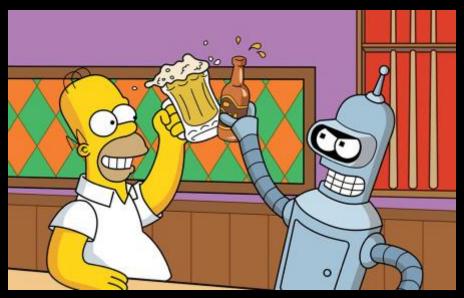


Optimal Transport

Justin Solomon MIT, Spring 2019



Back to comfortable ground!

...toward my own research!

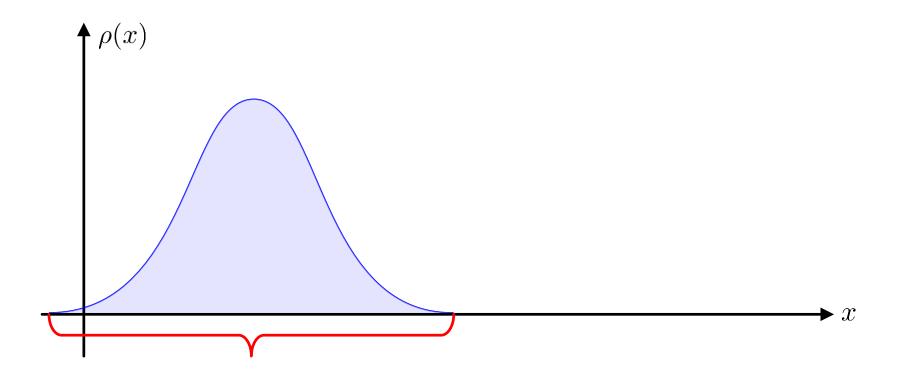
Big Idea

"softened" probabilistic standpoint.

Secondary goal:

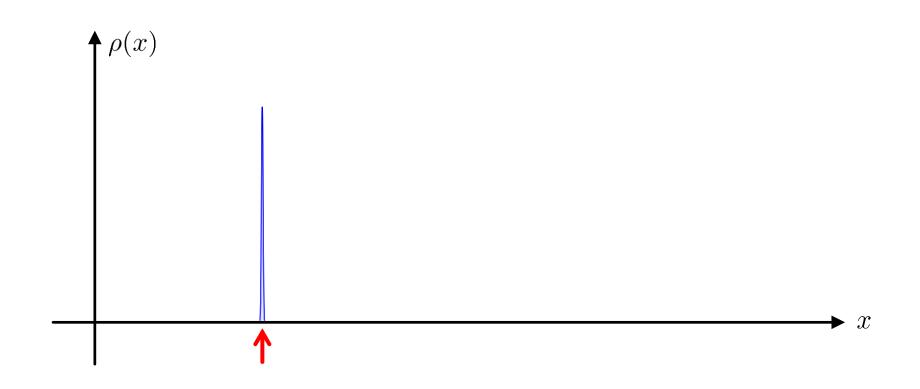
Application of machinery from previous lectures (vector fields, geodesics, metric spaces, optimization...)

Probabilistic Geometry



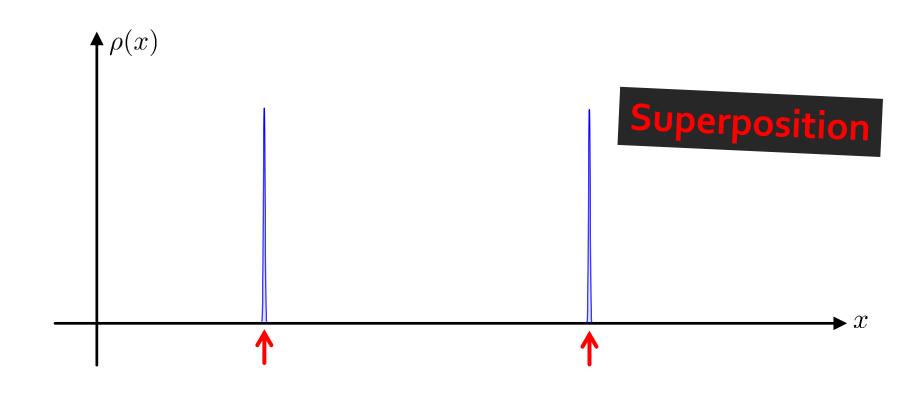
"Somewhere over here."

Probabilistic Geometry



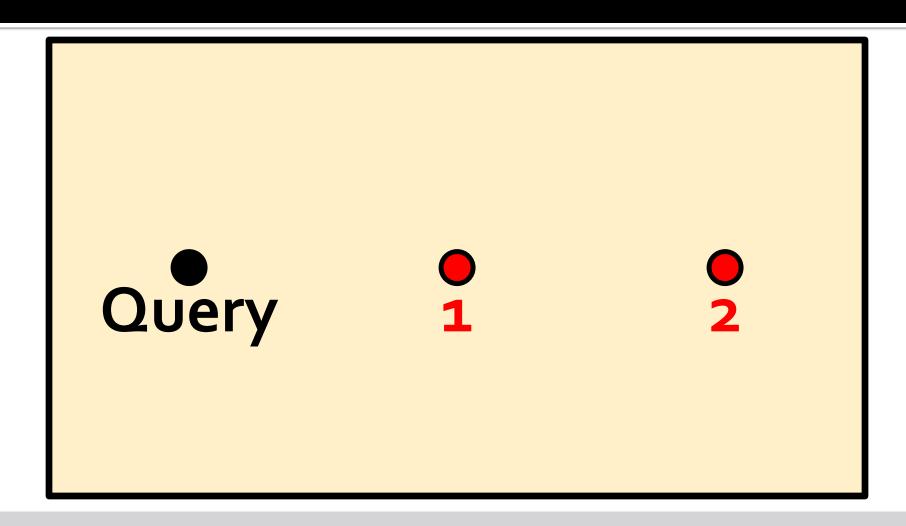
"Exactly here."

Probabilistic Geometry

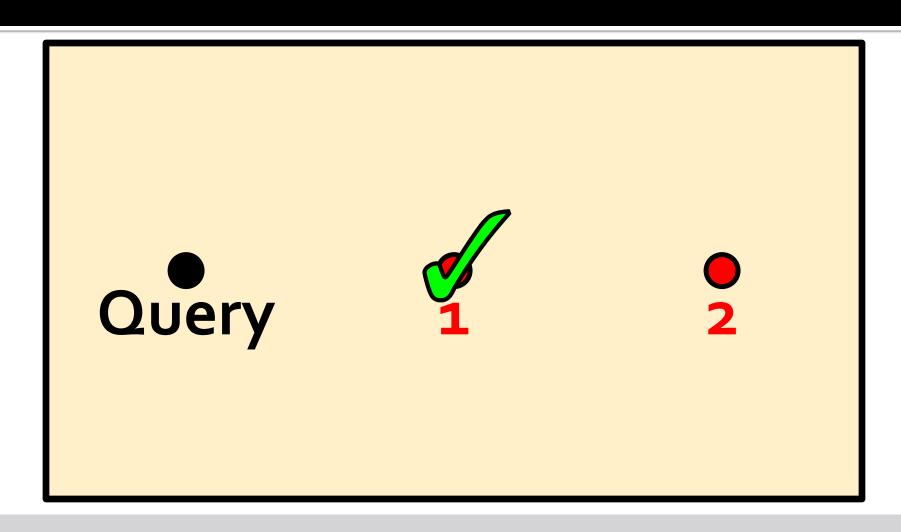


"One of these two places."

