

Representing Surfaces

Justin Solomon
MIT, Spring 2019

Today's Plan

Step up one dimension

from curves to surfaces.

- Theoretical definition
- Discrete representations
 - Higher dimensionality

Briefly Will Mention

Step up n dimensions from surfaces to (sub)manifolds.

Easier transition.

Not entirely true: e.g. topology of 3-manifolds

Our Focus

Embedded geometry

What is an embedded surface?

Parametric Surface

Pathological Cases

$$f(u, v) = (u, u^{2}, \cos u)$$
$$f(u, v) = (0, 0, 0)$$
$$f(u, v) = (u, v^{3}, v^{2})$$

Differential of a Function

$$f:\mathbb{R}^n o \mathbb{R}^m$$

Matrix:

$$Df = \left(\frac{\partial f_i}{\partial x_i}\right) \in \mathbb{R}^{m \times n}$$

Linear operator:

$$df_{\mathbf{p}}: T_{\mathbf{p}}\mathbb{R}^n \to T_{f(\mathbf{p})}\mathbb{R}^m$$

Injective/Regular/One-to-One

$$f:\mathbb{R}^n o \mathbb{R}^m$$

Matrix:

$$Df \in \mathbb{R}^{m \times n}$$
 full rank

Linear operator:

$$df_{\mathbf{p}}: T_{\mathbf{p}}\mathbb{R}^n \to T_{f(\mathbf{p})}\mathbb{R}^m$$
 full rank

Next Issue

Recall: Differential Geometry Definition

Just Like Curves

A <u>surface</u> is a **set of points** with certain properties.

It is not a function.

Theoretical Definition of Surface

Theoretical Definition: Manifold

Definition (Submanifold of \mathbb{R}^n , with and without boundary). A set $\mathcal{M} \subseteq \mathbb{R}^n$ is an m-dimensional submanifold of \mathbb{R}^n if for each $\mathbf{p} \in \mathcal{M}$ there exist open sets $U \subseteq \mathbb{R}^m$, $W \subseteq \mathbb{R}^n$ and a function $g: U \cap \mathcal{H}_m \to \mathcal{M} \cap W$ such that $\mathbf{p} \in W$ and g is a one-to-one and smooth map whose Jacobian is rank-m and admitting a continuous inverse $g^{-1}: W \cap M \to U$.

Differential Geometer's Mantra

A surface is locally planar.

Tangent Space

Normal Space

Orientable Submanifold

Admits a continuous map

$$\mathbf{n}(\mathbf{p}): \mathcal{M} \backslash \partial \mathcal{M} \to \mathcal{S}^{n-1}$$

$$\mathbf{n}(\mathbf{p}) \in N_{\mathbf{p}}\mathcal{M}$$

Not Orientable

Figure 3. Non-orientable surface with second order saddles. (all photos, Phillip Geller)

Brent Collins (Gower, Missouri) is a sculptor who has presented his work at AM93, AM95, and AM97. His recent collaboration with Carlo Séquin has resulted in new forms that represent the leading edge of sculpture influenced by mathematics.

More General Definition: Manifold

Definition 4.2 (Manifold). An m-dimensional (topological) manifold \mathcal{M} is a Hausdorff space for which each $\mathbf{p} \in \mathcal{M}$ admits open sets $U \subseteq \mathbb{R}^m$, $W \subseteq \mathcal{M}$ and a homeomorphism (continuous map with continuous inverse) $g: U \to W$.

To think about:

No notion of normal! Tangent vectors exist but have no length! How do you detect orientability?

http://www.math.sjsu.edu/~simic/Pics/Calabi-Yau.jpg

No Euclidean embedding

Discrete Problem

What is a discrete surface? How do you store it?

Common Representation

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

Triangle mesh

After Some Cleaning

$$M = (V, T)$$

What conditions are needed?

Triangle mesh

What is a Discrete Surface?

