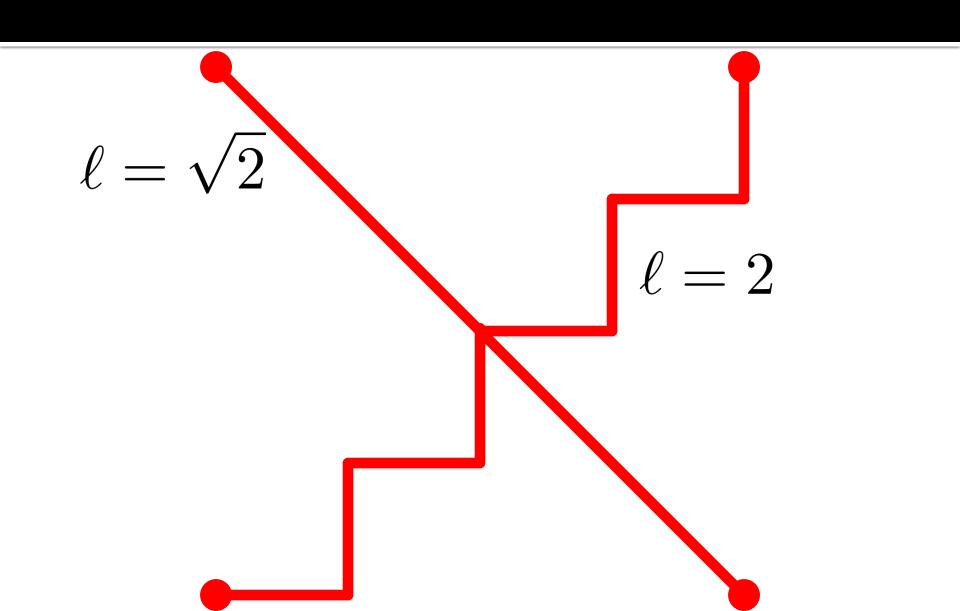
#### Pernicious Test Case



#### Pernicious Test Case



#### Distances



#### What Happened

-Asymmetric

Anisotropic

May not improve under refinement

#### Conclusion 1

# Graph shortest-path does *not* converge to geodesic distance.

Often an acceptable approximation.

#### Conclusion 2

# Geodesic distances need special discretization.

So, we need to understand the theory!

\begin{math}

#### **Three Possible Definitions**



#### Geodesic Distance: Global Definition

**Definition 6.1** (Geodesic distance). *The* geodesic distance *between two points*  $\mathbf{p}$ ,  $\mathbf{q} \in \mathcal{M}$  *on a submanifold*  $\mathcal{M}$  *is given by* 

$$d_{\mathcal{M}}(\mathbf{p}, \mathbf{q}) := \begin{cases} \inf_{\gamma:[0,1] \to \mathcal{M}} & L[\gamma] \\ subject \ to & \gamma(0) = \mathbf{p} \\ & \gamma(1) = \mathbf{q} \\ & \gamma \in C^{1}([0,1]). \end{cases}$$

$$(6.1)$$

Here, the curve  $\gamma$  connects  $\mathbf{p}$  to  $\mathbf{q}$ , and we are minimizing arc length as defined in (3.2). A curve  $\gamma$  realizing this infimum is known as a global (minimizing) geodesic curve.

## Recall: Arc Length

$$\int_{a}^{b} \|\gamma'(t)\| dt$$

#### **Energy of a Curve**

$$L[\gamma] := \int_a^b \|\gamma'(t)\| dt$$

Easier to work with: 
$$E[\gamma] := \frac{1}{2} \int_a^b \|\gamma'(t)\|^2 \, dt$$

Lemma: 
$$L^2 \le 2(b-a)E$$

Equality exactly when parameterized by arc length. Proof on board.

#### First Variation of Arc Length

**Proposition 6.2.** Let  $\gamma_t : [a,b] \to \mathcal{M}$  be a family of curves with fixed endpoints  $\mathbf{p}, \mathbf{q} \in \mathcal{M}$  on submanifold  $\mathcal{M}$ , and for convenience assume  $\gamma$  is parameterized by arc length at t = 0. Then,

$$\frac{d}{dt}E[\gamma_t]\bigg|_{t=0} = -\int_a^b \left(\frac{d\gamma_t(s)}{dt} \cdot \operatorname{proj}_{T_{\gamma_t(s)}}[\gamma_t''(s)]\right) ds. \tag{6.5}$$

Here, we do not assume s is an arc length parameter when  $t \neq 0$ .

**Proposition 6.3.** *If a curve*  $\gamma : [a, b] \to \mathcal{M}$  *is a geodesic, then* 

$$\operatorname{proj}_{T_{\gamma(s)}\mathcal{M}}[\gamma''(s)] \equiv 0 \tag{6.6}$$

for  $s \in (a, b)$ .

#### Intuition

$$\operatorname{proj}_{T_{\gamma(s)}\mathcal{M}}\left[\gamma''(s)\right] \equiv 0$$

- The only acceleration is out of the surface
  - No steering wheel!

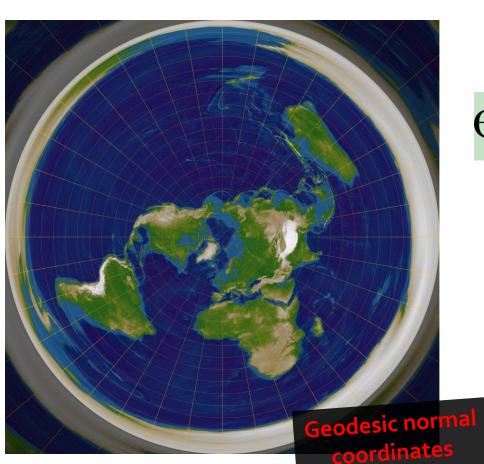


#### **Two Local Perspectives**

$$\operatorname{proj}_{T_{\gamma(s)}\mathcal{M}} \left[ \gamma''(s) \right] \equiv 0$$

- Boundary value problem
  - Given:  $\gamma(0)$ ,  $\gamma(1)$
- Initial value problem (ODE)
  - Given:  $\gamma(0)$ ,  $\gamma'(0)$

