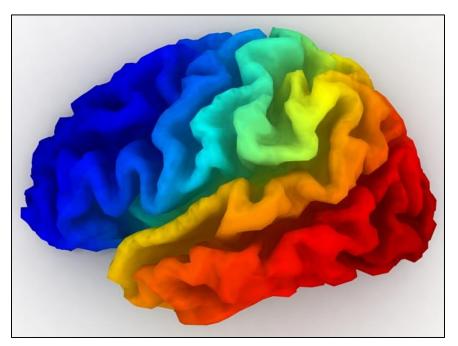
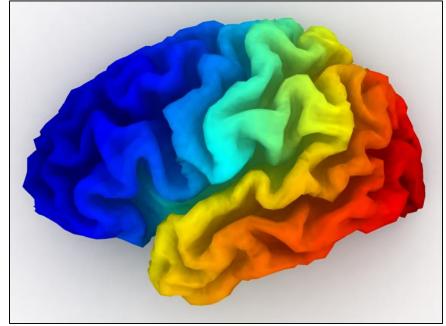


Surface Correspondence

Justin Solomon
MIT, Spring 2019

Correspondence Problems



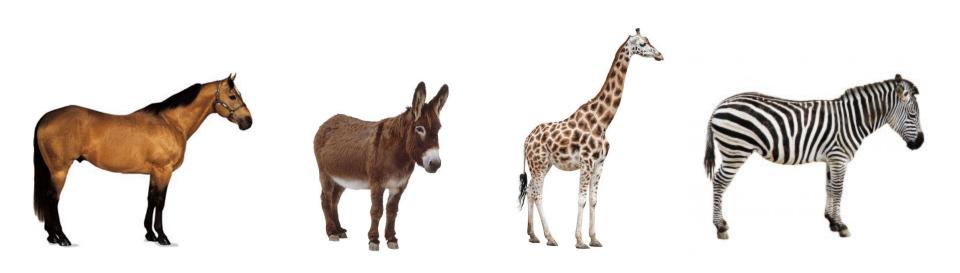


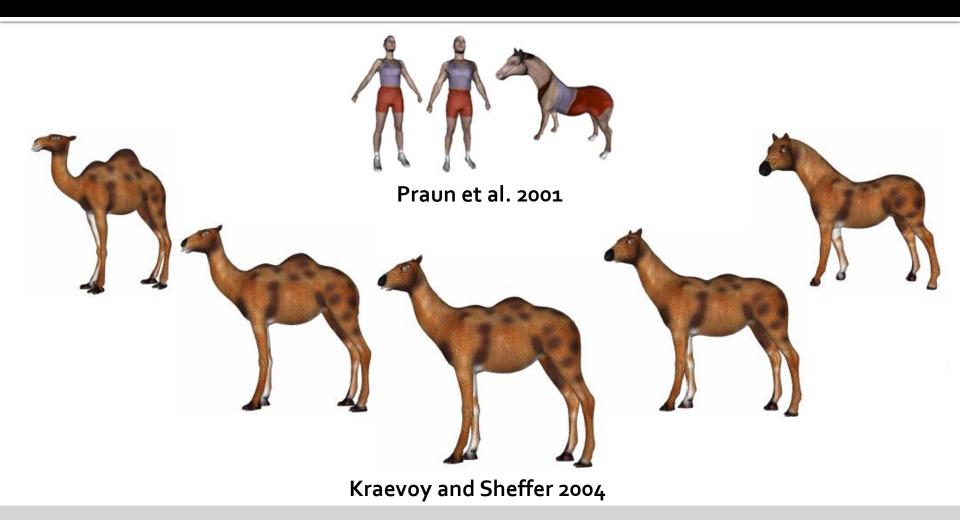
Which points on one object correspond to points on another?

How is this different from registration?

Typical Distinction

Seek shared structure instead of alignment

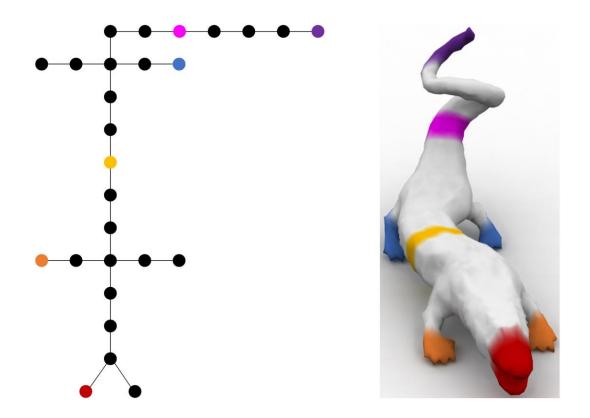




Texture transfer

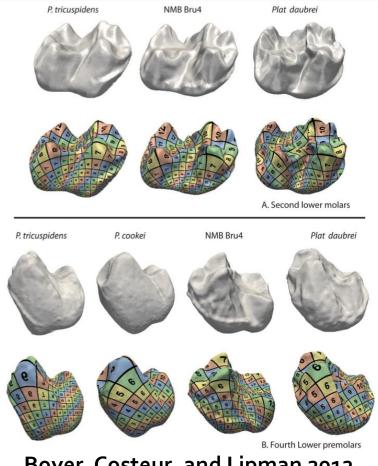
Ovsjanikov et al. 2012

Segmentation transfer



Solomon et al. 2016

Layout



Boyer, Costeur, and Lipman 2012

Paleontology

Desirable Properties

Given two (or more) shapes Find a map f, that is:

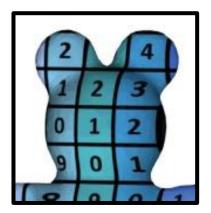
- Automatic
- Fast to compute
 - Bijective

(if we expect global correspondence)

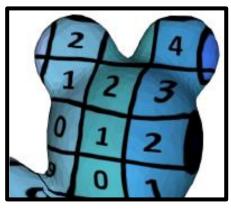
Low-distortion

What do we need the map for?

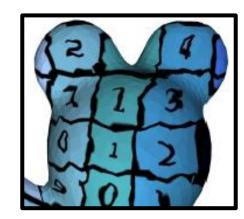
Shape interpolation or texture transfer require highly accurate map



Target Texture (projection)

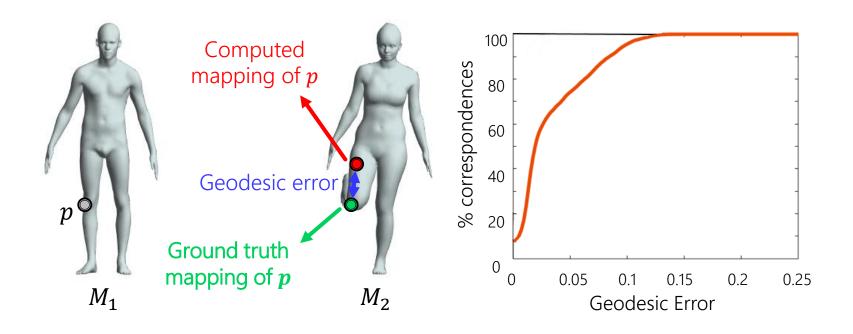


Locally and globally accurate map

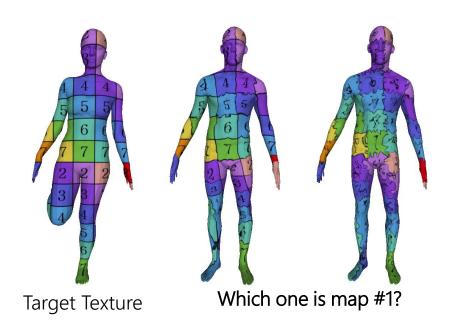


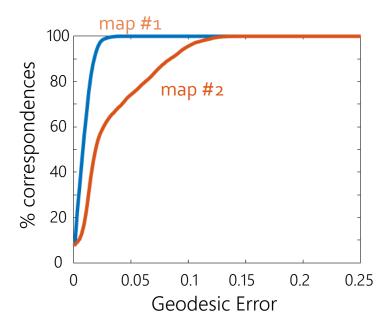
Globally accurate, locally distorted map

How can we evaluate a given map quality?
Given a ground truth map, compute the cumulative error graph

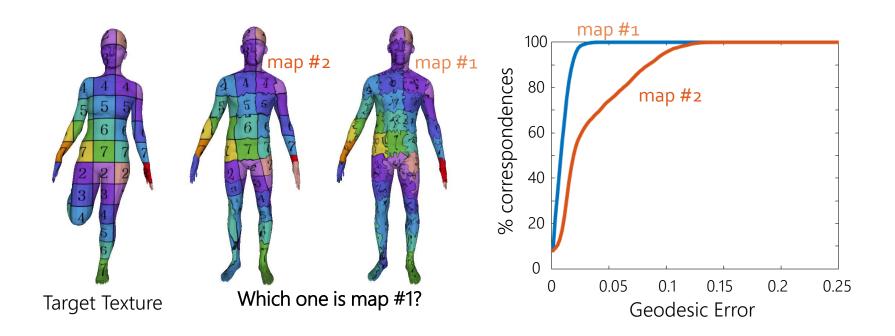


How can we evaluate a given map quality?
Given a ground truth map, compute the cumulative error graph



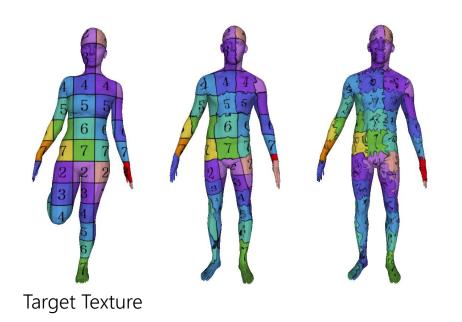


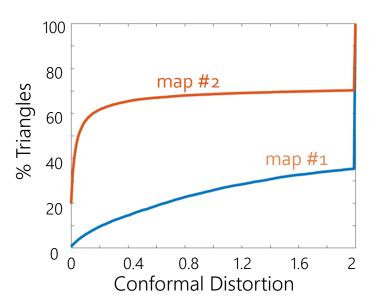
How can we evaluate a given map quality?
Given a ground truth map, compute the cumulative error graph



How can we evaluate a given map quality?