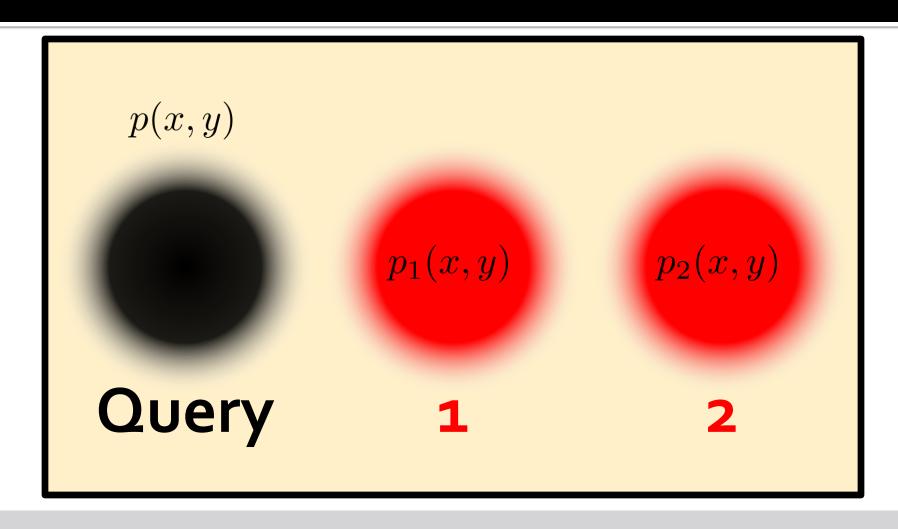
Motivating Question



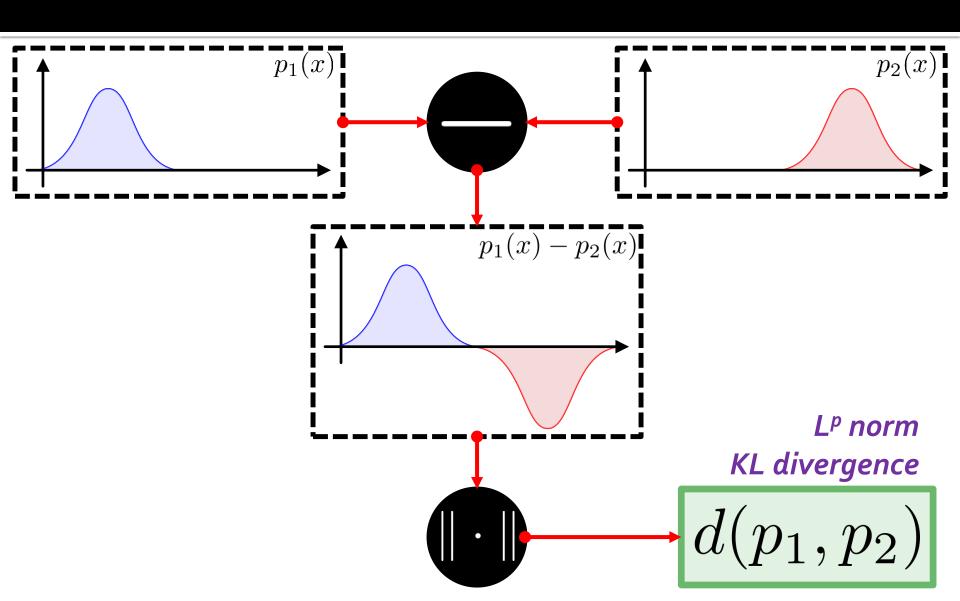
Motivating Question



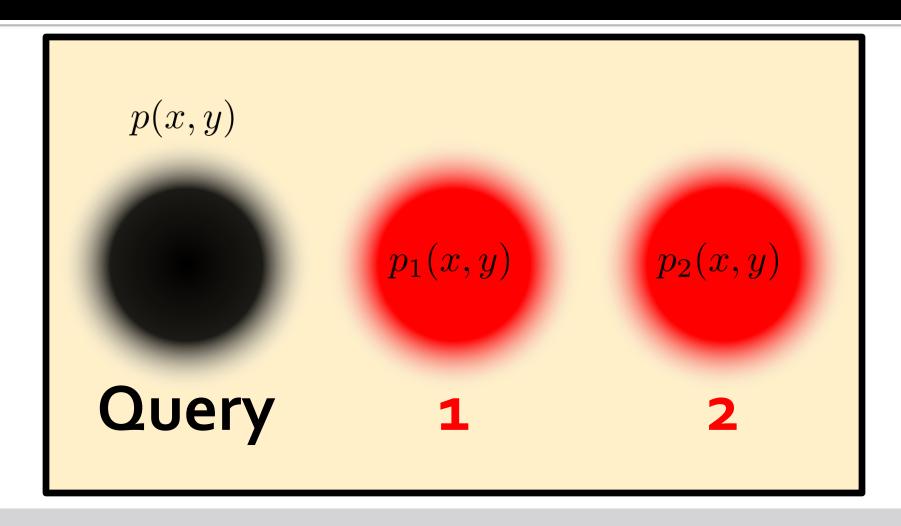
Fuzzy Version



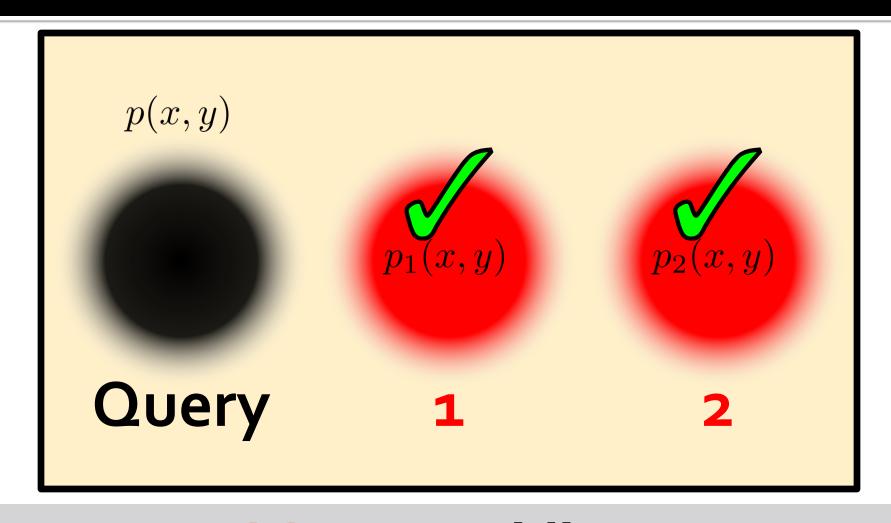
Typical Measurement



Returning to the Question

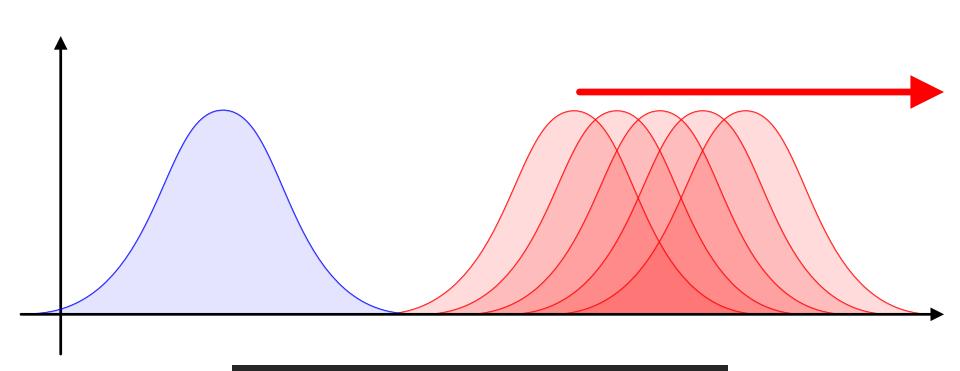


Returning to the Question



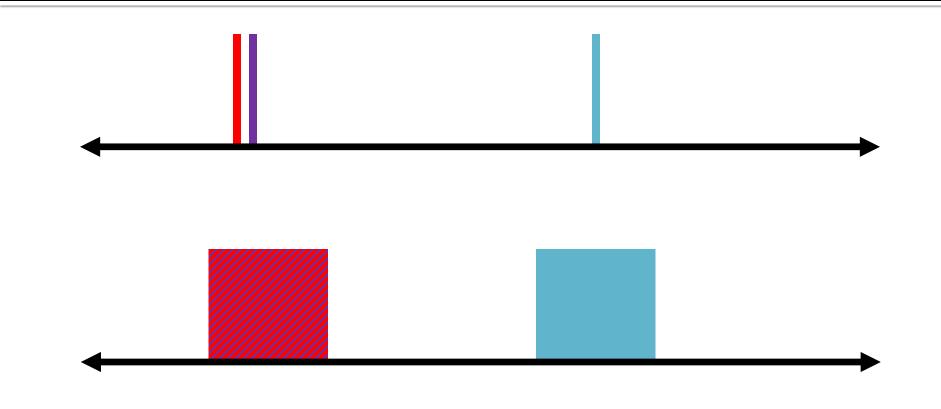
Neither! Equidistant.

What's Wrong?



Measured overlap, not displacement.

Related Issue

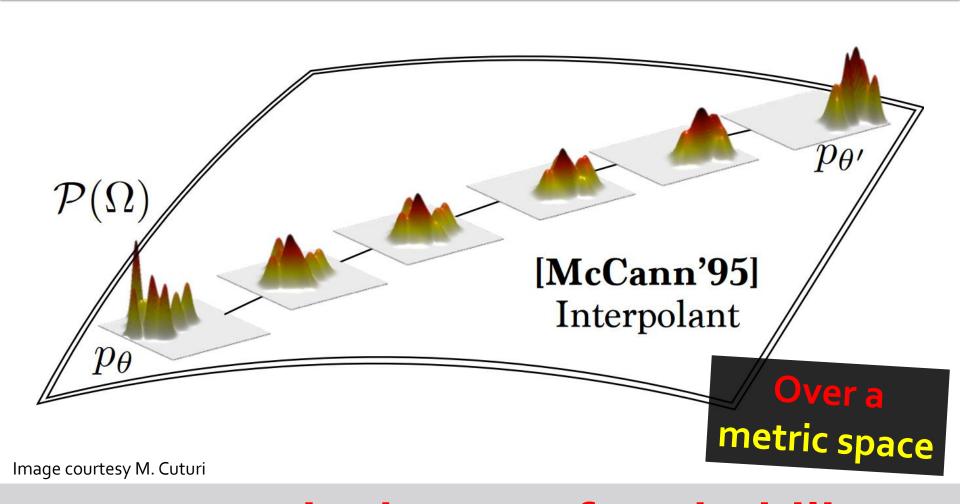


Smaller bins worsen histogram distances

The Root Cause

Permuting histogram bins has no effect on these distances.

Optimal Transport

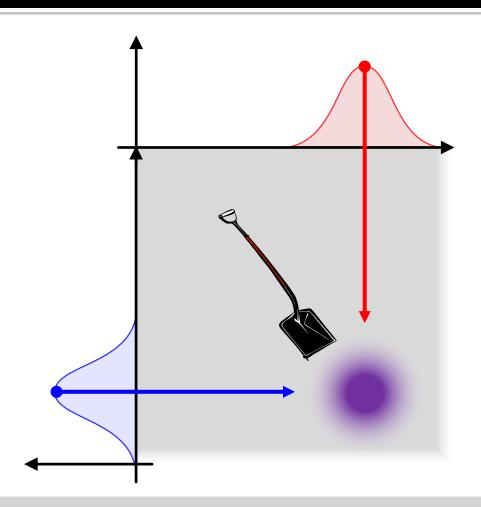


Geometric theory of probability

Alternative Idea