#### **Exponential Map**

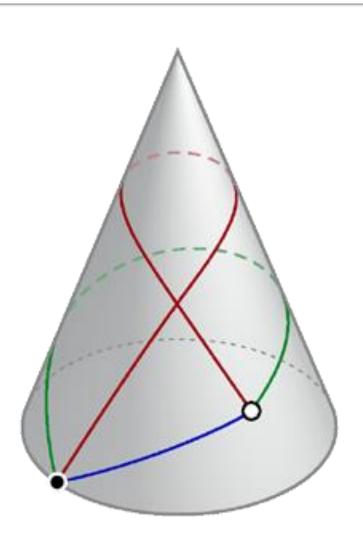


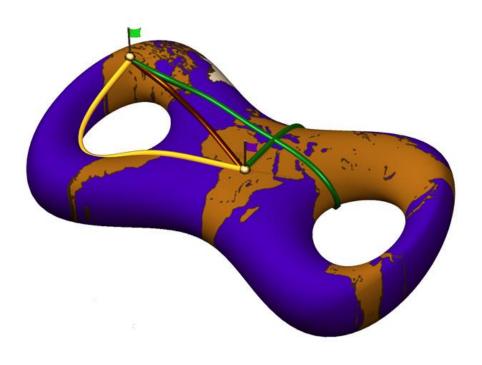
$$\exp_{\mathbf{p}}(\mathbf{v}) := \gamma_{\mathbf{v}}(1)$$

 $\gamma_v(1)$  where  $\gamma_v$  is (unique) geodesic from p with velocity v.

https://en.wikipedia.org/wiki/Exponential\_map\_(Riemannian\_geometry)

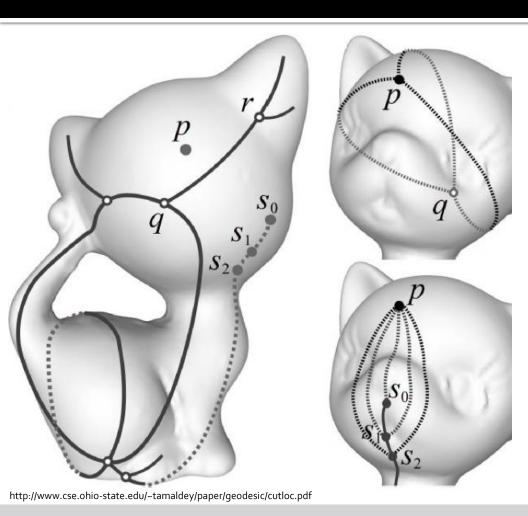
#### Instability of Geodesics





Locally minimizing distance is not enough to be a shortest path!

#### **Cut Locus**



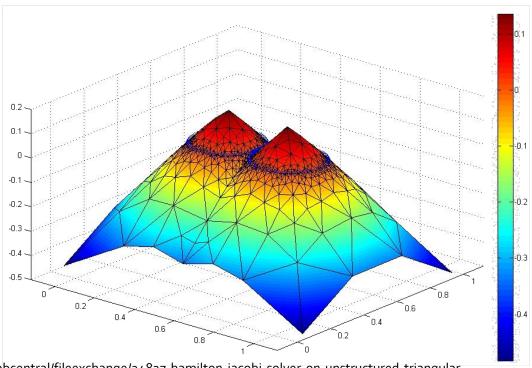
Cut point:
Point where geodesic ceases to be minimizing

Set of cut points from a source p

#### **Eikonal Equation**

$$\|\nabla u(\mathbf{p})\|_2 = 1 \ \forall \mathbf{p} \in \mathcal{M}$$

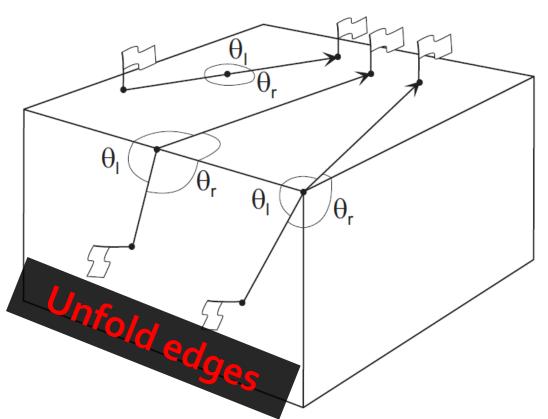
eikonal = "image" (Greek)



 $https://www.mathworks.com/matlabcentral/file exchange/24827-hamilton-jacobi-solver-on-unstructured-triangular-grids/content/HJB\_Solver\_Package/@SolveEikonal/SolveEikonal.m$ 

\end{math}

#### Initial Value Problem: Straightest Geodesics

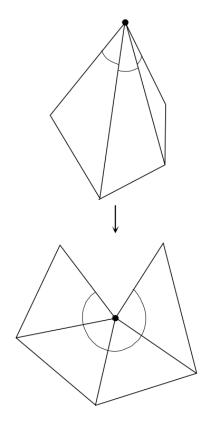


Equal left and right angles

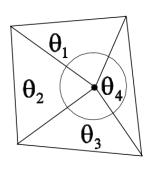
Polthier and Schmies. "Shortest Geodesics on Polyhedral Surfaces."
SIGGRAPH course notes 2006.

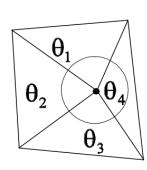
#### Trace a single geodesic exactly

#### Intuition: Unfolding

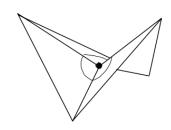


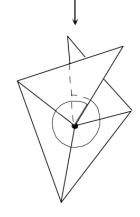
Spherical Vertex  $2\pi - \Sigma \theta_i > 0$ 





Euclidean Vertex  $2\pi - \Sigma\theta_i = 0$ 





Hyperbolic Vertex  $2\pi - \Sigma\theta_i < 0$ 

#### **Are They Shortest Paths?**

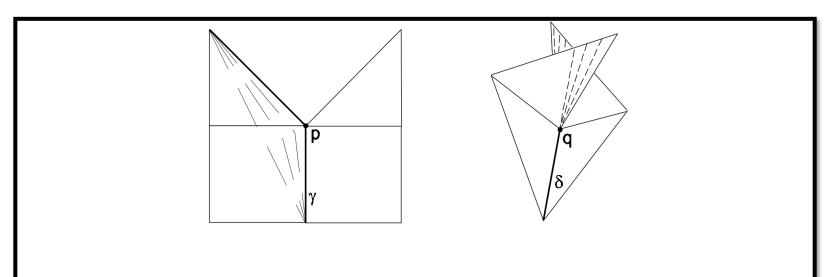


Figure 5: Locally shortest geodesics cannot be extended through a spherical vertex p and there exist multiple continuations at a hyperbolic vertex q.

K>o (spherical): Straightest geodesic is never shortest

K<0 (hyperbolic): Multiple shortest but one straightest

#### **Globally Shortest Path?**

### Graph shortest path algorithms are well-understood.

Can we use them (carefully) to compute geodesics?

#### **Useful Principles**

"Shortest path had to come from somewhere."

"All pieces of a shortest path are optimal."