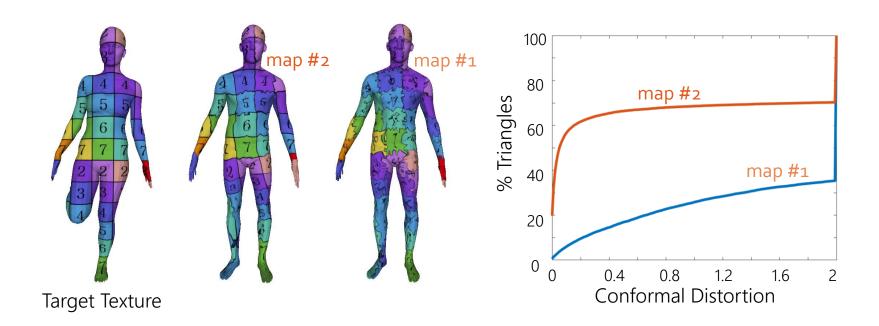
Measure *conformal distortion* (angle preservation)



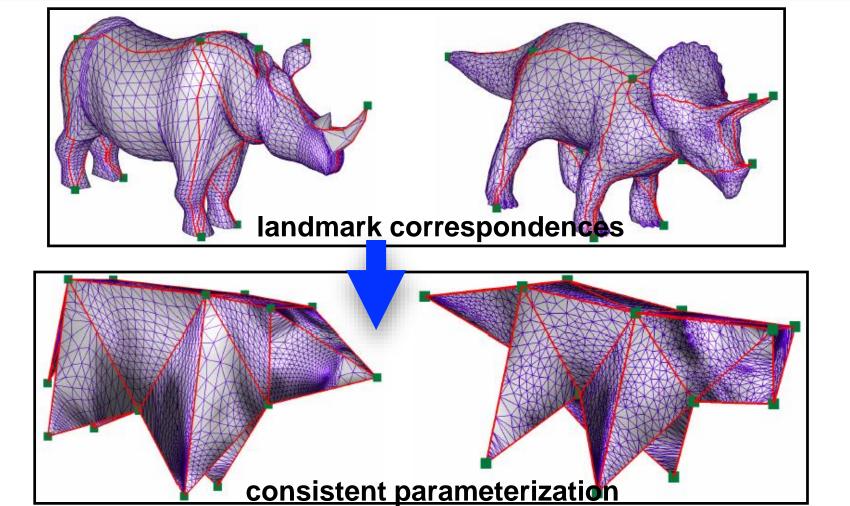


How can we evaluate a given map quality?

Measure *conformal distortion* (angle preservation)

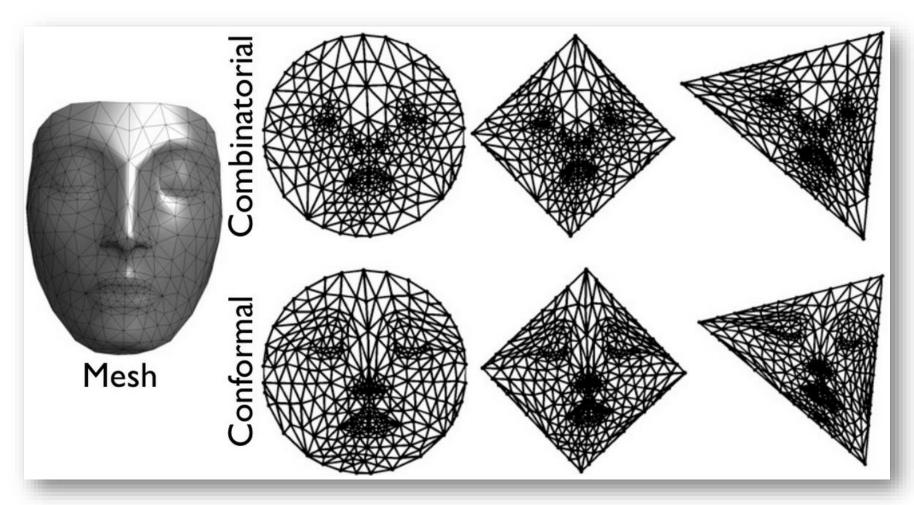


Example: Consistent Remeshing



Kraevoy 2004

Example: Mesh Embedding



G. Peyré, mesh processing course slides

Linear Solve for Embedding

$$\min_{\mathbf{x}_1, \dots, \mathbf{x}_{|V|}} \quad \sum_{(i,j) \in E} w_{ij} \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

s.t. $\mathbf{x}_v \text{ fixed } \forall v \in V_0$

- $w_{ij} \equiv 1$: Tutte embedding
- w_{ij} from mesh: Harmonic embedding

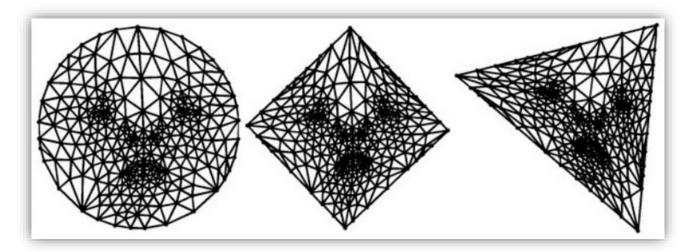
Assumption: w symmetric.

Tutte Embedding Theorem

$$\min_{\mathbf{x}_1, \dots, \mathbf{x}_{|V|}} \quad \sum_{(i,j) \in E} w_{ij} \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$$

s.t. $\mathbf{x}_v \text{ fixed } \forall v \in V_0$

Tutte embedding bijective if w nonnegative and boundary mapped to a convex polygon.

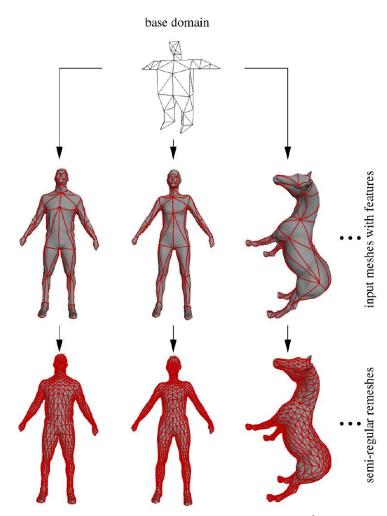


"How to draw a graph" (Proc. London Mathematical Society; Tutte, 1963)

Tradeoff: Consistent Remeshing

Pros:

- Easy
- Straightforward applications
- Cons:
 - Need manual landmarks
 - Hard to minimize distortion



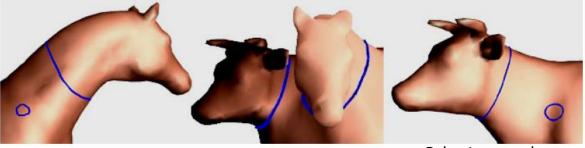
Recently Revisited

"Orbifold Tutte Embeddings" (Aigerman and Lipman, SIGGRAPH Asia 2015)

Automatic Landmarks

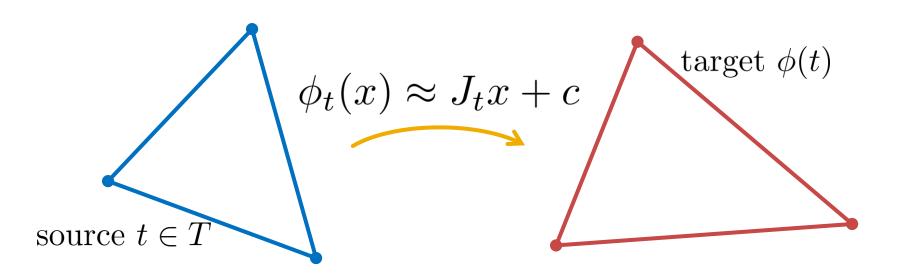
- Simple algorithm:
 - Set landmarks
 - Measure energy
 - Repeat

- Possible metrics
 - Conformality
 - Area preservation
 - Stretch



Schreiner et al. 2004

Local Distortion Measure



Distortion :=
$$\sum_{t \in T} A_t \mathcal{D}(J_t)$$

Triangle distortion measure

How do you measure distortion of a triangle?