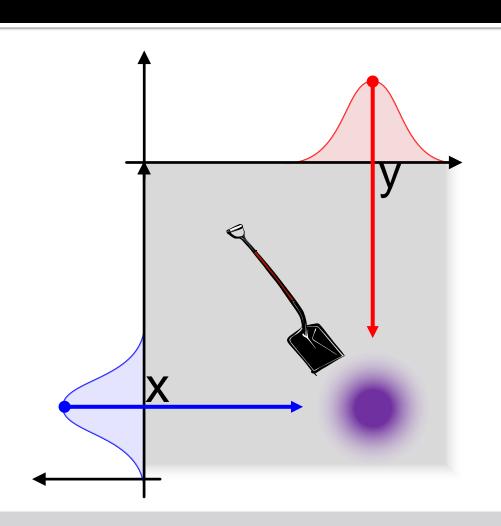


Alternative Idea



Match mass from the distributions

Earth Mover's Distance



Cost to move mass m from x to y:

 $m \cdot d(x, y)$

Match mass from the distributions

Transportation Matrix

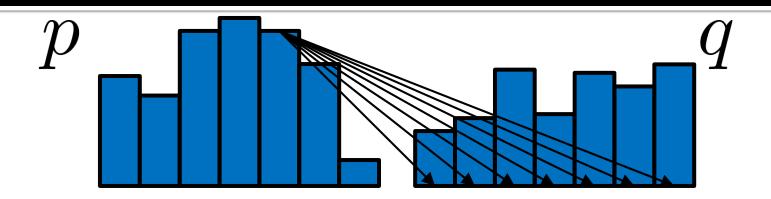
- Supply distribution p_0
- Demand distribution p_1

$$T \ge 0$$

$$T\mathbf{1} = p_0$$

$$T^{\mathsf{T}}\mathbf{1} = p_1$$

Earth Mover's Distance



Starts at p

Ends at q

Positive mass

Important Theorem

EMD is a metric when d(x,y) satisfies the triangle inequality.

"The Earth Mover's Distance as a Metric for Image Retrieval"

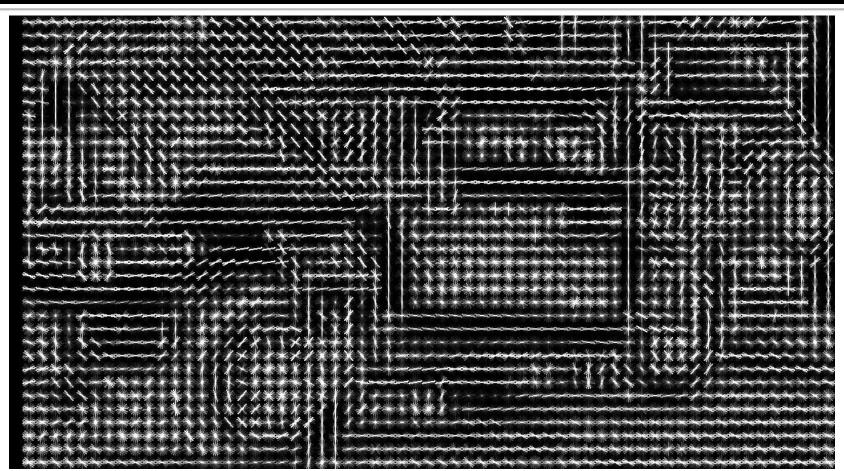
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

Revised in:

"Ground Metric Learning"

Cuturi and Avis; JMLR 15 (2014)