#### Dijkstra's Algorithm

 $v_0 =$ Source vertex

 $d_i = \text{Current distance to vertex } i$ 

S =Vertices with known optimal distance

#### **Initialization:**

$$d_0 = 0$$

$$d_i = \infty \ \forall i > 0$$

$$S = \{\}$$

#### Dijkstra's Algorithm

```
v_0 = Source vertex
```

 $d_i = \text{Current distance to vertex } i$ 

S =Vertices with known optimal distance

#### Iteration k:

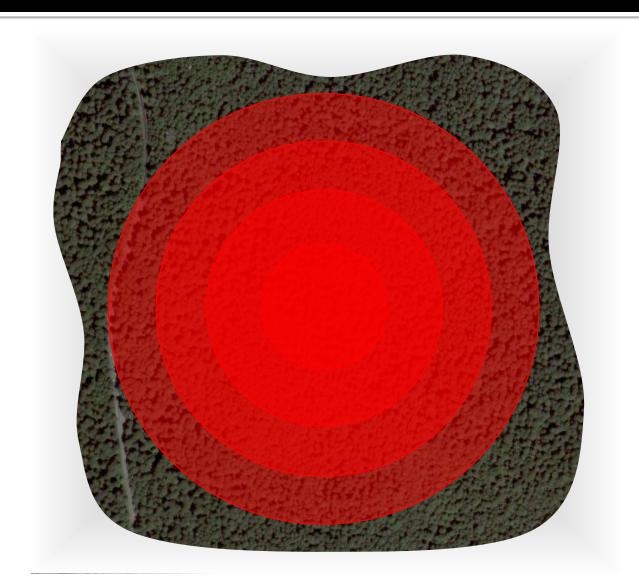
$$k = \arg\min_{v_k \in V \setminus S} d_k$$

$$S \leftarrow v_k$$

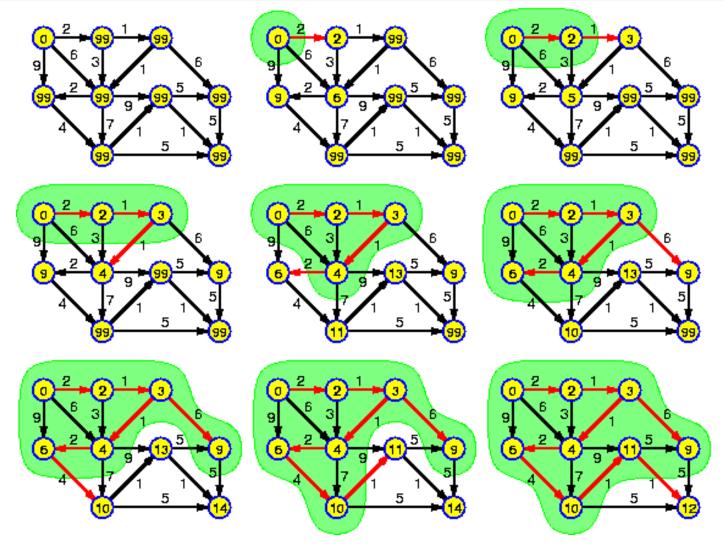
$$d_{\ell} \leftarrow \min\{d_{\ell}, d_k + d_{k\ell}\} \ \forall \text{ neighbors } v_{\ell} \text{ of } v_k$$

Inductive During each iteration, S proof: remains optimal.

#### **Advancing Fronts**



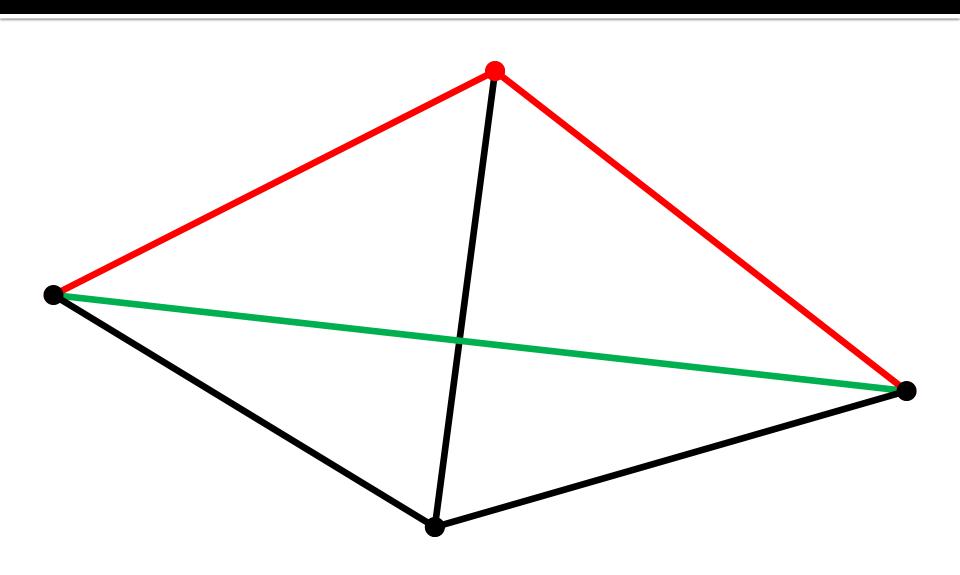
#### Example



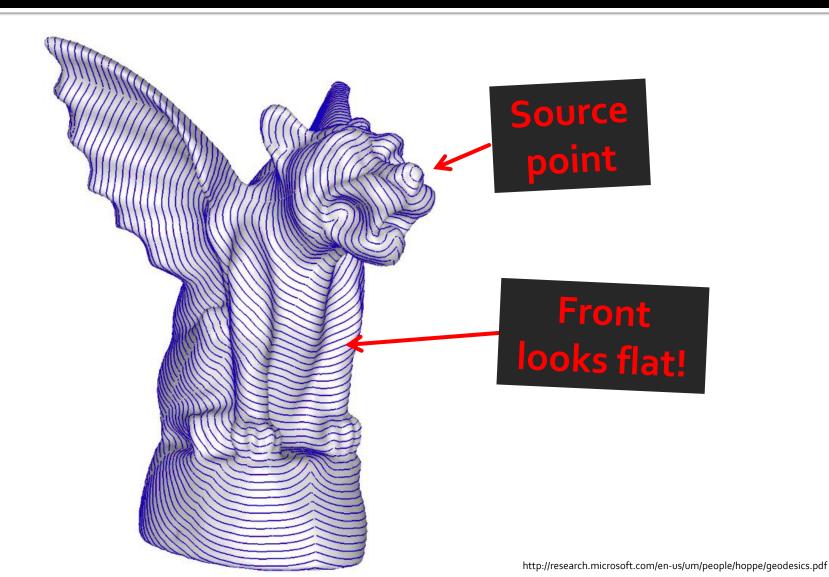
#### Fast Marching

Dijkstra's algorithm, modified to approximate geodesic distances.