Typical Distortion Measures

Name	$\mathfrak{D}(\mathbf{J})$	$\mathcal{D}(\sigma)$
Symmetric Dirichlet	$\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2$	$\sum_{i=1}^{n} (\sigma_i^2 + \sigma_i^{-2})$
Exponential		
Symmetric	_	
Dirichlet	$\exp(s(\ \mathbf{J}\ _F^2 + \ \mathbf{J}^{-1}\ _F^2))$	$\exp(s\sum_{i=1}^{n}(\sigma_i^2+\sigma_i^{-2}))$
Hencky strain	$\left\ \log \mathbf{J}^{\! op}\!\mathbf{J} ight\ _F^2$	$\sum_{i=1}^{n} (\log^2 \sigma_i)$
AMIPS	$\exp(s \cdot \frac{1}{2} (\frac{\operatorname{tr}(\mathbf{J}^{T} \mathbf{J})}{\det(\mathbf{J})}$	$\exp(s(\frac{1}{2}(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1})$
	$+\frac{1}{2}(\det(\mathbf{J}) + \det(\mathbf{J}^{-1})))$	$+\frac{1}{4}(\sigma_1\sigma_2+\frac{1}{\sigma_1\sigma_2}))$
Conformal AMIPS 21	$D rac{\mathrm{tr}(\mathbf{J}^{ op}\mathbf{J})}{\det(\mathbf{J})}$	$\frac{\sigma_1^2 + \sigma_2^2}{\sigma_1 \sigma_2}$
Conformal AMIPS 3	$D\frac{\operatorname{tr}(\mathbf{J}^{T}\mathbf{J})}{\det(\mathbf{J})^{\frac{2}{3}}}$	$rac{\sigma_1\sigma_2}{\sigma_1^2+\sigma_2^2+\sigma_3^2}$ Open challenge $(\sigma_1\sigma_2\sigma_3)^{rac{2}{3}}$ Optimize
		directly

Table from "Scalable Locally Injective Mappings" (Rabinovich et al., 2017)

Related Problem

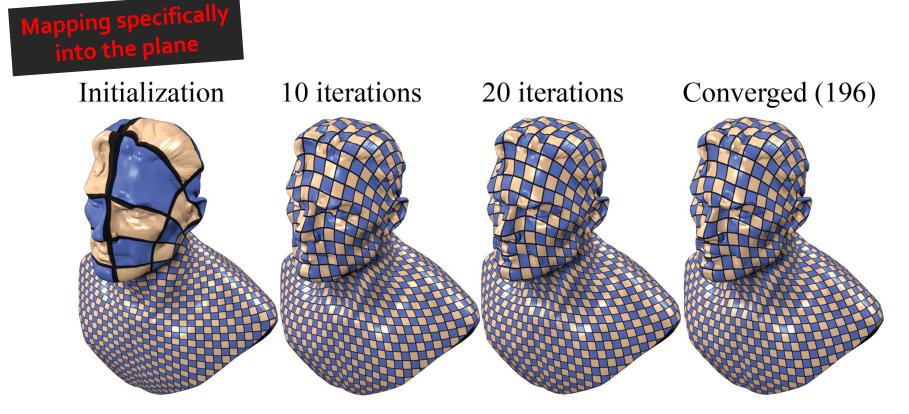


Image from "Scalable Locally Injective Mappings" (Rabinovich et al., 2017)

Parameterization

New Idea

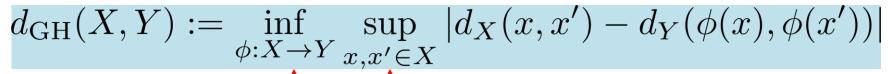
Not all calculations have to be at the triangle level!

Long-distance interactions

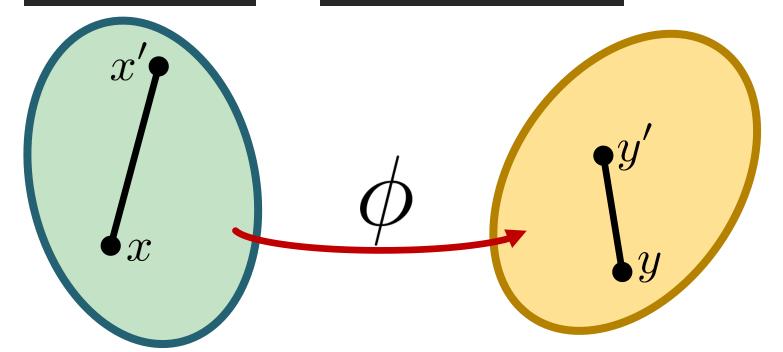
can stabilize geometric computations.

Gromov-Hausdorff Distance

Distance between metric spaces X, Y



Worst distortion

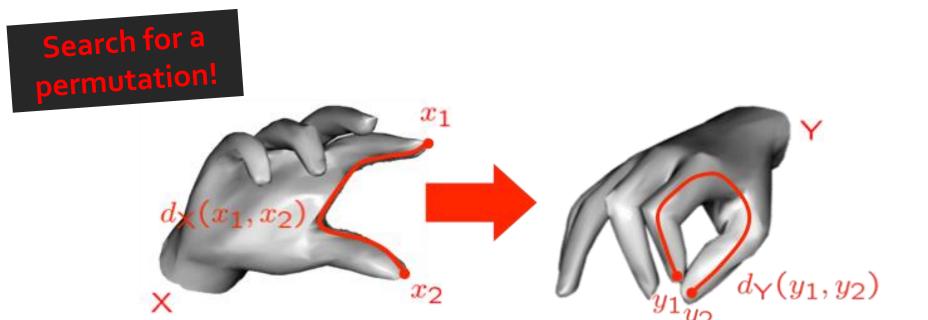


Classical Multidimensional Scaling

- 1. Double centering: $B := -\frac{1}{2}JDJ$ Centering matrix $J := I - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}$
- 2. Find m largest eigenvalues/eigenvectors

3.
$$X = E_m \Lambda_m^{1/2}$$

Generalized MDS



$$d_{\text{int}}(X,Y) := \min_{\{y_1, \dots, y_n\} \subset Y} \|d_X(x_i, x_j) - d_Y(y_i, y_j)\|$$

Problem: Quadratic Assignment

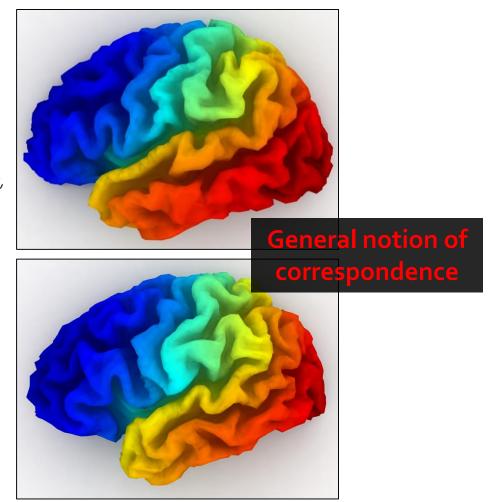
$$\min_{T} \quad \langle M_0 T, T M_1 \rangle$$
s.t. $T \in \{0, 1\}^{n \times n}$

$$T \mathbf{1} = p_0$$

$$T^{\mathsf{T}} \mathbf{1} = p_1$$

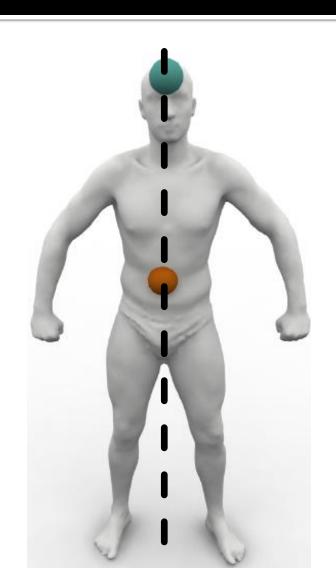
Nonconvex quadratic program!

NP-hard!



What's Wrong?