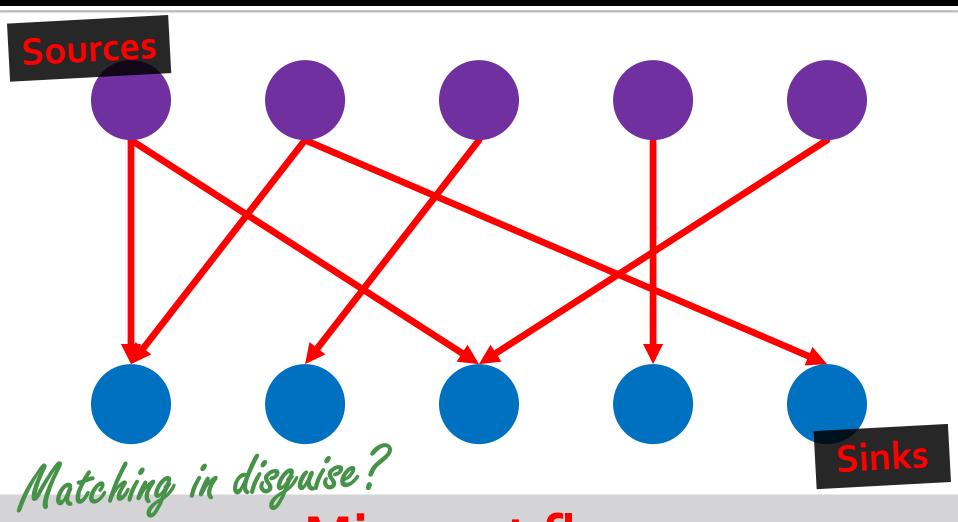
Basic Application



http://web.mit.edu/vondrick/ihog/

Comparing histogram descriptors

Discrete Perspective

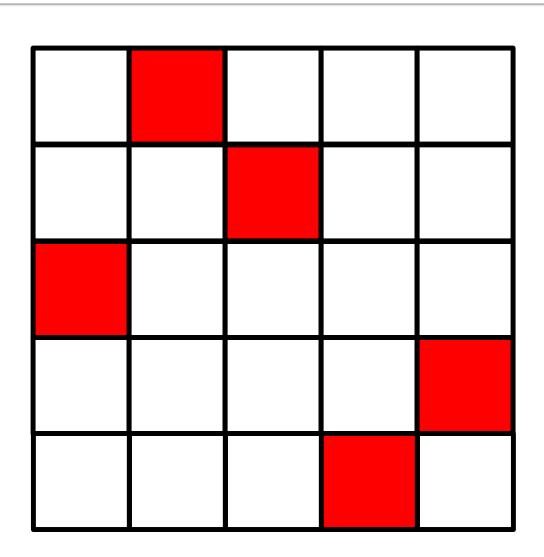


Min-cost flow

Algorithm for Small-Scale Problems

- Step 1: Compute D_{ij}
- Step 2: Solve linear program
 - Simplex
 - Interior point
 - Hungarian algorithm
 - ...

Transportation Matrix Structure



Matches bins

Underlying map!

Discrete Perspective

Useful conclusions:

1. Practical

Can do better than generic solvers.

Min-cost flow

Discrete Perspective

Useful conclusions:

1. Practical

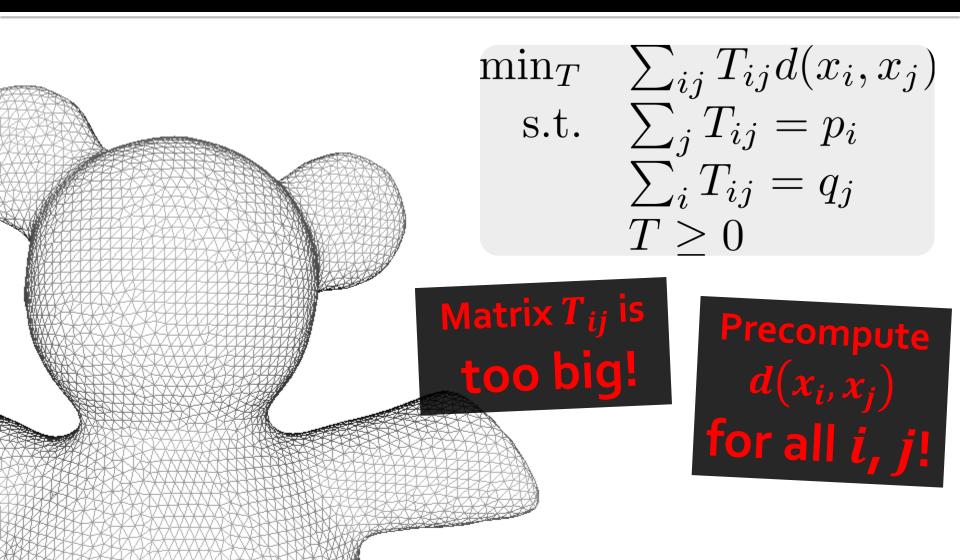
Can do better than generic solvers.

2. Theoretical Complementary slackness

 $T \in [0,1]^{n imes n}$ usually contains O(n) nonzeros.

Min-cost flow

Challenge for Large-Scale Problems



Today's Questions

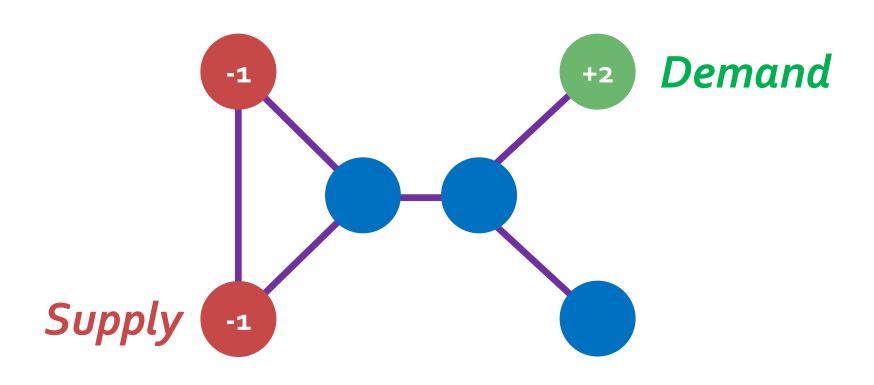
Can we optimize faster?

Is there a continuum interpretation?

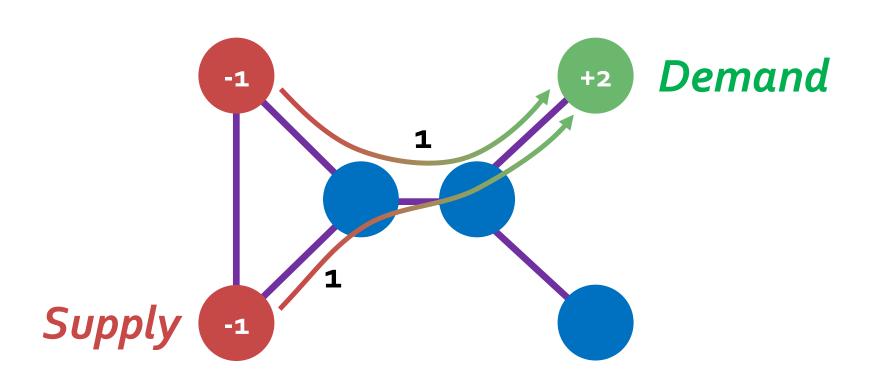
What properties does this model exhibit?

We'll answer them in parallel!