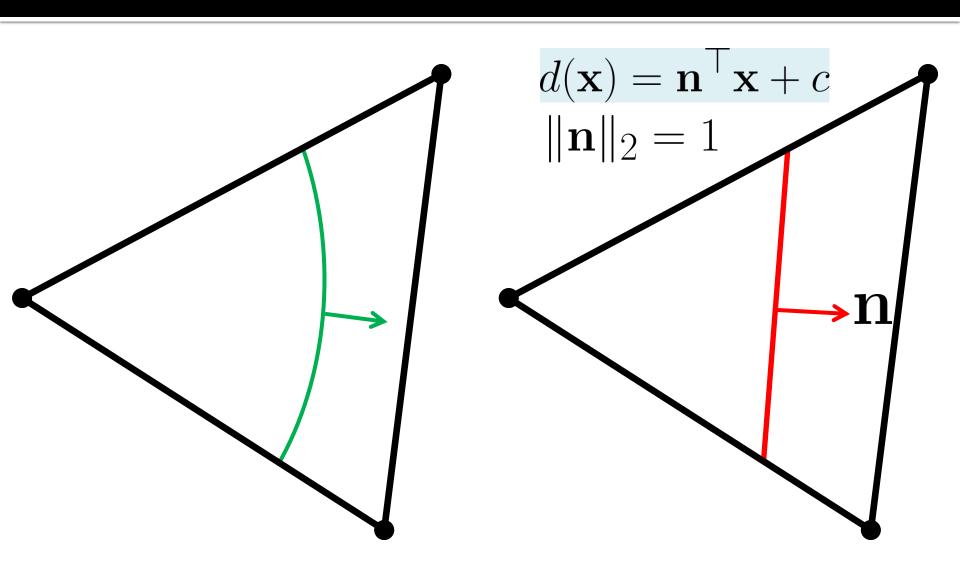
# Problem



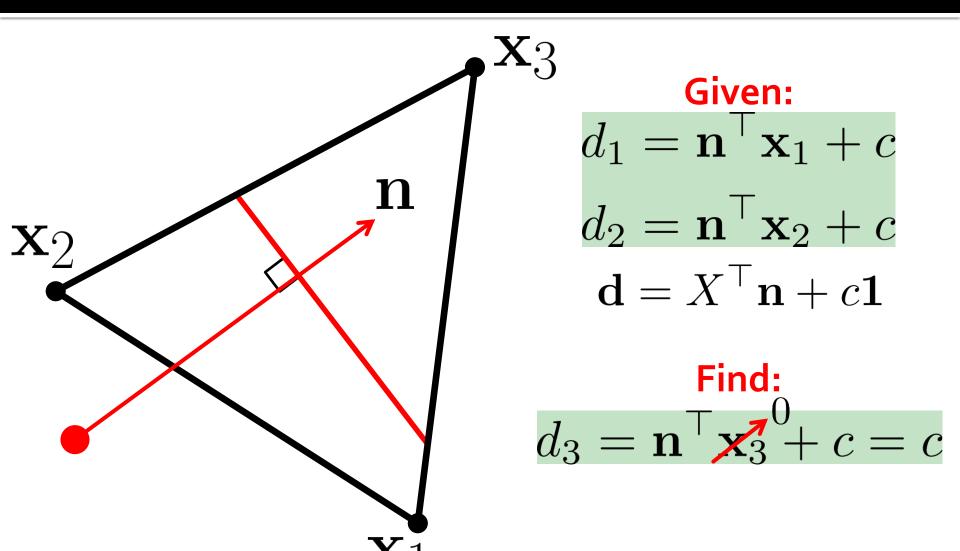
# Planar Front Approximation



# At Local Scale



## **Planar Calculations**



Derivation from Bronstein et al., Numerical Geometry of Nonrigid Shapes

## Planar Calculations

 $\mathbf{d} = X^{\top} \mathbf{n} + c \mathbf{1}$ 

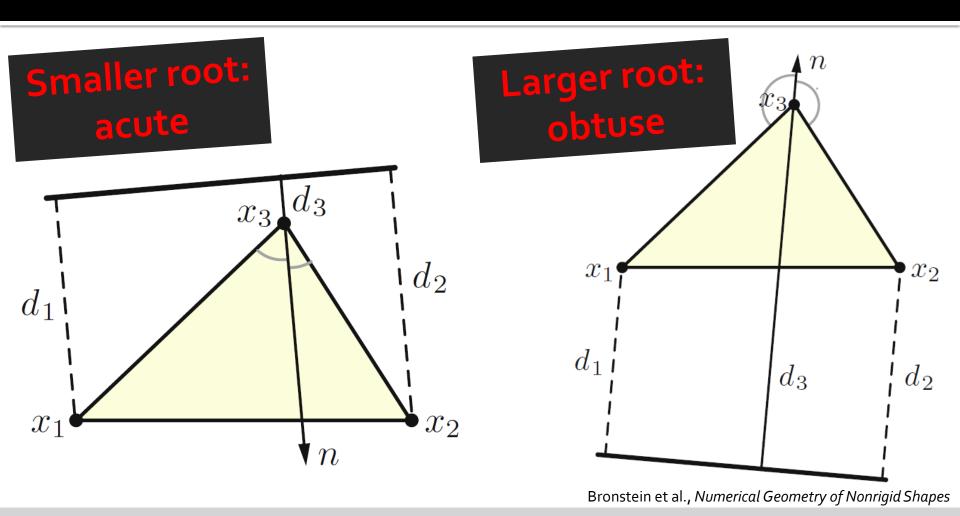
$$\mathbf{n} = X^{-\top} (\mathbf{d} - c\mathbf{1})$$

$$1 = \mathbf{n}^{\top} \mathbf{n}$$

$$= [\mathbf{1}^{\top} (X^{\top} X)^{-1} \mathbf{1}] c^{2} + [-2\mathbf{1}^{\top} (X^{\top} X)^{-1} \mathbf{d}] c + [\mathbf{d}^{\top} (X^{\top} X)^{-1} \mathbf{d}]$$