- Hard to optimize
- Multiple optima



Tradeoff: GMDS

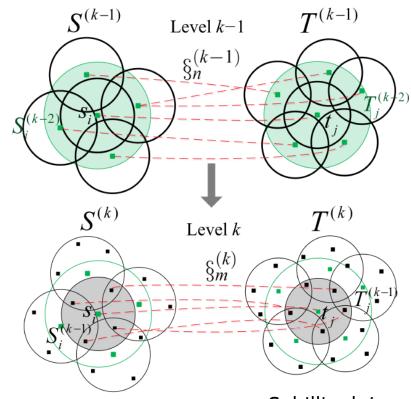
- Pros:
 - Good distance for non-isometric metric spaces
- Cons:
 - Non-convex
 - HUGE search space (i.e. permutations)

GMDS in Practice

- Heuristics to explore the permutations
 - Solve at a very coarse scale and interpolate
 - Coarse-to-fine
 - Partial matching

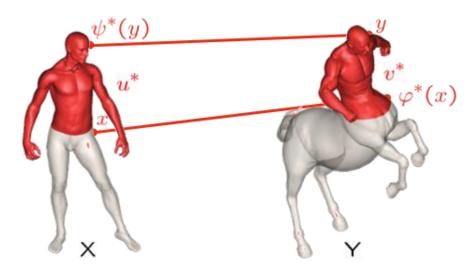
GMDS in Practice

- Heuristics to explore the permutations
 - Solve at a very coarse scale and interpolate
 - Coarse-to-fine
 - Partial matching



GMDS in Practice

- Heuristics to explore the permutations
 - Solve at a very coarse scale and interpolate
 - Coarse-to-fine
 - Partial matching



- Find correspondence φ^*, ψ^* minimizing distortion between current parts u^*, v^*
- Select parts u^*, v^* minimizing the distortion with current correspondence φ^*, ψ^* subject to $\lambda(u^*, v^*) \leq \lambda_0$

Returning to Desirable Properties

Given two (or more) shapes Find a map f, that is:

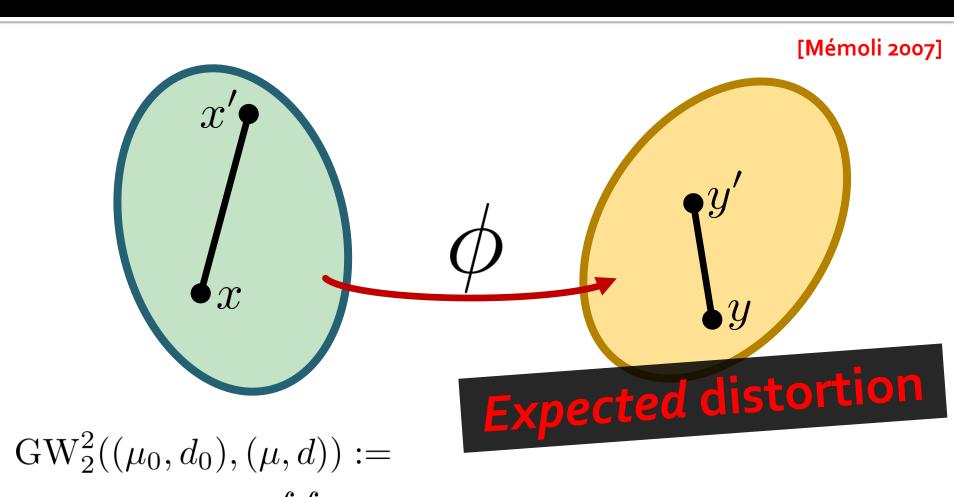
- Automatic
- Fast to compute
 - Bijective

(if we expect global correspondence)

Low-distortion

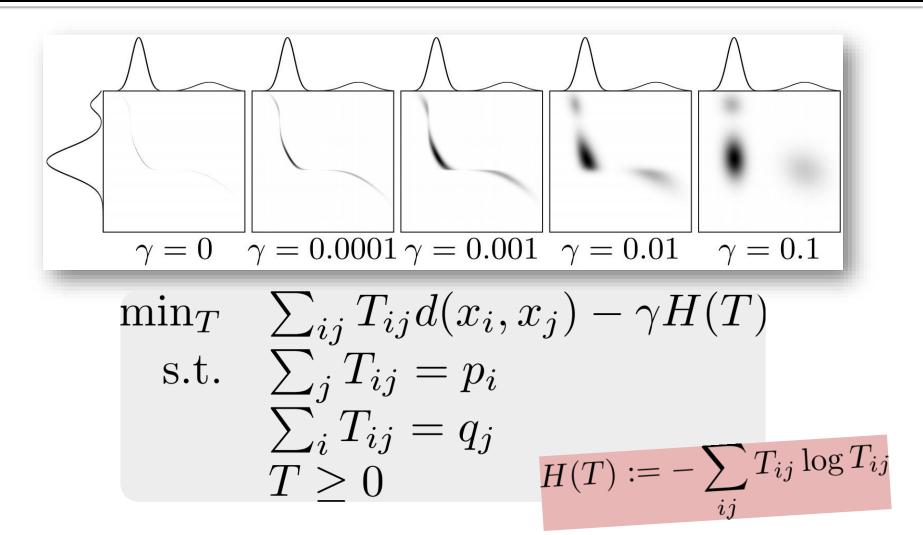
(unless local optimum is bad)

Gromov-Wasserstein Distance



$$\min_{\gamma \in \mathcal{M}(\mu_0, \mu)} \iint_{\Sigma_0 \times \Sigma} [d_0(x, x') - d(y, y')]^2 d\gamma(x, y) d\gamma(x', y')$$

Entropic Regularization



Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Gromov-Wasserstein Plus Entropy

Entropic Metric Alignment for Correspondence Problems

Justin Solomon* MIT

Gabriel Peyré CNRS & Univ. Paris-Dauphine Vladimir G. Kim Adobe Research Suvrit Sra MIT

Abstract

Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that stably extract "soft" matches in the presence of diverse geometric structures have proven to be valuable for shape retrieval and transfer of labels or semantic information. With these applications in mind, we present an algorithm for probabilistic correspondence that optimizes an entropy-regularized Gromov-Wasserstein (GW) objective. Built upon recent developments in numerical optimal transportation, our algorithm is compact, provably convergent, and applicable to any geometric domain expressible as a metric measure matrix. We provide comprehensive experiments illustrating the convergence and applicability of our algorithm to a variety of graphics tasks. Furthermore, we expand entropic GW correspondence to a framework for other matching problems, incorporating partial distance matrices, user guidance, shape exploration, symmetry detection, and joint analysis of more than two domains. These applications expand the scope of entropic GW correspondence to major shape analysis problems and are stable to distortion and noise.

Keywords: Gromov-Wasserstein, matching, entropy

Concepts: •Computing methodologies → Shape analysis;

Introduction

A basic component of the geometry processing toolbox is a tool for mapping or correspondence, the problem of finding which points on a target domain correspond to points on a source. Many variations of this problem have been considered in the graphics literature, e.g.

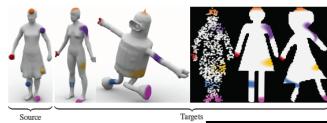


Figure 1: Entropic GW can find correspond surface (left) and a surface with similar shared semantic structure, a noisy 3D po hand drawing. Each fuzzy map was comp

are violated these algorithms suffer from local elastic terms into a single global ma

In this paper, we propose a new corres minimizes distortion of long- and shortstudy an entropically-regularized version of (GW) mapping objective function from [the distortion of geodesic distances. The o matching expressed as a "fuzzy" correspon of [Kim et al. 2012; Solomon et al. 2012] the correspondence via the weight of an e

Although [Mémoli 2011] and subsequent bility of using GW distances for geometric tional challenges hampered their practical these challenges, we build upon recent me timal transportation introduced in [Benan et al. 2015]. While optimal transportation ent ontimization problem from regularized GW computation (linear

function Gromov-Wasserstein $(\mu_0, \mathbf{D}_0, \mu, \mathbf{D}, \alpha, \eta)$ // Computes a local minimizer Γ of (6) $\Gamma \leftarrow \text{ONES}(n_0 \times n)$ for $i = 1, 2, 3, \dots$ $\mathbf{K} \leftarrow \exp(\mathbf{D}_0 \llbracket \boldsymbol{\mu}_0 \rrbracket \boldsymbol{\Gamma} \llbracket \boldsymbol{\mu} \rrbracket \mathbf{D}^\top / \alpha)$ $\Gamma \leftarrow \text{SINKHORN-PROJECTION}(\mathbf{K}^{\wedge \eta} \otimes \mathbf{\Gamma}^{\wedge (1-\eta)}; \boldsymbol{\mu}_0, \boldsymbol{\mu})$

function SINKHORN-PROJECTION($\mathbf{K}; \boldsymbol{\mu}_0, \boldsymbol{\mu}$) // Finds Γ minimizing $\mathrm{KL}(\Gamma|\mathbf{K})$ subject to $\Gamma \in \overline{\mathcal{M}}(\mu_0, \mu)$ $\mathbf{v}, \mathbf{w} \leftarrow \mathbf{1}$ for $j = 1, 2, 3, \dots$ $\mathbf{v} \leftarrow \mathbf{1} \oslash \mathbf{K}(\mathbf{w} \otimes \boldsymbol{\mu})$ $\mathbf{w} \leftarrow \mathbf{1} \oslash \mathbf{K}^{\top} (\mathbf{v} \otimes \boldsymbol{\mu}_0)$ return [v]K[w]

Algorithm 1: Iteration for finding regularized Gromov-Wasserstein distances. \otimes , \otimes denote elementwise multiplication and division.

return Γ

Convex Relaxation

Tight Relaxation of Quadratic Matching

Itay Kezurer[†] Shahar Z. Kovalsky[†] Ronen Basri Yaron Lipman

Weizmann Institute of Science

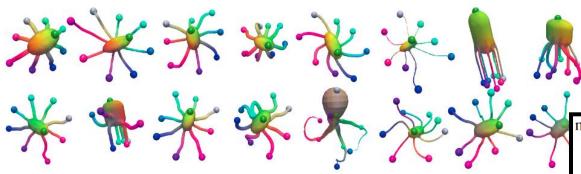


Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent correspondence in a collection showing strong variability and non-rigid deformations.