First example: Linear Transportation on Graphs



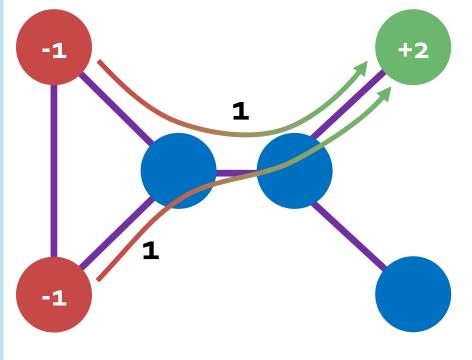
Linear Transportation on Graphs



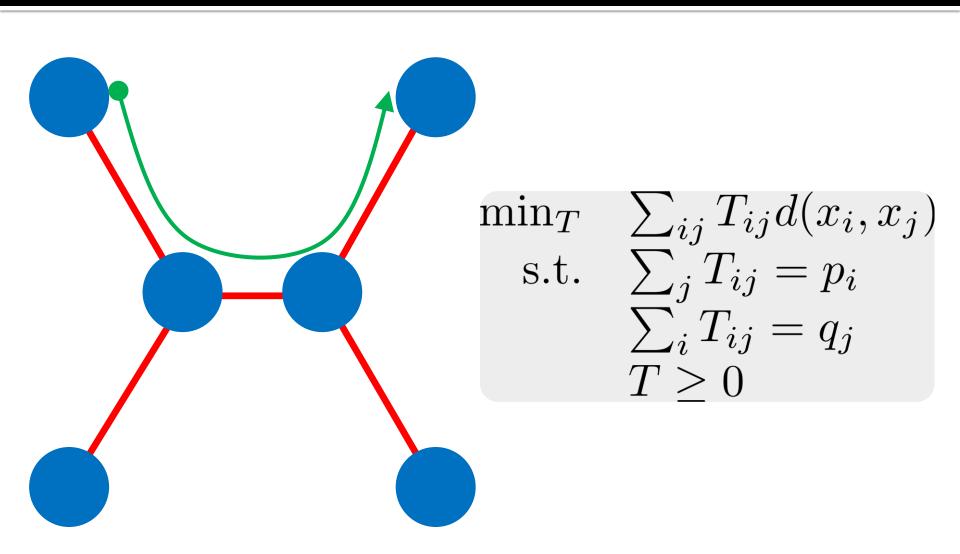
Routing Supply to Meet Demand

$$egin{aligned} \min_{T} & \langle T, D
angle \ \mathrm{s.t.} & T \geq 0 \ & T \mathbf{1} = p_0 \ & T^{\mathsf{T}} \mathbf{1} = p_1 \end{aligned}$$

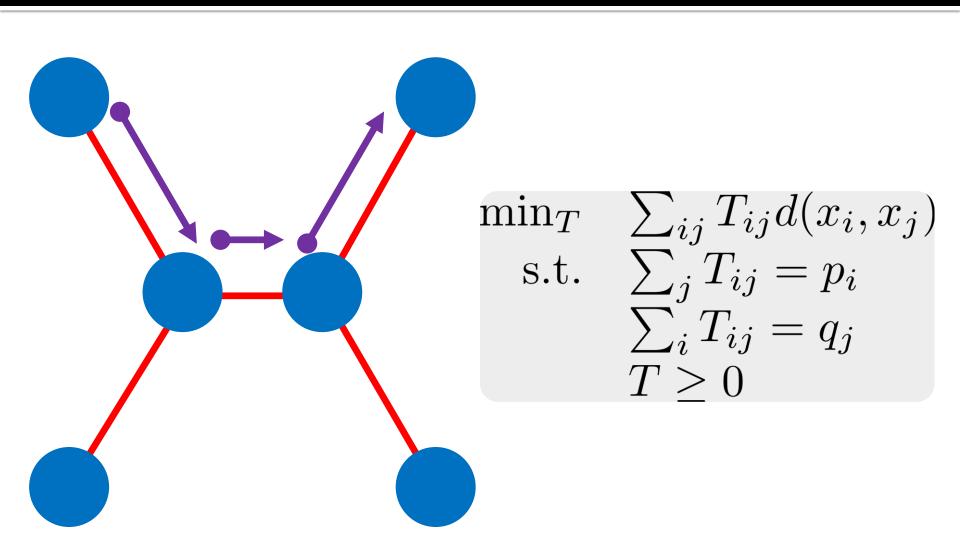
D contains shortest path length.



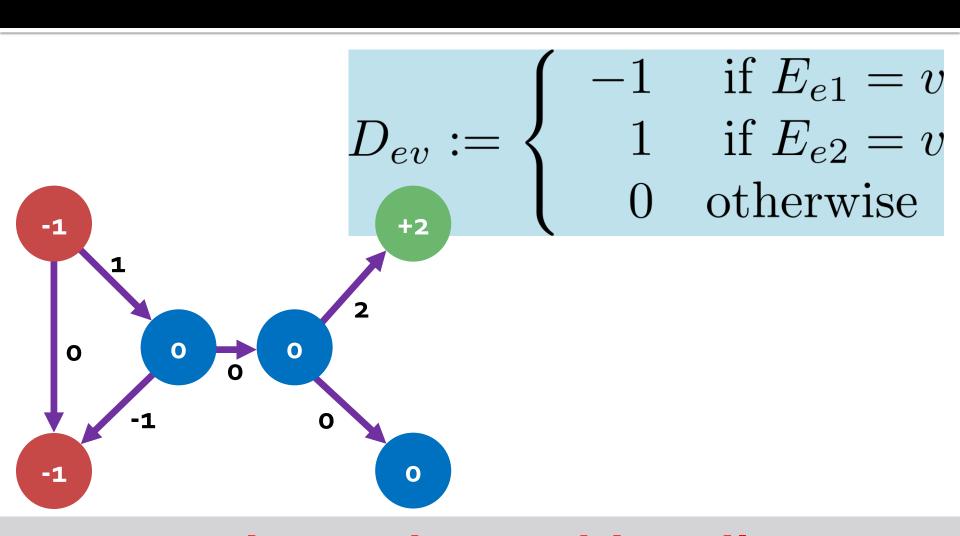
Simplification for Linear Cost



Simplification for Linear Cost

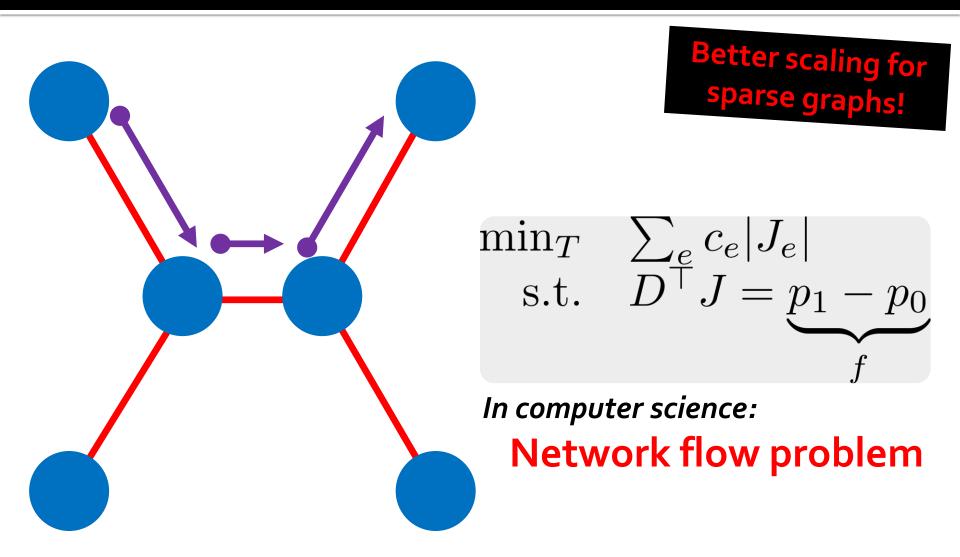


Differencing Operator



Orient edges arbitrarily

Beckmann Formulation



What Happened?