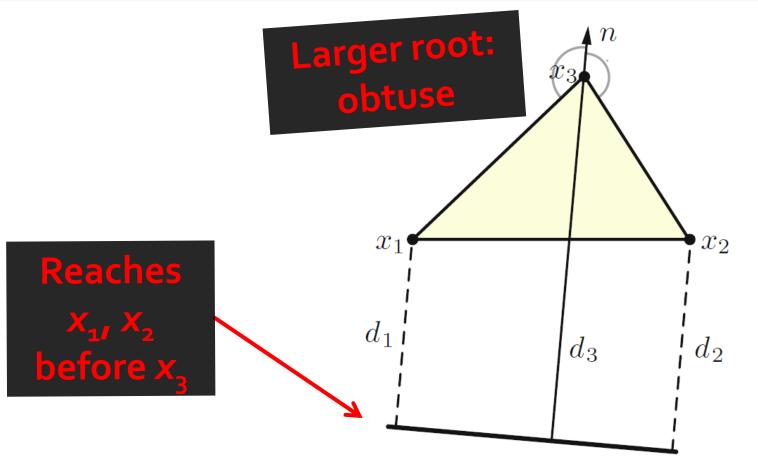
Quadratic equation for  $c = d_3!$ 

## **Two Roots**



### Two orientations for the normal

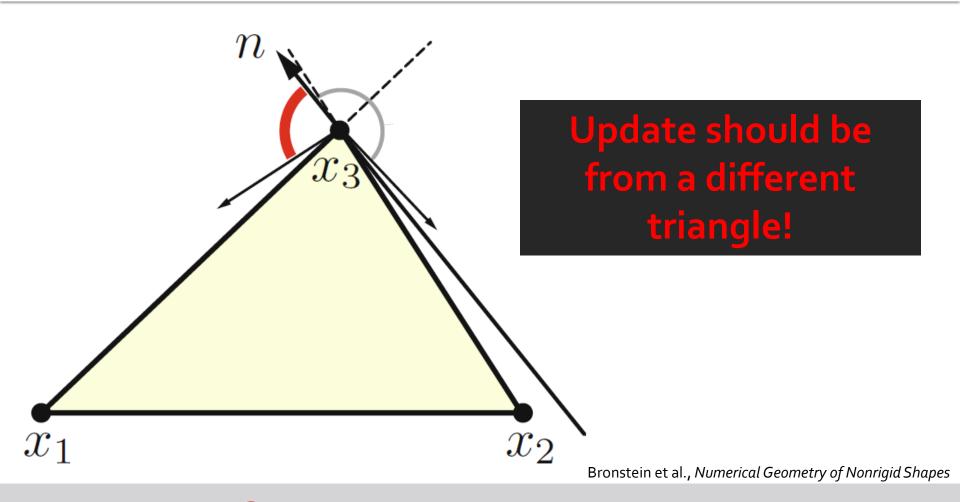
# Larger Root: Consistent



Bronstein et al., Numerical Geometry of Nonrigid Shapes

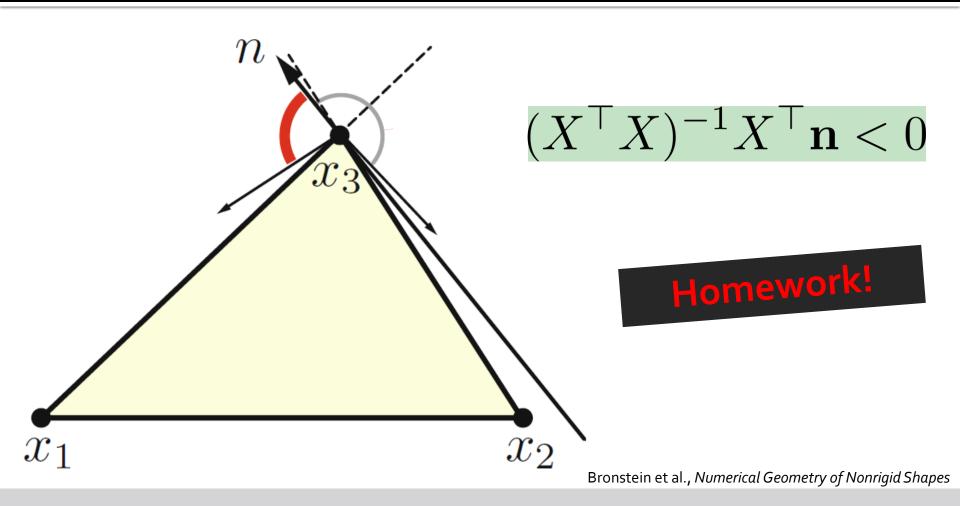
#### Two orientations for the normal

## **Additional Issue**



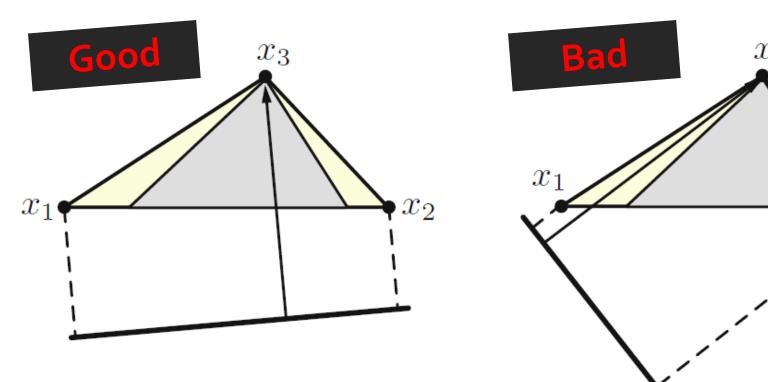
# Front from outside the triangle

## **Condition for Front Direction**



# Front from outside the triangle

# **Obtuse Triangles**





Bronstein et al., Numerical Geometry of Nonrigid Shapes

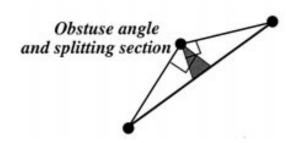
# Must reach $x_3$ after $x_1$ and $x_2$

# Fixing the Issues

Alternative edge-based update:

$$d_3 \leftarrow \min\{d_3, d_1 + ||x_1||, d_2 + ||x_2||\}$$

Add connections as needed
 [Kimmel and Sethian 1998]



