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Which points on one object 
correspond to points on another?



How is this different 
from registration?



Seek shared structure
instead of alignment



Kraevoy and Sheffer 2004 

Texture transfer

Praun et al. 2001



Ovsjanikov et al. 2012

Segmentation transfer



Solomon et al. 2016

Layout



Boyer, Costeur, and Lipman 2012

Paleontology



Given two (or more) shapes
Find a map f, that is:

 Automatic

 Fast to compute

 Bijective
(if we expect global correspondence)

 Low-distortion

Adapted from slides by Q. Huang, V. Kim



What do we need the map for?

Shape interpolation or texture transfer require highly accurate map
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How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph
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Given a ground truth map, compute the cumulative error graph

0          0.05       0.1       0.15        0.2        0.25

Geodesic Error

100

80

60

40

20

0
%

 c
o

rr
e
sp

o
n

d
e
n

ce
s

map #1

map #2

Target Texture Which one is map #1?

Slide courtesy Danielle Ezuz



How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph
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How can we evaluate a given map quality?

Measure conformal distortion (angle preservation)

Conformal Distortion
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How can we evaluate a given map quality?

Measure conformal distortion (angle preservation)
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Kraevoy 2004 

landmark correspondences

consistent parameterization

Adapted from slides by Q. Huang, V. Kim



G. Peyré, mesh processing course slides



 𝒘𝒊𝒋 ≡ 𝟏: Tutte embedding

 𝒘𝒊𝒋 from mesh: Harmonic embedding

Assumption:  𝒘 symmetric.



“How to draw a graph” (Proc. London Mathematical Society; Tutte, 1963)

Tutte embedding bijective if 𝒘 nonnegative and 
boundary mapped to a convex polygon.



 Pros:

 Easy

 Straightforward 
applications

 Cons:

 Need manual landmarks

 Hard to minimize distortion

Praun et al. 2001
Adapted from slides by Q. Huang, V. Kim



“Orbifold Tutte Embeddings” (Aigerman and Lipman, SIGGRAPH Asia 2015)



 Simple algorithm:

 Set landmarks

 Measure energy

 Repeat

E.g. small conformal distortion, large area distortion:

 Possible metrics

 Conformality

 Area preservation

 Stretch

Schreiner et al. 2004

Adapted from slides by Q. Huang, V. Kim



Notation from Rabinovich et al. 2017

Triangle distortion measure



How do you measure 
distortion of a triangle?



Table from “Scalable Locally Injective Mappings” (Rabinovich et al., 2017)



Parameterization

Image from “Scalable Locally Injective Mappings” (Rabinovich et al., 2017)



Not all calculations have to be at the triangle level!

Long-distance interactions
can stabilize geometric computations.



Distance between metric spaces X, Y

Best map Worst distortion



Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Bronstein, Bronstein, and Kimmel; PNAS 2006



General notion of 
correspondence



Hard to optimize
Multiple optima



 Pros:

 Good distance for non-isometric metric spaces

 Cons:

 Non-convex

 HUGE search space (i.e. permutations)

Adapted from slides by Q. Huang, V. Kim



 Heuristics to explore the permutations

 Solve at a very coarse scale and interpolate

 Coarse-to-fine

 Partial matching

Bronstein’08
Adapted from slides by Q. Huang, V. Kim



 Heuristics to explore the permutations

 Solve at a very coarse scale and interpolate

 Coarse-to-fine

 Partial matching

Sahillioglu’12Adapted from slides by Q. Huang, V. Kim



 Heuristics to explore the permutations

 Solve at a very coarse scale and interpolate

 Coarse-to-fine

 Partial matching

Adapted from slides by Q. Huang, V. Kim



Given two (or more) shapes
Find a map f, that is:

 Automatic

 Fast to compute

 Bijective
(if we expect global correspondence)

 Low-distortion

Adapted from slides by Q. Huang, V. Kim



[Mémoli 2007]



Cuturi.  “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)







Weak assumptions Strong assumptions



One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

Theorem: Only have to match one point!



 Pros:

 Tiny search space

 Some extension to partial matching

 Cons:

 (Extremely) sensitive to 
deviation from isometry

Adapted from slides by Q. Huang, V. Kim



Weak assumptions Strong assumptions

????



Möbius Voting for Surface Correspondence
Lipman and Funkhouser 2009

Hard! Easier

Angle and area preserving Angle preserving



Map triplets of points
http://www.mpi-inf.mpg.de/resources/deformableShapeMatching/EG2011_Tutorial/slides/4.3%20SymmetryApplications.pdf



Möbius Voting for Surface Correspondence
Lipman and Funkhouser 2009

1. Map surfaces to 
complex plane

2. Select three points
3. Map plane to itself 

matching these points
4.Vote for pairings using 

distortion metric to 
weight

5. Return to 2



Bijective conformal maps of the 
extended complex plane

http://www.ima.umn.edu/~arnold//moebius



Hard work is per-surface, not per-map

Easy



Cannot scale triangles to flatten

Hole

PL, 
continuous

PL, 
continuous 

at midpoints
Rotate gradient 

of u 90o





 Pros:

 Efficient

 Voting procedure handles some non-isometry

 Cons:

 Does not provide smooth/continuous map

 Does not optimize global distortion

 Only for genus 0

Adapted from slides by Q. Huang, V. Kim



Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011

Different conformal maps distorted in different places.



Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011

Combine good parts of different maps!



 Algorithm:

 Generate consistent maps

 Find blending weights per-point on each map

 Blend maps

Kim’11Adapted from slides by Q. Huang, V. Kim
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 Algorithm:

 Generate consistent maps

 Find blending weights per-point on each map

 Blend maps

Kim’11
Map similarity matrix

Adapted from slides by Q. Huang, V. Kim



Kim’11
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 Algorithm:

 Generate consistent maps

 Find blending weights per-point on each map

 Blend maps

Kim’11

Area-distortion

Adapted from slides by Q. Huang, V. Kim



Kim’11

 Algorithm:

 Generate consistent maps

 Find blending weights per-point on each map

 Blend maps

Adapted from slides by Q. Huang, V. Kim



Kim’11Adapted from slides by Q. Huang, V. Kim



Kim’11



 Pros:

 Can handle non-isometric shapes

 Efficient

 Cons:

 Lots of area distortion for some shapes

 Genus 0 manifold surfaces

Adapted from slides by Q. Huang, V. Kim





Points on M0 to points on M

M 0 M

[Ovsjanikov et al. 2012]



Functions on M to functions on M0

M 0 M

[Ovsjanikov et al. 2012]





Matrix taking Laplace-Beltrami (Fourier) 
coefficients on M to coefficients on M0

[Ovsjanikov et al. 2012]

Functional map:



Adapted from slides by Q. Huang, V. Kim



 Simple Algorithm

 Compute some geometric functions to be 
preserved: A, B

 Solve in least-squares sense for C:  B = C A

 Additional Considerations

 Favor commutativity

 Favor orthonormality (if shapes are isometric)

 Efficiently getting point-to-point 
correspondences

Ovsjanikov’12Adapted from slides by Q. Huang, V. Kim



 Pros:
 Condensed representation

 Linear

 Alternative perspective on mapping

 Many recent papers with variations
 Cons:

 Hard to handle non-isometry
Some progress in last few years!

Adapted from slides by Q. Huang, V. Kim



Bronstein’12



Ovsjanikov’13



Rustamov ‘13



Kim’12, Solomon’12, Solomon’13



Justin Solomon
MIT, Spring 2019

Image from “Entropic Metric Alignment for Correspondence Problems.”  Solomon et al., SIGGRAPH 2016.


