Optimal Transport




Back to comfortable ground!



A WARNING

...toward my own research!




Big Idea

Understand geometry from a

“softened” probabilistic

standpoint.

Secondary goal:
Application of machinery from previous lectures
(vector fields, geodesics, metric spaces, optimization...)



Probabilistic Geometry

“Somewhere over here.”



Probabilistic Geometry

“Exactly here.”



Probabilistic Geometry

»

“One of these two places.”



Motivating Question

Which is closer, 1 or 2?



Motivating Question

Which is closer, 1 or 2?



Which is closer, 1 or 2?
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Returning to the Question

Which is closer, 1 or 2?



Returning to the Question

Neither! Equidistant.



What's Wrong?

overlap
displacement



Related Issue

-

Smaller bins worsen
histogram distances



The Root Cause

Permuting histogram bins has

no effect

on these distances.



Optimal Transport

[McCann’95]
Interpolant

metric space

Image courtesy M. Cuturi

Geometric theory of probability



Alternative Idea

Compare in this direction

ot in this direction




Alternative Idea

<

Match mass from the distributions



Earth Mover’s Distance

y Cost to move mass m
x from x to y:
; m-d(x,y)
X X ‘

Match mass from the distributions



Transportation Matrix

Supply distribution p,
Demand distribution p4

1" >0
11 = po
TT]_:pl



Earth Mover’s Distance

P s Iq
S_t. Z] T’L] — p,L Starts atp

Zi T’L] p— q] Ends at g
T > () Positive mass



Important Theorem

EMD is a metric when d(x,y)
satisfies the triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

Revised in:
“Ground Metric Learning”
Cuturi and Avis; JMLR 15 (2014)



Basic Application
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Discrete Perspective

S

Ma L‘aé/}(;f n c//.'sy«/ife..?
Min-cost flow




Algorithm for Small-Scale Problems

Step 1: Compute D;;

Step 2: Solve linear program
Simplex
Interior point
Hungarian algorithm



Transportation Matrix Structure

Underlying map!



Discrete Perspective

Useful conclusions:

Can do better than generic solvers.

Min-cost flow



Discrete Perspective

Useful conclusions:

Can do better than generic solvers.

Complegentest
glackness
T € [0, 1] usually
contains O(n) nonzeros.

Min-cost flow



Challenge for Large-Scale Problems
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Today’s Questions

Can we optimize faster?
Is there a continuum interpretation?

What properties does this
model exhibit?

We'll answer them in parallel!



Linear Transportation on Graphs

Demand

Supply




Linear Transportation on Graphs

Demand

X1

Supply



Routing Supply to Meet Demand

n (. D
min (T, D)

s.t. T"> 0
T]_ — Do

TT]_ — D1




Simplification for Linear Cost

ming Zij T,,;jd(:ci,a:j)
S.T. Zj T,,;j — D;

> i Lij = qj
T >0




Simplification for Linear Cost

\ / miny ) ;. szd(:cl,aij)

st DTy =

D T@J_qj
T >0




Differencing Operator

—1 it E.q =
1 if Eeg — U
0 otherwise

Orient edges arbitrarily



Beckmann Formulation

e
\ / miny ), Ce|Je|

S.t. DTJ p1 Do
J('

In computer science:
Network flow problem




What Happened?

We used the structure of D.



Continuous Analog?

“Eulerian”

Application of oyr
vector field lectures!

\ Solomon, Rustamov, Guibas, and Butscher.
: “Earth Mover’s Distances on Discrete Surfaces.”
" N SIGGRAPH 2014

Think of probabilities like a fluid



Alternative Formulation for W,

"Beckmann problem”

Scales linearly



Helmholtz-Hodge Decomposition

tp://users.cms.caltech.edu/~keenan/pdf/DGPDEC.pdf



Hodge Decomposition of J




Fast Optimization

1. Af — P1 — P SparseSPD linear solve for f

. inf / |Vf(z) + R - Vg(z)| da
g JM

Unconstrained and convex optimization for g



Pointwise Distance

A

W(IOOapl) — d(poapl)

h > ||




Pointwise Distance

, o eigenfunctions 100 eigenfunctions
Proposition:




What's the Catch?

=
=
=

A |
< 

| ; =
t =0 +¢ ' t=1

McCann. “A Convexity Principle for Interacting Gases.” Advances in Mathematics 128 (1997).

No “displacement interpolation”




What Goes Wrong: Median Problems

L0

min (||z — zg|l2 + || — z1]|2)
xrER?