# Fast Marching vs. Dijkstra

Modified update step

 Update all triangles adjacent to a given vertex

# **Eikonal Equation**

$$\|\nabla d\| = 1$$

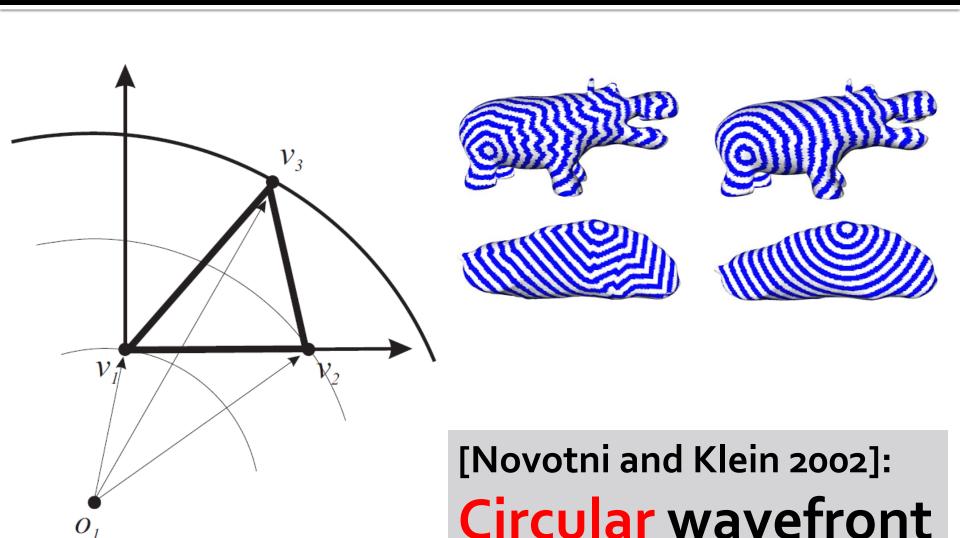
$$\|\mathbf{n}\|_2 = 1$$

## Solutions are geodesic distance

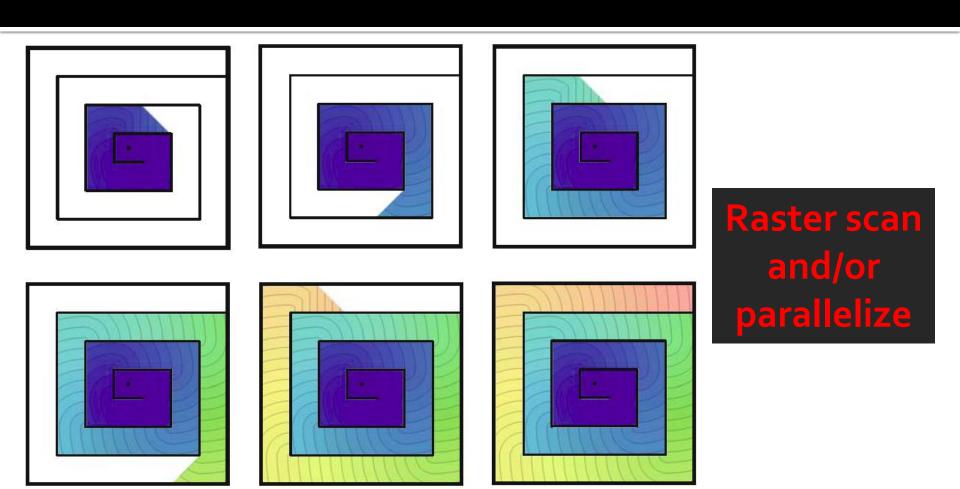


A much better one!

# **Modifying Fast Marching**



# **Modifying Fast Marching**



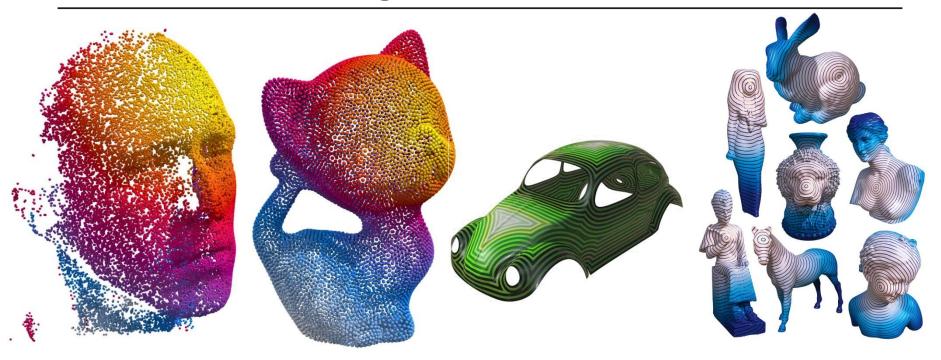
Bronstein, Numerical Geometry of Nonrigid Shapes

## Grids and parameterized surfaces

# Alternative to Eikonal Equation

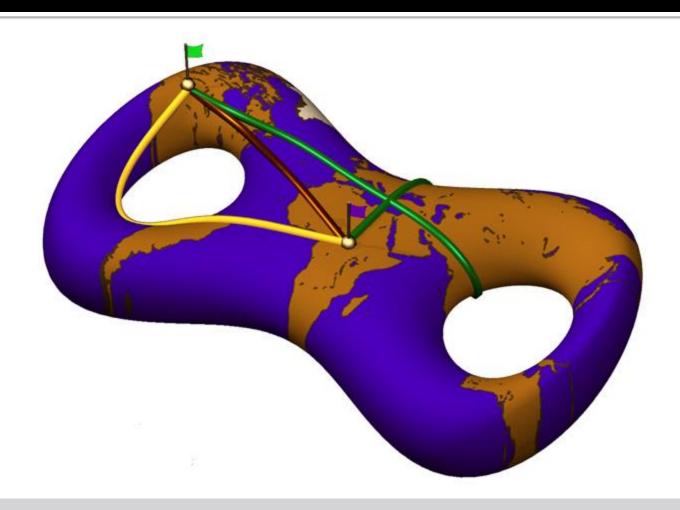
#### **Algorithm 1** The Heat Method

- I. Integrate the heat flow  $\dot{u} = \Delta u$  for time t.
- II. Evaluate the vector field  $X = -\nabla u/|\nabla u|$ .
- III. Solve the Poisson equation  $\Delta \phi = \nabla \cdot X$ .



Crane, Weischedel, and Wardetzky. "Geodesics in Heat." TOG 2013.

# **Tracing Geodesic Curves**



Trace gradient of distance function

#### **Exact Geodesics**

SIAM J. COMPUT. Vol. 16, No. 4, August 1987 © 1987 Society for Industrial and Applied Mathematics

#### THE DISCRETE GEODESIC PROBLEM\*

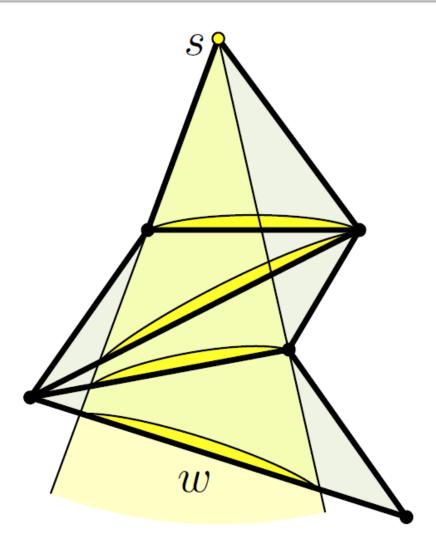
JOSEPH S. B. MITCHELL†, DAVID M. MOUNT‡ AND CHRISTOS H. PAPADIMITRIOU§

Abstract. We present an algorithm for determining the shortest path between a source and a destination on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and distances are measured according to the Euclidean metric. Our algorithm runs in time  $O(n^2 \log n)$  and requires  $O(n^2)$  space, where n is the number of edges of the surface. After we run our algorithm, the distance from the source to any other destination may be determined using standard techniques in time  $O(\log n)$  by locating the destination in the subdivision created by the algorithm. The actual shortest path from the source to a destination can be reported in time  $O(k + \log n)$ , where k is the number of faces crossed by the path. The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface, where n is now the maximum of the number of vertices and the number of sources.