To read: More general story "Orientable combinatorial manifold"

Dimensionality Structure

Simplicial complex

Face Dimension 2

Edge Dimension 1

Vertex Dimension o

Nonmanifold Edge

Manifold Mesh

- 1. Each edge is incident to one or two faces
- 2. Faces incident to a vertex form a closed or open fan

Manifold Mesh

- Each edge is incident to one or two faces
- 2. Faces incident to a vertex form a closed or open fan

Assume meshes are manifold (for now)

Basic Observation

Piecewise linear faces are reasonable building blocks.

Additional Advantages

Simple to render

Arbitrary topology possible

Basis for subdivision, refinement

Easy-to-Violate Assumption

Invalid Meshes vs. Bad Meshes

Nonuniform areas and angles

Why is Meshing an Issue?

How to you interpret one value per vertex?

Topology [tuh-pol-uh-jee]: The study of geometric properties that remain invariant under certain transformations

Mesh Topology vs. Geometry

Mesh Topology vs. Geometry

Triangle Mesh

$$V = (v_1, v_2, \dots, v_n) \subset \mathbb{R}^n$$

$$E = (e_1, e_2, \dots, e_k) \subseteq V \times V$$

$$F = (f_1, f_2, \dots, f_m) \subseteq V \times V \times V$$

Plus manifold conditions

Valence

Euler Characteristic

$$V-E+F:=\chi$$

$$\chi = 2 - 2g$$

g = 0

q = 1

g = 2

$$V - E + F := \chi$$

"Each edge is adjacent to two faces. Each face has three edges."

Closed mesh: Easy estimates!

$$V - \frac{1}{2}F := \chi$$

"Each edge is adjacent to two faces. Each face has three edges."

Closed mesh: Easy estimates!

 $\begin{array}{c} \operatorname{Big} \\ \operatorname{number} \end{array} V - \frac{1}{2} F := \chi \begin{array}{c} \operatorname{Small} \\ \operatorname{number} \end{array}$

Closed mesh: Easy estimates!

 $E \approx 3V$

 $F \approx 2V$

average valence ≈ 6

Why?!

General estimates

Orientability

Smooth Surface Definition

 $https://lh3.googleusercontent.com/-njXPH7NSX5c/VV4PXu54ngl/AAAAAAAAJjM/m6TGg3ZVKGE/w64o-h4oo-p-k/normal_tore.png$

Continuous field of normal vectors

Issue on Triangle Mesh

Right-Hand Rule

Discrete Orientability

Normal field isn't continuous

Data Structures for Surfaces

Must represent geometry and topology.

Simplest Format

```
      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3
```

No topology!

glBegin(GL_TRIANGLES)

CS 468 2011 (M. Ben-Chen), other slides

Triangle soup

Factor Out Vertices

CS 468 2011 (M. Ben-Chen), other slides

Shared vertex structure

Simple Mesh Smoothing

```
for i=1 to n
  for each vertex v
  v = .5*v +
    .5*(average of neighbors);
```

Typical Queries

- Neighboring vertices to a vertex
- Neighboring faces to an edge
- Edges adjacent to a face
- Edges adjacent to a vertex
- **-** . . .

Mostly localized

Typical Queries

- Neighboring vertices to a vertex
- Neighboring faces to an edge
- Edges adjacent to a face
- Edges adjacent to a vertex
- **-** . . .

Pieces of Halfedge Data Structure

- Vertices
- Faces
- Half-edges

Structure tuned for meshes

Halfedge?