We used the structure of D.

min_T
$$\sum_{ij} T_{ij} d(x_i, x_j)$$
s.t.
$$\sum_{j} T_{ij} = p_i$$

$$\sum_{i} T_{ij} = q_j$$

$$T \ge 0$$

Continuous Analog?

Probabilities advect along the surface

"Eulerian"

Application of our vector field lectures!

Solomon, Rustamov, Guibas, and Butscher. "Earth Mover's Distances on Discrete Surfaces." SIGGRAPH 2014

Think of probabilities like a fluid

Alternative Formulation for W_1

"Beckmann problem"

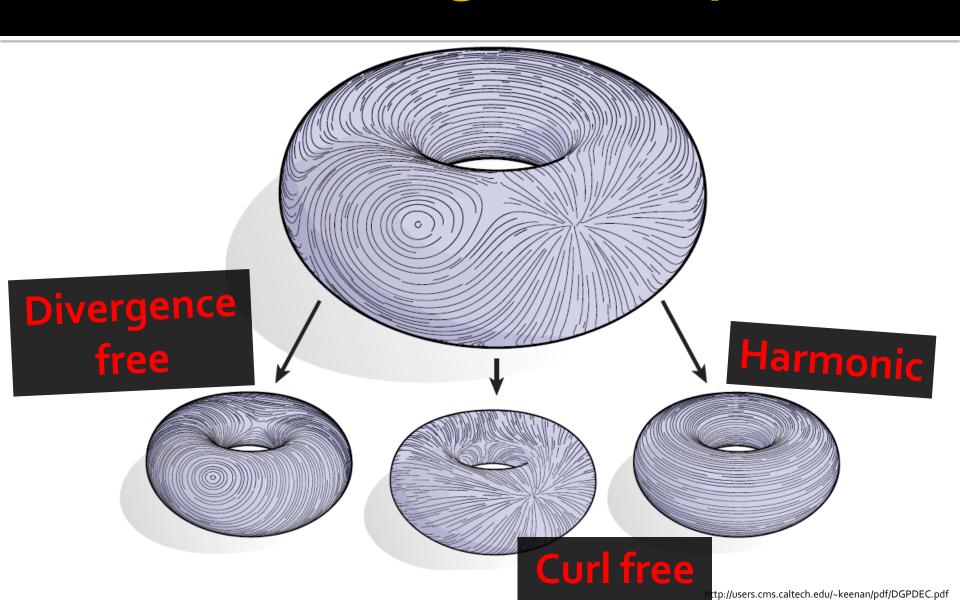
Total work

$$\mathcal{W}_{1}(\rho_{0}, \rho_{1}) = \begin{cases} \inf_{J} \int_{M} ||J(x)|| dx \\ \text{s.t. } \nabla \cdot J(x) = \rho_{1}(x) - \rho_{0}(x) \\ J(x) \cdot n(x) = 0 \ \forall x \in \partial M \end{cases}$$

Advects from ρ_0 to ρ_1

Scales linearly

Helmholtz-Hodge Decomposition



Hodge Decomposition of J

$$J(x) =
abla f(x) + \mathcal{R}
abla g(x)$$

Ignoring | Curl-free | Div-free |

 $\nabla \cdot J = \Delta f =
ho_1 -
ho_0$

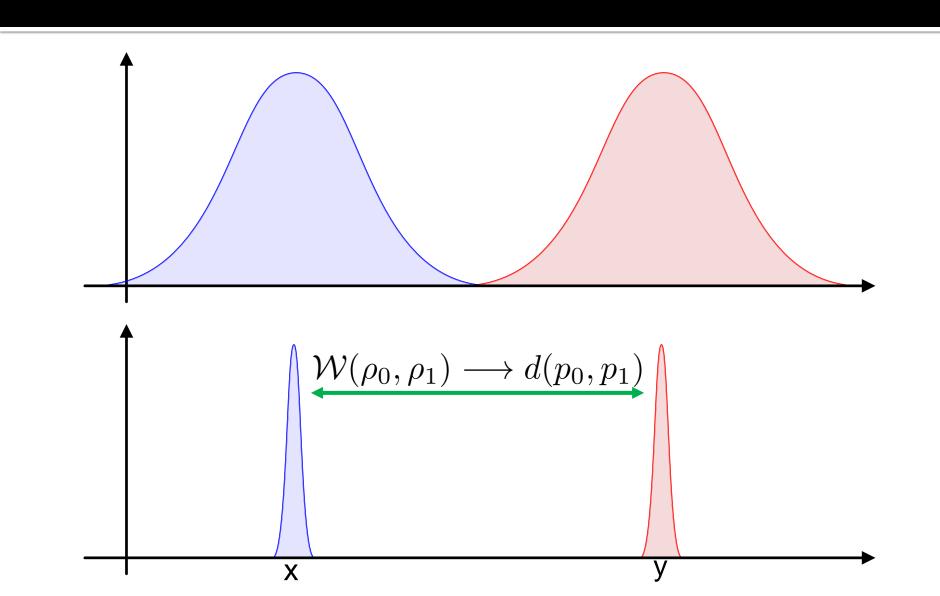
Fast Optimization

1.
$$\Delta f =
ho_1 -
ho_0$$
 Sparse SPD linear solve for f

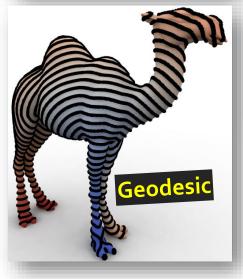
$$2.\inf_{g} \int_{M} \|\nabla f(x) + \mathcal{R} \cdot \nabla g(x)\| \, dx$$

Unconstrained and convex optimization for $oldsymbol{g}$

Pointwise Distance



Pointwise Distance

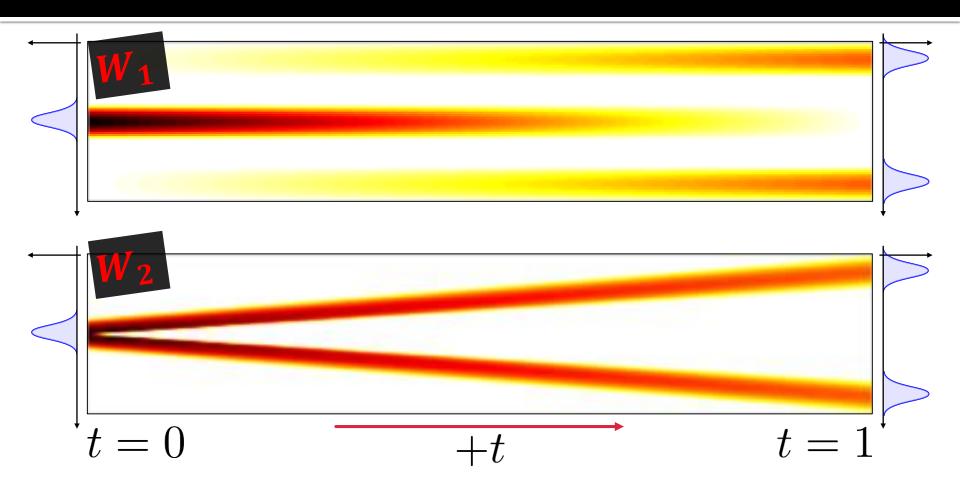


o eigenfunctions

100 eigenfunctions

Proposition: Satisfies triangle inequality.