Abstract

Establishing point correspondences between shapes is extremely challenging as it involves both finding se semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and consthe Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard protect that builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation in semidefinite program (SDP). Our method is shown to be a certain hybrid of the popular spectral and does stochastic relaxations of QAM and in particular we prove that it is tighter than both.

Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experim it achieved the certified global optimum solution for the problem, while other relaxations tend to produce optimal solutions. This, however, comes at the price of solving an SDP in a higher dimension.

$$\max_{Y} \quad \operatorname{tr}(WY)$$
s.t. $Y \succeq [X][X]^{T}$

$$X \in \operatorname{conv} \Pi_{n}^{k}$$

$$\operatorname{tr}Y = k$$

Y > 0

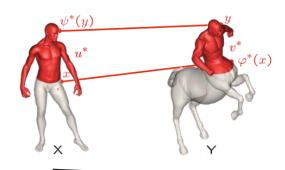
$$\sum_{qrst} Y_{qrst} = k^2$$

$$Y_{qrst} \le \begin{cases} 0, & \text{if } q = s, \ r \ne t \\ 0, & \text{if } r = t, \ q \ne s \\ \min\{X_{qr}, X_{st}\}, & \text{otherwise} \end{cases}$$

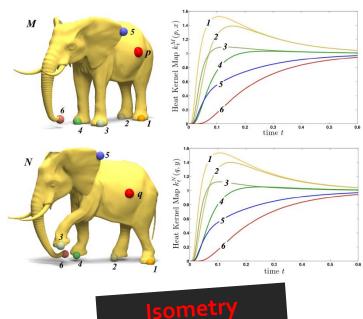
Continuum

Weak assumptions

Strong assumptions

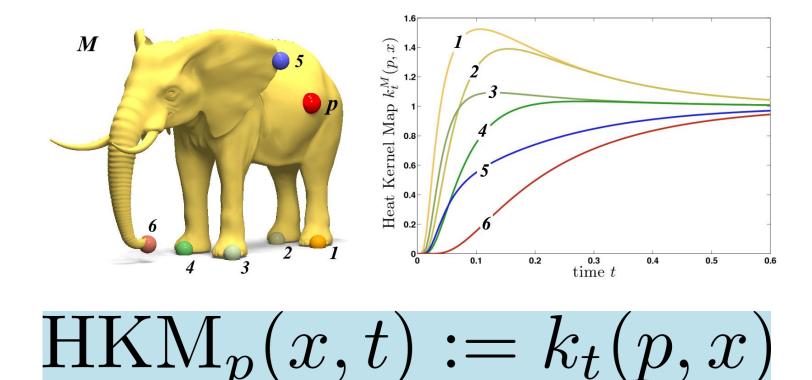


Low-distortion



Recall:

Heat Kernel Map



Theorem: Only have to match one point!

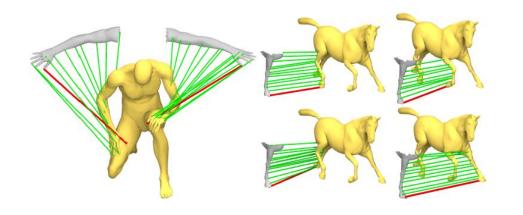
Tradeoff: Heat Kernel Map

Pros:

- Tiny search space
- Some extension to partial matching

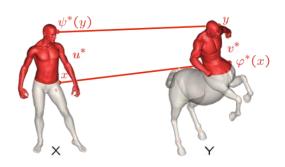
Cons:

 (Extremely) sensitive to deviation from isometry



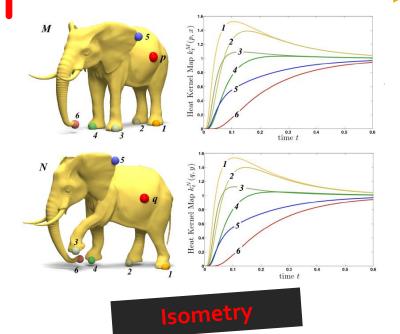
Continuum

Weak assumptions



Low-distortion

????Strong assumptions



Observation About Mapping

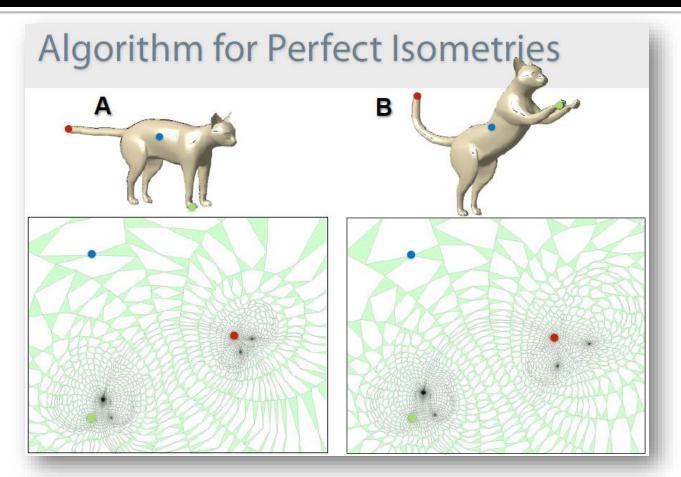
Angle and area preserving isometries \subseteq conformal maps

Easier

Hard!

Möbius Voting for Surface Correspondence Lipman and Funkhouser 2009

O(n³) Algorithm for Perfect Isometry



 $http://www.mpi-inf.mpg.de/resources/deformableShapeMatching/EG2011_Tutorial/slides/4.3\%20SymmetryApplications.pdf$

Map triplets of points

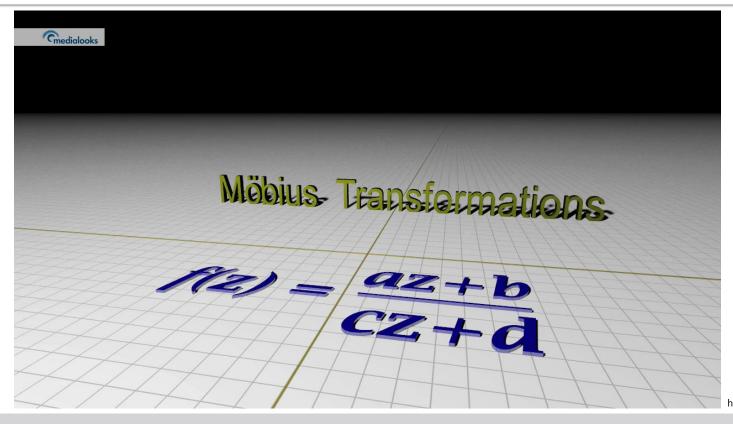
Möbius Voting



- 1. Map surfaces to complex plane
- 2. Select three points
- 3. Map plane to itself matching these points
- 4. Vote for pairings using distortion metric to weight
- 5. Return to 2