Oriented edge

Halfedge Data Types

Vertex stores:

 Arbitrary outgoing halfedge

Halfedge Data Types

Face stores:

Arbitrary adjacent halfedge

Halfedge Data Types

Halfedge

stores:

- Flip
- Next
- Face
- Vertex

Iterating Over Vertex Neighbors


```
Iterate(v):
startEdge = v.out;
e = startEdge;
do
    process(e.flip.from)
    e = e.flip.next
while e != startEdge
```

Only Scratching the Surface

Eurographics Symposium on Geometry Processing (2005) M. Desbrun, H. Pottmann (Editors)

Streaming Compression of Triangle Meshes

Martin Isenburg^{1†}

Peter Lindstrom²

Jack Snoeyink¹

¹ University of North Carolina at Chapel Hill

² Lawrence Livermore National Labs

EUROGRAPHICS 2011 / M. Chen and O. Deussen (Guest Editors)

Volume 30 (2011), Number 2

SQuad: Compact Representation for Triangle Meshes

Topraj Gurung¹, Daniel Laney², Peter Lindstrom², Jarek Rossignac¹

¹Georgia Institute of Technology ²Lawrence Livermore National Laboratory

Scalar Functions

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

Discrete Scalar Functions

$$f \in \mathbb{R}^{|V|}$$

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map vertices to real numbers

Question

What is the integral of f?

$$\int_{M} f \, dA$$

Dual Cell

Discrete version of dA

Dual Complex

One Surface, Two Meshes

One Surface, Two Halfedges

Missing Operation

Quad Edge

Rotation Operation

$$e \to \text{Rot} \to \text{Rot} = e \to \text{Flip}$$

Topological Operations

Topological Operations

Take-Away

Complex data structures enable simpler traversal at cost of more bookkeeping.

Not the Only Model

Implicit surfaces

Not the Only Model

http://www.itsartmag.com/features/cgfluids/ https://developer.nvidia.com/content/fluid-simulation-alice-madness-returns

Smoothed-particle hydrodynamics

Not the Only Model

AN IMPLICIT SURFACE TENSION MODEL

J. I. Hochstein* and T. L. Williams**
The University of Memphis
Memphis, Tennessee

ABSTRACT

A new implicit model for surface tension at a two-fluid interface is proposed for use in computational models of flows with free surfaces and its performance is compared to an existing explicit model. The new model is based on an evolution equation for surface curvature that includes the influence of advection as well as curface tension. A detailed development of the new model is presented as are the details of the computational implementation. The performance of the new model is compared to an existing explicit model by using both models to predict the surface dynamics of several twodimensional configurations. It is concluded that the new implicit surface tension model does perform better for configurations with a large surface tension coefficient. It is shown that, for several cases, the time step size is no longer limited by surface tension stability considerations (as it was using the explicit model), but rather by other limitations inherent in the existing volume advection algorithm.

INTRODUCTION

Incompressible flows with a free-surface exist in many industrial applications. Some examples include fuel atomization in internal combustion engines, droplet size control in ink-jet printers, formation of lead shot, control of liquid spacecraft propellant in low gravity, and the spinning of synthetic fibers. The technology for some of these applications has been developed by heavily relying on experimental study of the specific process involved. For others, such as spacecraft propellant management, experimental studies are prohibitively expensive and the ability to computationally model these process is essential for their development.

The modeling of flows with a free surface presents challenges unlike other types of flow problems in that a boundary condition must be applied at the free surface which is often in a transient state and irregularly shaped. This problem is exacerbated when the force due to surface tension

Cleanest: Design software

Cleanest: Design software

http://www.colin-studholme.net/software/rview/rvmanual/morphtool5.gif

Volumetric extraction

Volumetric extraction

http://www.engineeringspecifier.com/public/primages/pr1200.jpg

Point clouds

Delaunay Triangulation

Well-behaved dual mesh

Strategies for Surface Delaunay

- Tangent plane
 Derive local triangulation from tangent projection
- Restricted Delaunay
 Usual Delaunay strategy but in smaller part of R³
- Inside/outside labeling
 Find inside/outside labels for tetrahedra
- Empty balls
 Require existence of sphere around triangle with no other point

Delaunay Triangulation Based Surface Reconstruction: Ideas and Algorithms
Cazals and Giesen 2004

Poisson Reconstruction

Poisson Surface Reconstruction Kazhdan, Bolitho and Hoppe (SGP 2006)

Representing Surfaces

Justin Solomon
MIT, Spring 2019