W._ ineffective for averaging tasks



Displacement Interpolation

Wo

.
* .

t=0 t=1/4 t=1/2 t =3/4 t=1

Image from “Optimal Transport with Proximal Splitting” (Papadakis, Peyre, and Oudet)

Mass moves along shortest paths



Frustrating Issue




More General Formulation
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Monge-Kantorovich Problem




Probability Measure

p(X) =1

(SCX) 0,1] _

ZEIE ZM

=y

Prob(X)” when F; disjoint,

I countable
Function from sets to probability



Measure Coupling

L,V E fl)rob(X)

II(p, v):= {7? € Prob(X x X) : ( m(U x X) = puU)

(X x V) =v((V) )}

L




p-Wasserstein Distance

W, (u,v) =
p(pj WEI%Il(I{LIV) (//)(XX

N J((

“Monge-Kantorovich ,yg’/* ® G odesic distance d(x,y)
problem” («((f(! j

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

General cost:

Continuous analog of EMD



Dual Formulation

)= m /f anta) + [ o TW( >)”p
_ Cost to pick up

Fe&a@ es°

y) < d(x,y)?

Continuous analog of EMD



In One Dimension

> CDF
Wi (p,v) = [|CDF(p) — CDF(v)|[1
Wa(u,v) = [[CDF " (u) — CDF ™~ (v) >




Entropic Regularization

AN A W A N A W A\
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vy=0 ~=0.0001=0.001 vy=0.01 ~=0.1
minp ), Tijd(zi, x5) — vH(T)
S.T. Zj Tf,;j — D;

> Lij = g
T >0 H(T) = —y_Tiglos Ty
> .

Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)



Prove on the board:

T = diag(u) Kdiag(v),
where K;; := e~ Diil"

minp ), Tijd(zi, x5) — vH(T)
S.t. Zj Tf,;j — D;

> Tij = q;
T>0 H(D) == Y T los Ty

i)



Sinkhorn Algorithm

T = diag(u) Kdiag(v),
where K;; := e~ Dii/"
u <+ p/Kuv
v+ q/K'u

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices".
Pacific J. Math. 21, 343-348 (1967).

Alternating projection



Ingredients for Sinkhorn

Supply vector p
Demand vector q
Multiplication by K

K;j = e~ Dii/



On a Grid: Fast K Product

Zgo— H 1,9) = (K, €)l[2)vee

Fish image from borisfx.com

Gaussian convolution



Sinkhorn on a Grid

No need to store K



Sinkhorn on a Grid

No need to store K



Geodesic Distances

“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Approximate Sinkhorn

Solomon et al. "Convolutional Wasserstein
Distances: Efficient Optimal Transportation on
Geometric Domains." SIGGRAPH 201s.

Replace K with heat kernel



Curious Observation

Similar problems, different algorithms



Flow-Based W,

Critical theoretical idea,

00 Ly 500 D0l 1) dz di
s.t. V- (p ( tho(z,t)) = M
W3 (po, p1)= o(z.t) - A(x) = 0 Vo € DM

p(z,0) = po(x)
\ p(z,1) = p1(x)

Benamou & Brenier
“A computational fluid mechanics solution of the
Monge-Kantorovich mass transfer problem”
Numer. Math. 84 (2000), pp. 375-393




Flow-Based W,

Not impossible!
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Lavenant et al.
“"Dynamical Optimal Transport on Discrete Domains”,
SIGGRAPH ASIA 2018



Riemannian Structure

VW), = / V(2), W (2)) du(z)

Tangent space/inner product at u



Parallel to Information Geometry

Consider set of distributions as a
manifold

Tangent spaces from advection

Geodesics from displacement
Interpolation



Only Scratching the Surface

Topics in Optimal Transportation
Villani, 2003

Giant field in modern math



Many Other Approaches
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Lévy. “"A numerical algorithm for L2 semi-discrete optimal transport in 3D.” (2014

Example: Semi-discrete transport



Many Other Approaches

ming [ c(z, p(x)) du(x)
S.t.  QOxlh =V

Example: Monge formulation



Derived Problems

Wasserstein
~ Barycenter
[Agueh’11]

Slide courtesy M. Cuturi



Formula for Applications

Any (ML) problem involving a or loss
between (parameterized) histograms or
probabilility measures can be easily

Wasserstein-ized if we can differentiate W efficiently.

Slide courtesy M. Cuturi



Computational Applications
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“"Wasserstein Propagation for Semi-Supervised Learning” (Solomon et al.)
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“Fast Computation ofWasserstein\Barycenters” (Cuturi and Doucet)
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Computational Applications

"An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes”
(de Goes et al.)

Morphing and registration



Computational Applications

“Earth Mover’s Distances on Discrete Surfaces” (Solomon et al.)

A,

"Blue Noise Through Optimal Transport” (de Goes et al.)

Graphics



Computational Applications

Vo e oo ¥ e K e ¥ e

“Geodesic Shape Retrieval via Optimal Mass Transport” (Rabin, Peyré, and Cohen)

“Adaptive CoIorTransfer Wlth Relaxed OptlmaITransport (Réln Ferradans and Papadakis)

Vision and image processing



Optimal Transport