Key words. shortest paths, computational geometry, geodesics, Dijkstra's algorithm

AMS(MOS) subject classification. 68E99

# MMP Algorithm: Big Idea



Dijkstra-style front with windows explaining source.

Surazhsky et al. "Fast Exact and Approximate Geodesics on Meshes." SIGGRAPH 2005.

# **Practical Implementation**

#### Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky University of Oslo Tatiana Surazhsky University of Oslo Danil Kirsanov Harvard University

Steven J. Gortler Harvard University Hugues Hoppe Microsoft Research

#### Abstract

The computation of geodesic paths and distances on triangle meshes is a common operation in many computer graphics applications. We present several practical algorithms for computing such geodesics from a source point to one or all other points efficiently. First, we describe an implementation of the exact "single source, all destination" algorithm presented by Mitchell, Mount, and Papadimitriou (MMP). We show that the algorithm runs much faster in practice than suggested by worst case analysis. Next, we extend the algorithm with a merging operation to obtain computationally efficient and accurate approximations with bounded error. Finally, to compute the shortest path between two given points, we use a lower-bound property of our approximate geodesic algorithm to efficiently prune the frontier of the MMP algorithm, thereby obtaining an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

#### 1 Introduction

In this paper we present practical methods for computing both exact and approximate shortest (i.e. geodesic) paths on a triangle mesh. These geodesic paths typically cut across faces in the mesh and are therefore not found by the traditional graph-based Dijkstra algorithm for shortest paths.

The computation of geodesic paths is computer graphics applications. For example part if the range we mesh often involves cutting the mesh into one or more charts (e.g. [Krishnamurthy and Levoy 1996; Sander et al. 2003]), and



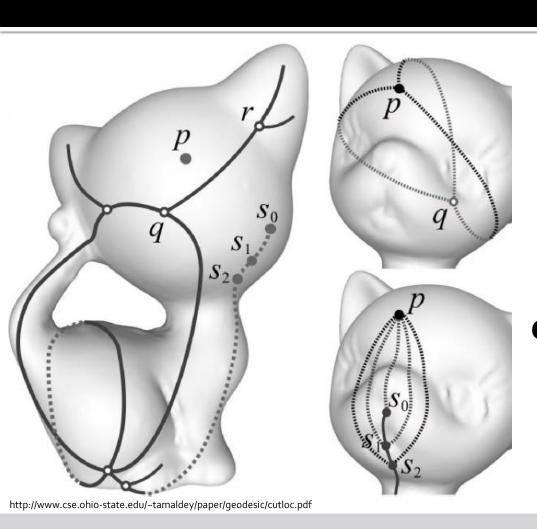
Figure 1: Geodesic paths from a source vertex, and isolines of the geodesic distance function.

tance function over the edges, the implementation is actually practical even though, to our knowledge, it has never been done previously. We demonstrate that the algorithm's worst case running time of  $O(n^2\log n)$  is pessimistic, and that in practice, the algorithm runs in sub-quadratic time. For instance, we can compute the exact geodesic distance from a source point to all vertices of a

http://code.google.com/p/geodesic/

 $O(n \log n)$  time even for small error thresholds.

# Recall: Cut Locus

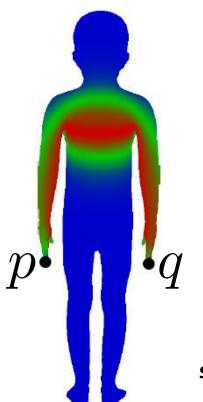


Cut point:
Point where geodesic ceases to be minimizing

Set of cut points from a source p

# **Fuzzy Geodesics**

$$G_{p,q}^{\sigma}(x) := \exp(-|d(p,x) + d(x,q) - d(p,q)|/\sigma)$$



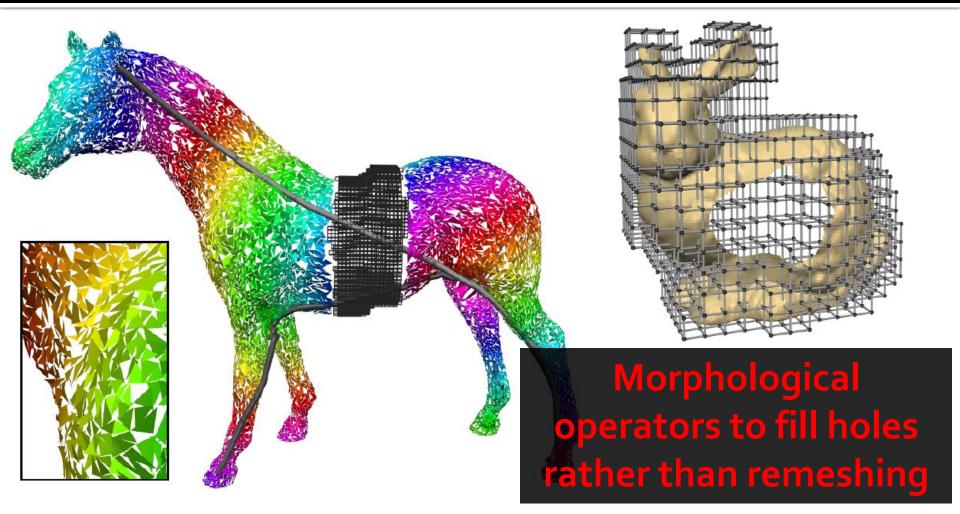
# Function on surface expressing difference in triangle inequality

"Intersection" by pointwise multiplication

Sun, Chen, Funkhouser. "Fuzzy geodesics and consistent sparse correspondences for deformable shapes." CGF2010.