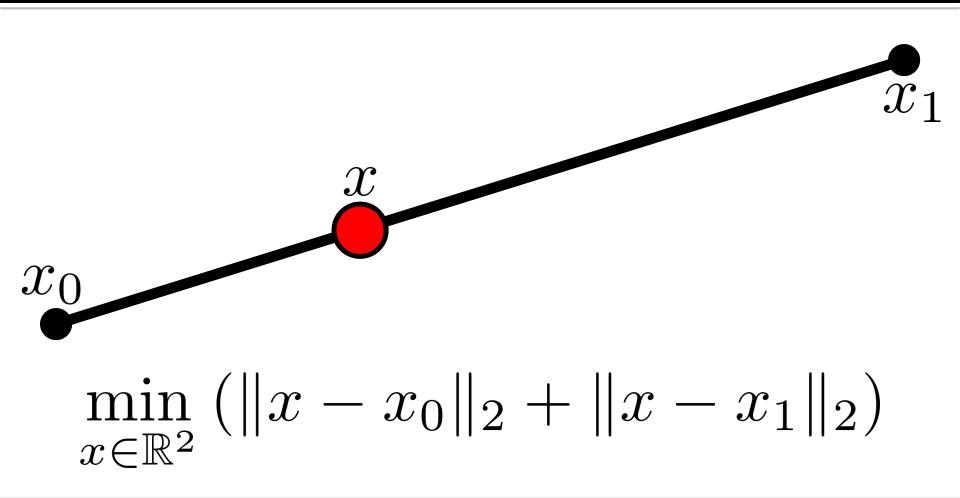
What's the Catch?



McCann. "A Convexity Principle for Interacting Gases." Advances in Mathematics 128 (1997).

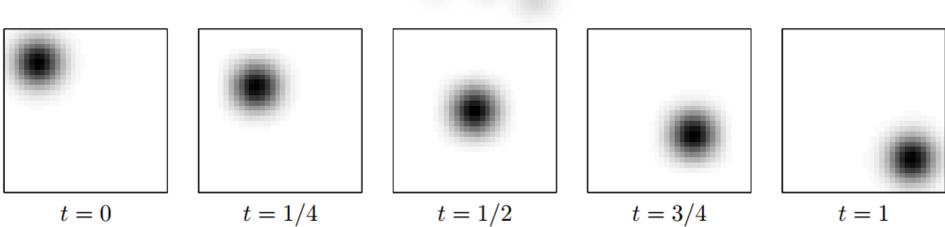
No "displacement interpolation"

What Goes Wrong: Median Problems



W₁ ineffective for averaging tasks

Displacement Interpolation

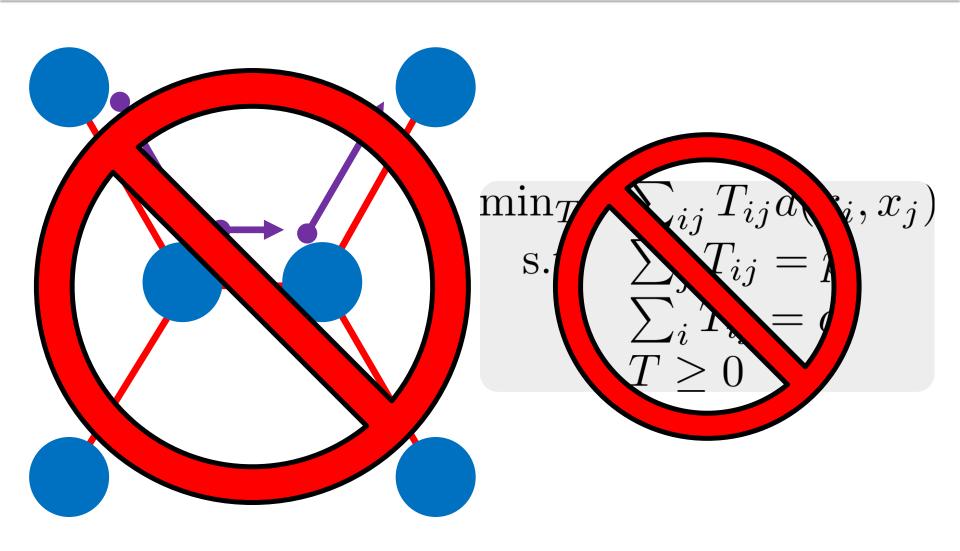


"Explains" shortest path.

Image from "Optimal Transport with Proximal Splitting" (Papadakis, Peyré, and Oudet)

Mass moves along shortest paths

Frustrating Issue



More General Formulation

Monge-Kantorovich Problem

Probability Measure

$$\mu(X) = 1$$

$$\mu(S \subseteq X) \in [0,1]$$

$$\mu\left(\cup_{i\in I} E_i\right) = \sum_{i\in I} \mu(E_i)$$

"
$$\operatorname{Prob}(X)$$
"

when E_i disjoint,

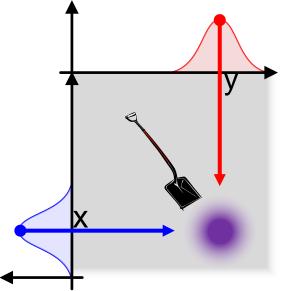
I countable

Function from sets to probability

Measure Coupling

$$\mu, \nu \in \operatorname{Prob}(X)$$

$$\Pi(\mu, \nu) := \left\{ \pi \in \operatorname{Prob}(X \times X) : \begin{pmatrix} \pi(U \times X) = \mu(U) \\ \pi(X \times V) = \nu(V) \end{pmatrix} \right\}$$

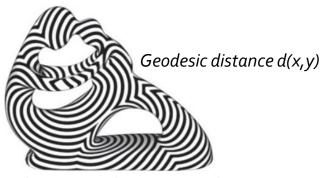


Analog of transportation matrix

p-Wasserstein Distance

$$\mathcal{W}_p(\mu, \nu) \equiv \min_{\pi \in \Pi(\mu, \nu)} \left(\iint_{X \times X} d(x, y)^p \, d\pi(x, y) \right)^{1/p}$$
Shortest path distance

General cost:
"Monge-Kantorovich
problem"



http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Continuous analog of EMD

Dual Formulation

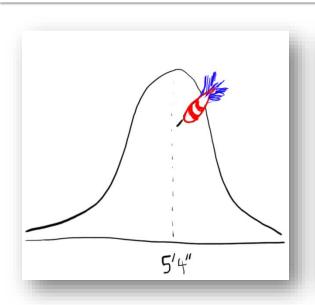
$$\mathcal{W}_p(\mu,\nu) \equiv \max_{f,g} \left(\int_X f(x) \, d\mu(x) + \int_X g(y) \, d\nu(y) \right)^{1/p}$$
 Cost to drop off Cost to pick up