Möbius Voting for Surface Correspondence Lipman and Funkhouser 2009

Möbius Transformations

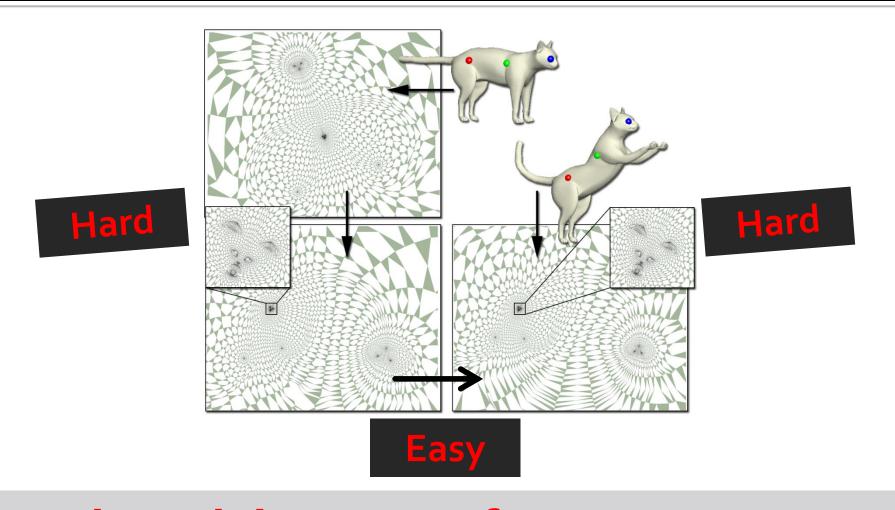


$$\frac{az+b}{cz+d}$$

http://www.ima.umn.edu/~arnold//moebius

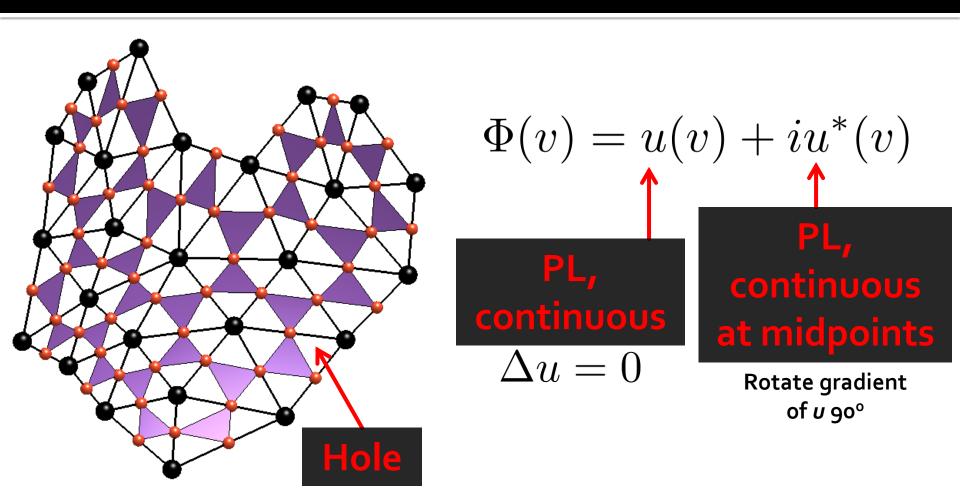
Bijective conformal maps of the extended complex plane

Observation



Hard work is per-surface, not per-map

Mid-Edge Uniformization



Cannot scale triangles to flatten

Voting Algorithm

```
Input: points \Sigma_1 = \{z_k\} and \Sigma_2 = \{w_\ell\}
         number of iterations I
         minimal subset size K
Output: correspondence matrix C = (C_{k,\ell}).
/* Möbius voting
while number of iterations < I do
     Random z_1, z_2, z_3 \in \Sigma_1.
     Random w_1, w_2, w_3 \in \Sigma_2.
     Find the Möbius transformations m_1, m_2 s.t.
           m_1(z_i) = y_i, m_2(w_i) = y_i, j = 1, 2, 3.
     Apply m_1 on \Sigma_1 to get \bar{z}_k = m_1(z_k).
     Apply m_2 on \Sigma_2 to get \bar{w}_\ell = m_2(w_\ell).
     Find mutually nearest-neighbors (\bar{z}_k, \bar{w}_\ell) to formulate
     candidate correspondence c.
     if number of mutually closest pairs \geq K then
          Calculate the deformation energy \mathbf{E}(c)
          /* Vote in correspondence matrix
          foreach (\bar{z}_k, \bar{w}_\ell) mutually nearest-neighbors do
              C_{k,\ell} \leftarrow C_{k,\ell} + \frac{1}{\varepsilon + \mathbf{E}(c)/n}.
          end
     end
end
```

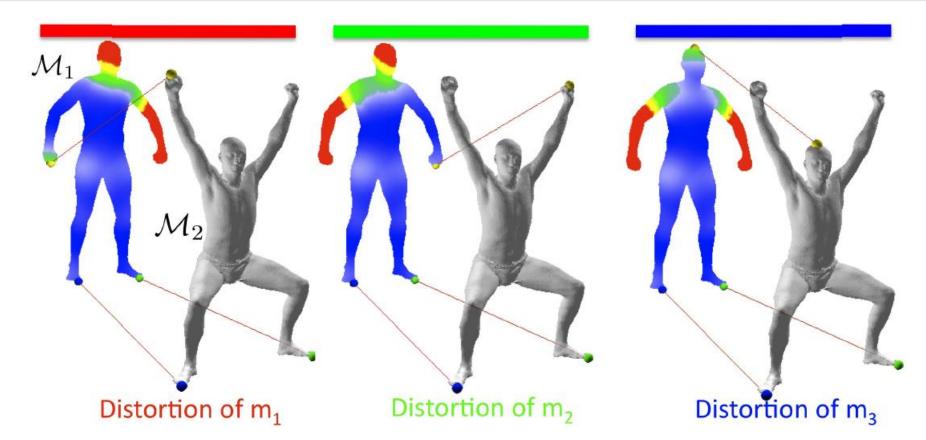
Tradeoff: Möbius Voting

Pros:

- Efficient
- Voting procedure handles some non-isometry

Cons:

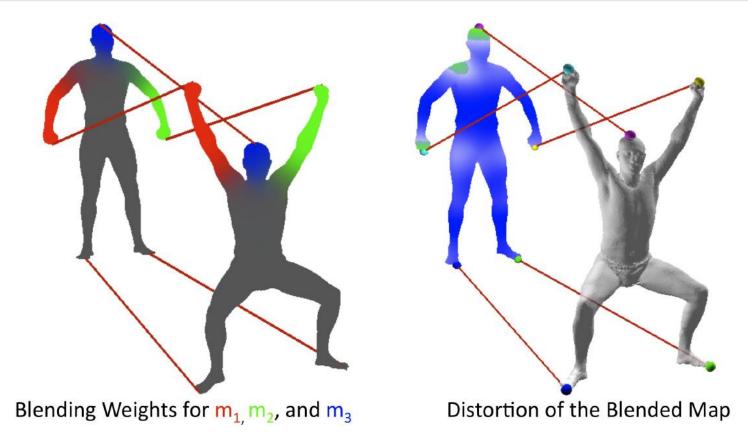
- Does not provide smooth/continuous map
- Does not optimize global distortion
- Only for genus o



Different conformal maps distorted in different places.

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011

Use for Dense Mapping



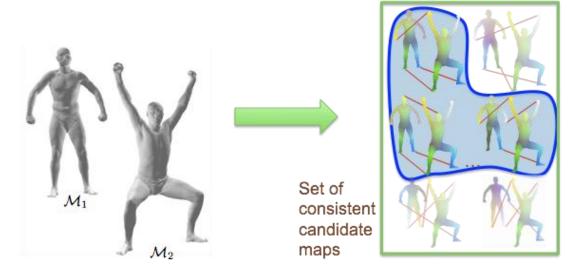
Combine good parts of different maps!

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011

- Algorithm:
 - Generate consistent maps
 - Find blending weights per-point on each map
 - Blend maps

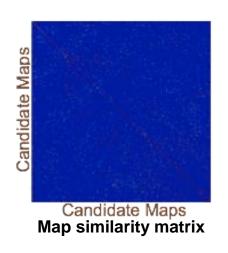
Algorithm:

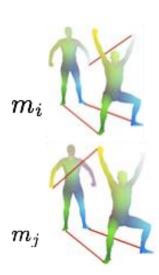
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps



Algorithm:

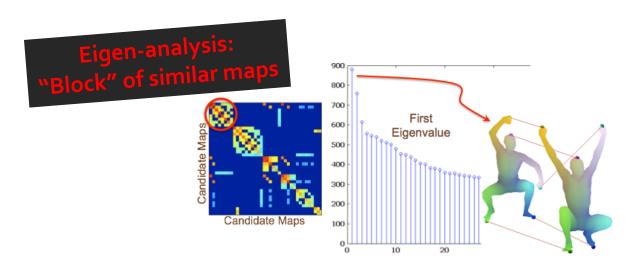
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps



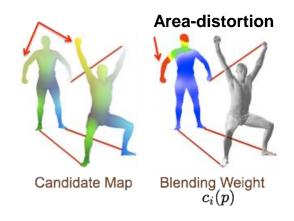


Algorithm:

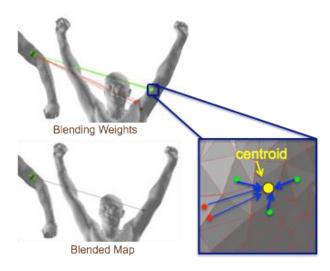
- Generate consistent maps
- Find blending weights per-point on each map
- Blend maps