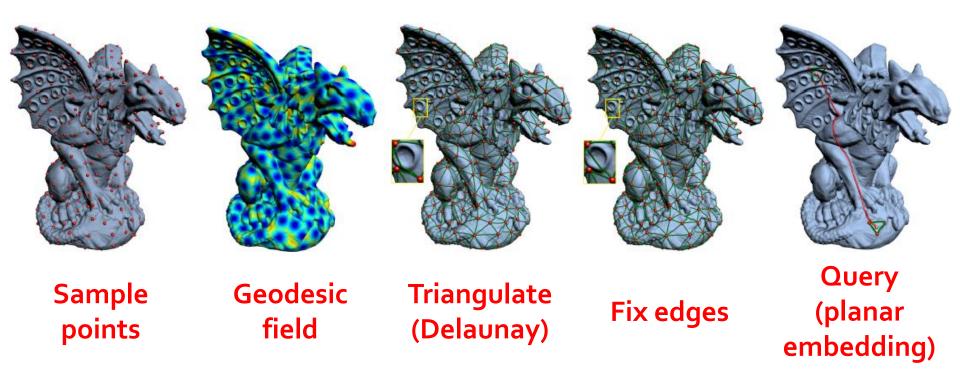
# Stable version of geodesic distance

#### Stable Measurement



Campen and Kobbelt. "Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations." Eurographics 2011.

## **All-Pairs Distances**



Xin, Ying, and He. "Constant-time all-pairs geodesic distance query on triangle meshes." I3D 2012.

# Geodesic Voronoi & Delaunay

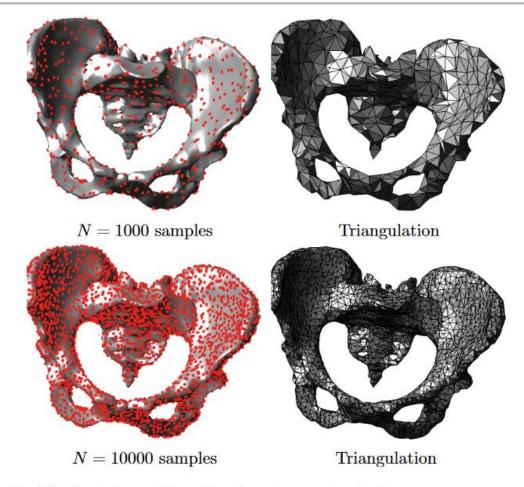
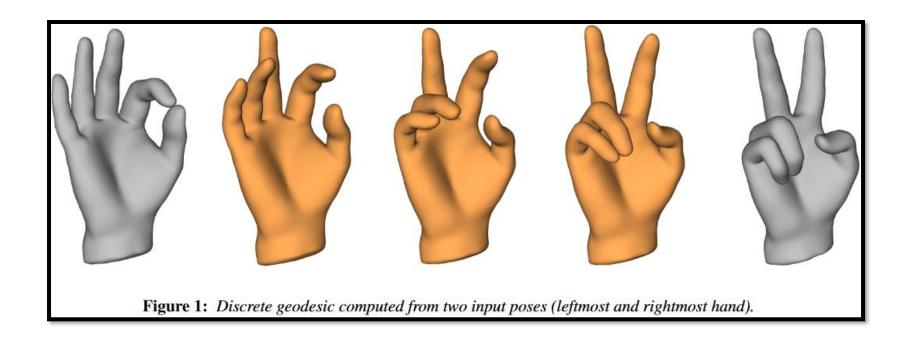


Fig. 4.12 Geodesic remeshing with an increasing number of points.

From Geodesic Methods in Computer Vision and Graphics (Peyré et al., FnT 2010)

# **High-Dimensional Problems**



Heeren et al. Time-discrete geodesics in the space of shells. SGP 2012.

### In ML: Be Careful!

#### Shortest path distance in random k-nearest neighbor graphs

Morteza Alamgir<sup>1</sup> Ulrike von Luxburg<sup>1,2</sup> MORTEZA@TUEBINGEN.MPG.DE ULRIKE.LUXBURG@TUEBINGEN.MPG.DE

#### Abstract

Consider a weighted or unweighted k-nearest neighbor graph that has been built on n data points drawn randomly according to some density p on  $\mathbb{R}^d$ . We study the convergence of the shortest path distance in such graph the sample size tends to infinity. We that for unweighted kNN graphs, this tance converges to an unpleasant disfunction on the underlying space whose erties are detrimental to machine lear than the shortest path distance in weighted kNN graphs. Extingular errors are detrimental to machine lear than the shortest path distance in weighted kNN graphs.

The first question has already been studied in some special cases. Tenenbaum et al. (2000) discuss the case of  $\varepsilon$ - and kNN graphs when p is uniform and D is the geodesic distance. Sajama & Orlitsky (2005) extend these results to  $\varepsilon$ -graphs from a general density p by

We prove

that for unweighted kNN graphs, this distance converges to an unpleasant disfunction on the underlying space whose erties are detrimental to machine lear function on the underlying space whose path distance in weighted kNN graphs. erties are detrimental to machine learning.

trary density n

<sup>&</sup>lt;sup>1</sup> Max Planck Institute for Intelligent Systems, Tübingen, Germany

<sup>&</sup>lt;sup>2</sup> Department of Computer Science, University of Hamburg, Germany

### In ML: Be Careful!

#### Geodesic Exponential Kernels: When Curvature and Linearity Conflict

Aasa Feragen
DIKU, University of Copenhagen
Denmark

aasa@diku.dk

François Lauze
DIKU, University of Copenhagen
Denmark

francois@diku.dk

Søren Hauberg DTU Compute Denmark

sohau@dtu.dk

#### Abstract

We consider kernel methods on general geodesic metric spaces and provide both negative and positive results. First we show that the common Gaussian kernel can only be generalized to a positive definite kernel on a geodesic metric space if the space is flat. As a result, for data on a Rieman-

nian manifold, the geodesic Gaussian k
tive despite it the Wirmannian manifold
implies that any attempt to design geod
leath Kerne n Snifolds i
leath Kerne nite distances the reodesic Laplacian k
eralized where Draing positive definite
that geodesic Laplacian be g

|                         | Extends to general     |                        |
|-------------------------|------------------------|------------------------|
| Kernel                  | Metric spaces          | Riemannian manifolds   |
| Gaussian $(q=2)$        | No (only if flat)      | No (only if Euclidean) |
| Laplacian $(q=1)$       | Yes, iff metric is CND | Yes, iff metric is CND |
| Geodesic exp. $(q > 2)$ | Not known              | No                     |

Table 1. Overview of results: For a geodesic metric, when is the geodesic exponential kernel (1) positive definite for all  $\lambda > 0$ ?

**Theorem 2.** Let M be a complete, smooth Riemannian manifold with its associated geodesic distance metric d. Assume, moreover, that  $k(x,y) = \exp(-\lambda d^2(x,y))$  is a PD geodesic Gaussian kernel for all  $\lambda > 0$ . Then the Riemannian manifold M is isometric to a Euclidean space.

curved spaces, including spheres and hyperbolic spaces. Our theoretical results are verified empirically. and show the following results, summarized in Table 1.



# Computing Geodesic Distances

Justin Solomon MIT, Spring 2019