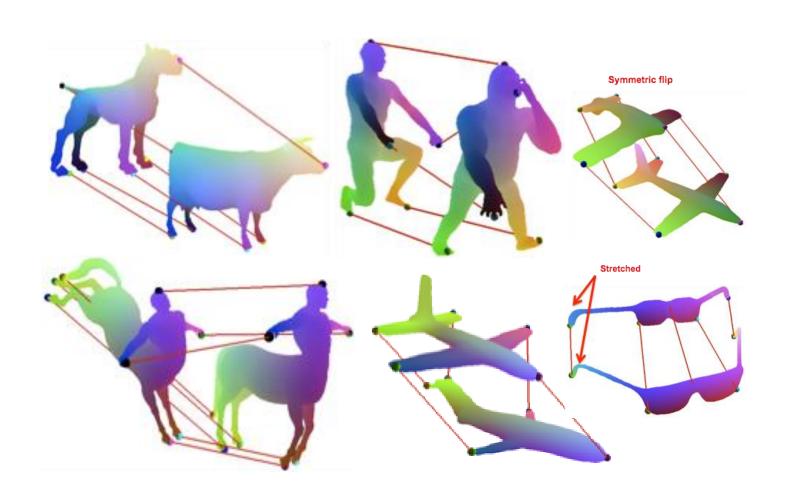
- Algorithm:
 - Generate consistent maps
 - Find blending weights per-point on each map
 - Blend maps



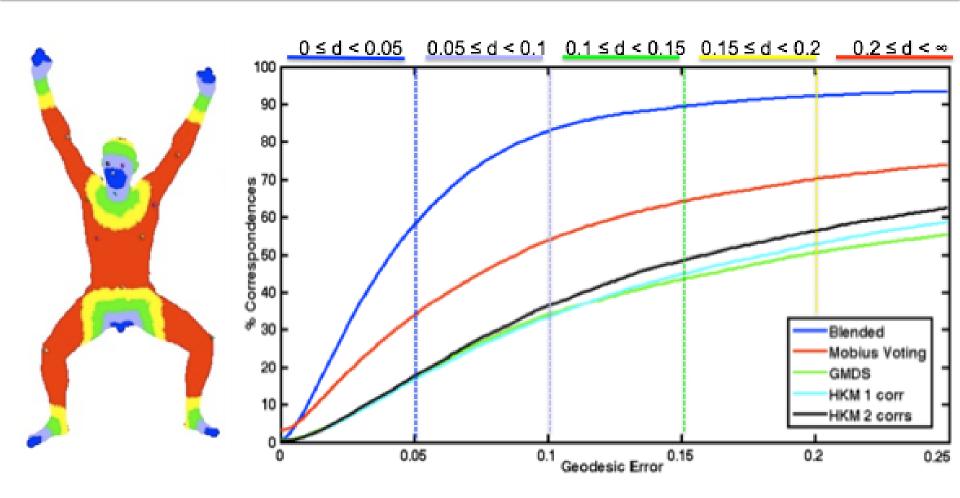
- Algorithm:
 - Generate consistent maps
 - Find blending weights per-point on each map
 - Blend maps



Some Examples



Evaluation



Tradeoff: Blended Intrinsic Maps

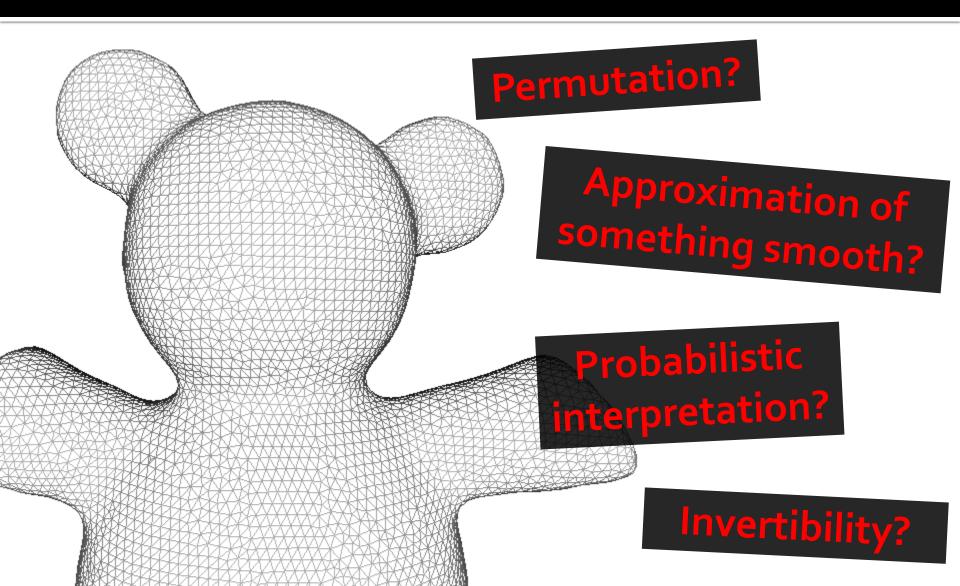
Pros:

- Can handle non-isometric shapes
- Efficient

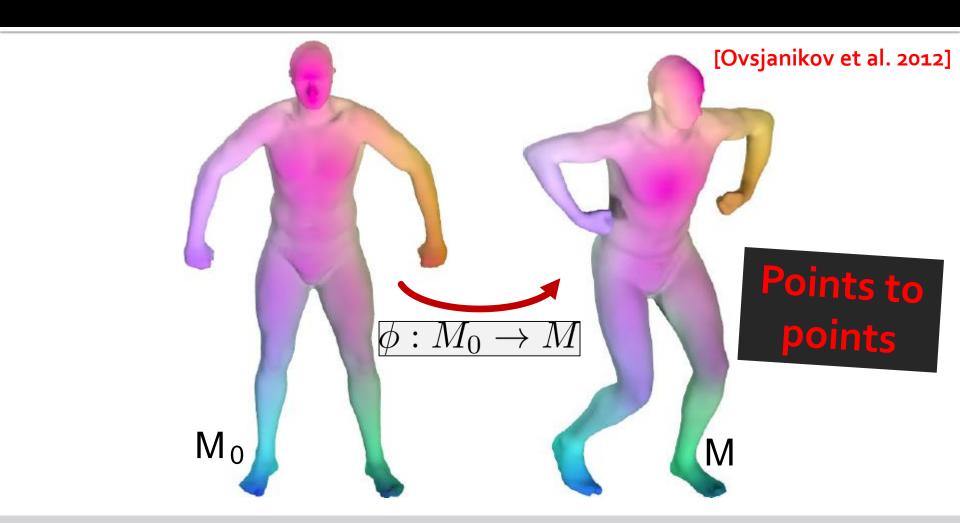
Cons:

- Lots of area distortion for some shapes
- Genus o manifold surfaces

Subtlety: Representation

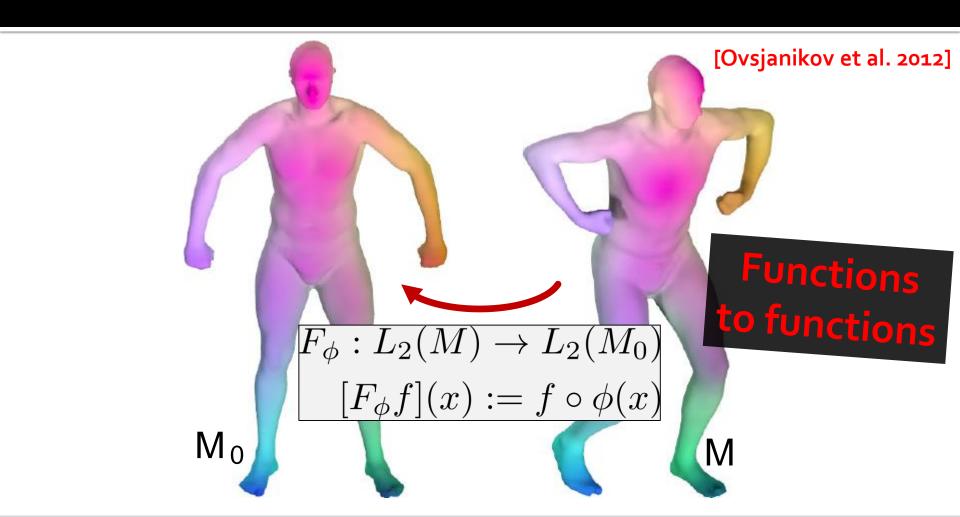


Functional Maps



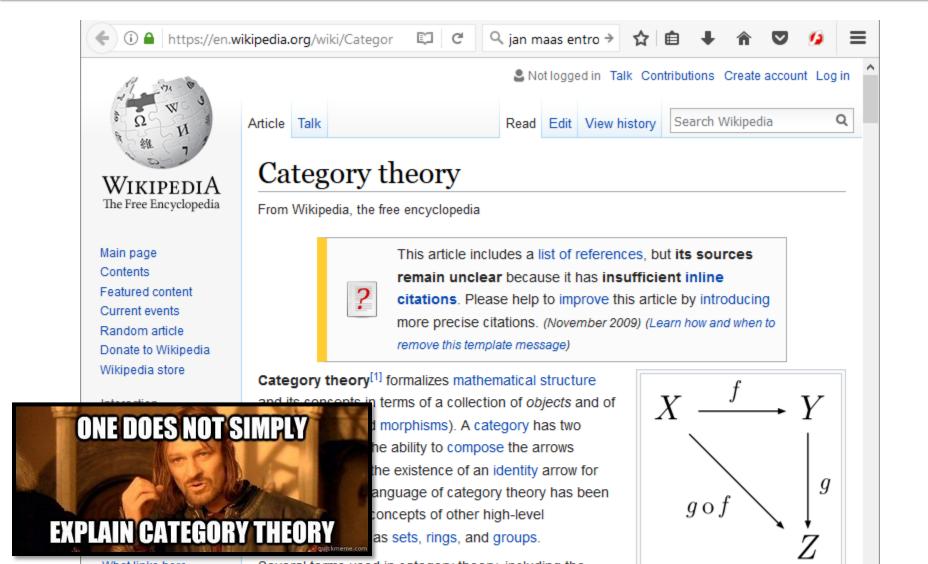
Points on M_o to points on M

Functional Maps



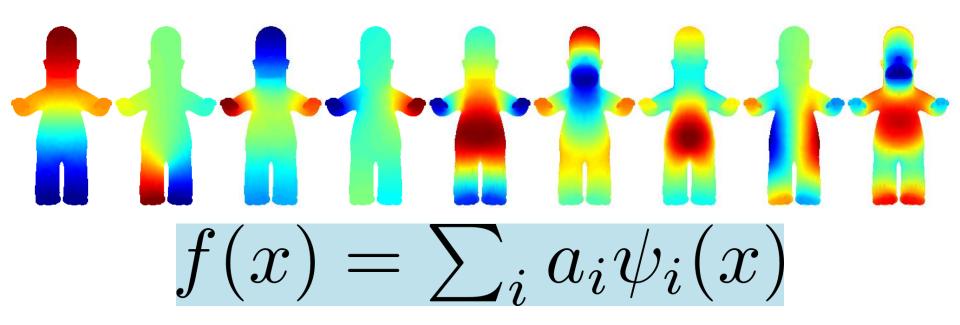
Functions on M to functions on M_{\odot}

Mathematical Sidebar



Functional Maps

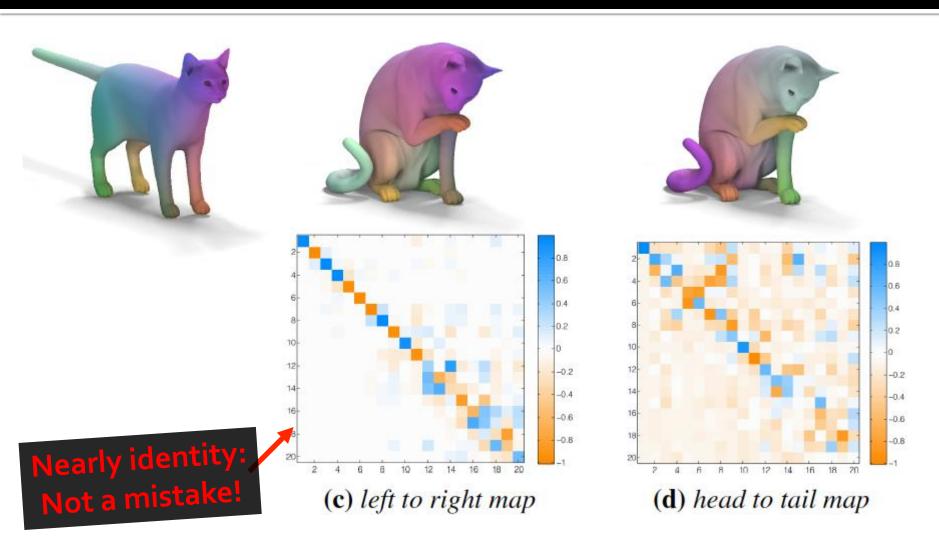
[Ovsjanikov et al. 2012]



Functional map:

Matrix taking Laplace-Beltrami (Fourier) coefficients on M to coefficients on M_{\circ}

Example Maps



Functional Maps

- Simple Algorithm
 - Compute some geometric functions to be preserved: A, B
 - Solve in least-squares sense for C: B = C A
- Additional Considerations
 - Favor commutativity
 - Favor orthonormality (if shapes are isometric)
 - Efficiently getting point-to-point correspondences

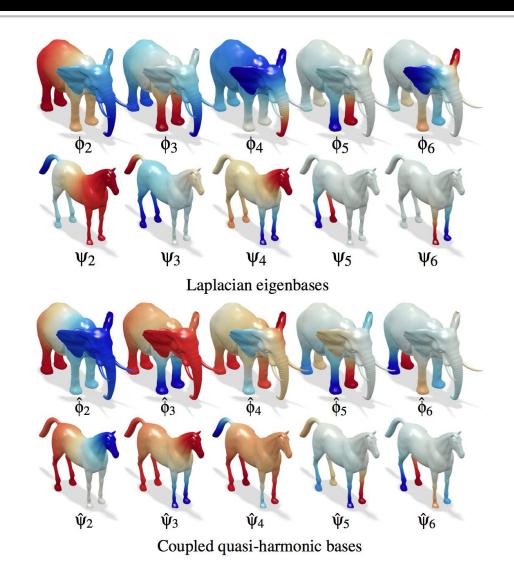
Tradeoff: Functional Maps

Pros:

- Condensed representation
- Linear
- Alternative perspective on mapping
- Many recent papers with variations
- Cons:
 - Hard to handle non-isometry Some progress in last few years!

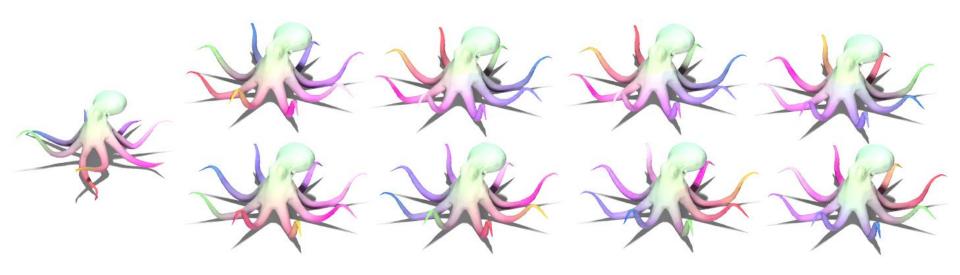
Example extension:

Coupled Quasi-Harmonic Basis



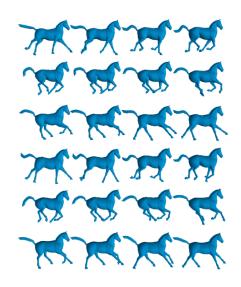
Example extension:

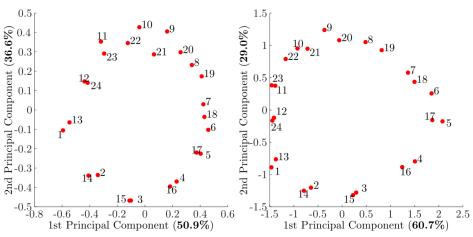
Leverage Symmetry



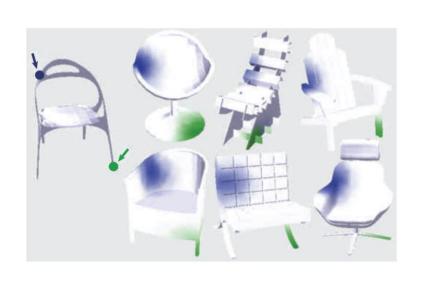
Example extension:

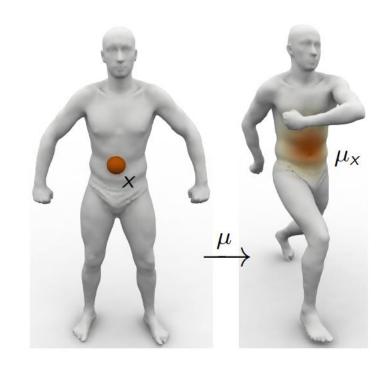
Analyze Deformation

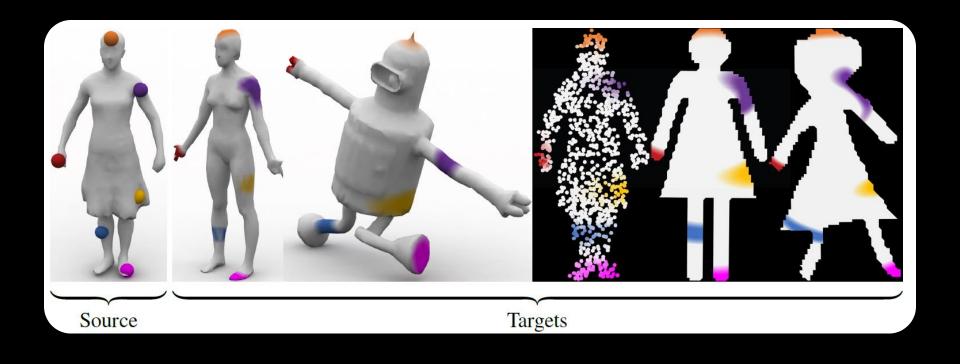




Soft/Fuzzy Maps







Surface Correspondence

Justin Solomon
MIT, Spring 2019