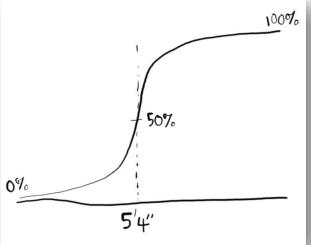
Can't be cheaper to drive

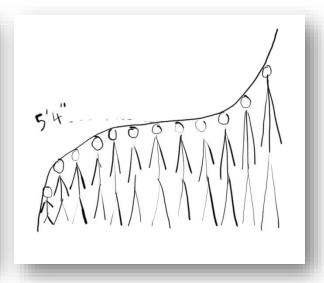
$$f(x) + g(y) \le d(x, y)^p$$

Continuous analog of EMD

In One Dimension



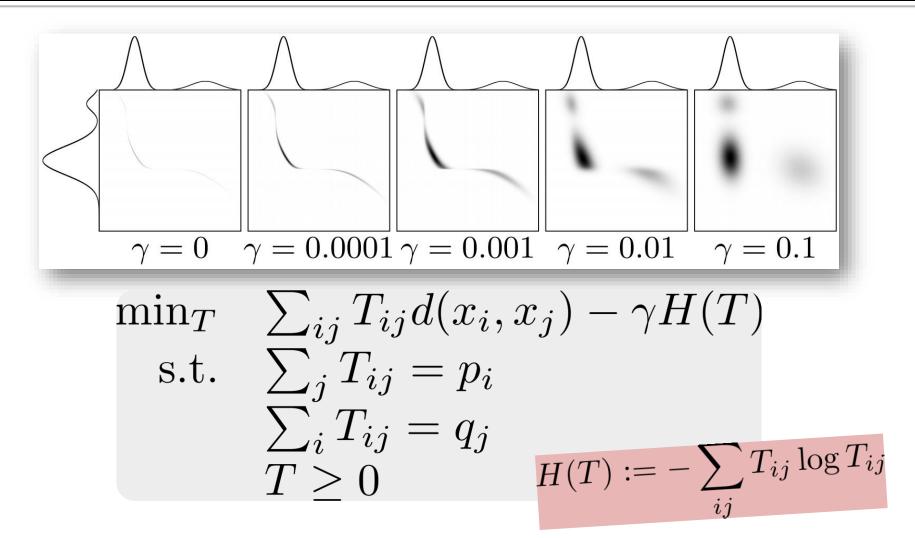




$$\mathcal{W}_1(\mu,\nu) = \|\mathrm{CDF}(\mu) - \mathrm{CDF}(\nu)\|_1$$

$$W_2(\mu, \nu) = \|CDF^{-1}(\mu) - CDF^{-1}(\nu)\|_2$$

Entropic Regularization



Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Key Lemma

Prove on the board:

$$T = \operatorname{diag}(u) K \operatorname{diag}(v),$$
where $K_{ij} := e^{-D_{ij}/\gamma}$

$$\min_{T} \quad \sum_{ij} T_{ij} d(x_i, x_j) - \gamma H(T)
\text{s.t.} \quad \sum_{j} T_{ij} = p_i
\sum_{i} T_{ij} = q_j
T \ge 0 \qquad H(T) := -\sum_{ij} T_{ij} \log T_{ij}$$

Sinkhorn Algorithm

$$T = \operatorname{diag}(u) K \operatorname{diag}(v),$$
where $K_{ij} := e^{-D_{ij}/\gamma}$
 $u \leftarrow p/Kv$
 $v \leftarrow q/K^{\top}u$

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". Pacific J. Math. 21, 343–348 (1967).

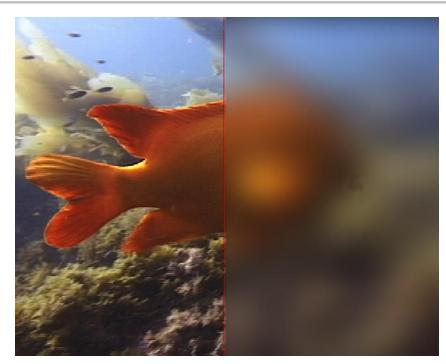
Alternating projection

Ingredients for Sinkhorn

- Supply vector p
- Demand vector q
- 3. Multiplication by K

$$K_{ij} = e^{-D_{ij}/\gamma}$$

On a Grid: Fast K Product



$$(Kv)_{ij} = \sum_{k\ell} g_{\sigma}(\|(i,j) - (k,\ell)\|_2) v_{k\ell}$$

Fish image from borisfx.com

Gaussian convolution

Sinkhorn on a Grid

$$u \leftarrow p/Kv$$
$$v \leftarrow q/K^{\top}u$$

No need to store K

Sinkhorn on a Grid

$$u \leftarrow p/Kv$$
$$v \leftarrow q/K^{\top}u$$

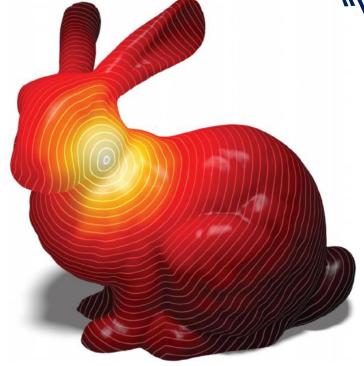
What about surfaces?

No need to store K

Geodesic Distances

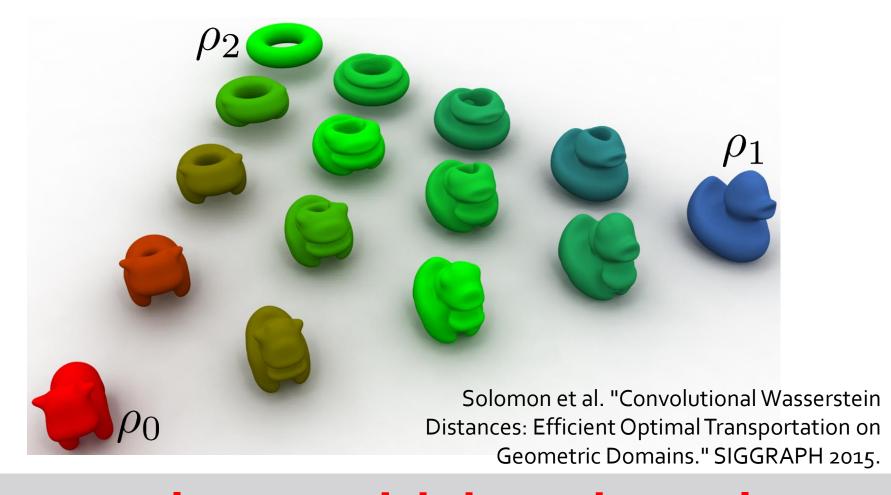
$$d_g(p,q) = \lim_{t \to 0} \sqrt{-4t \log k_{t,p}(q)}$$

"Varadhan's Theorem"



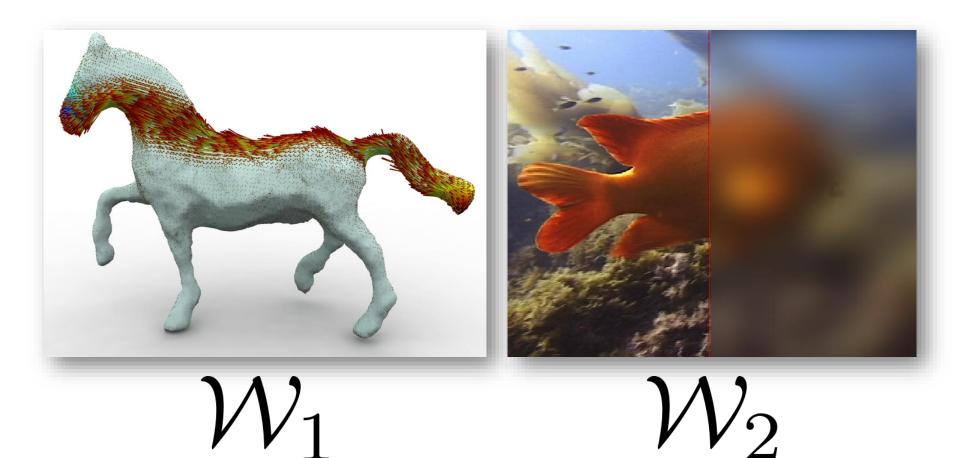
"Geodesics in heat"
Crane, Weischedel, and Wardetzky; TOG 2013

Approximate Sinkhorn



Replace K with heat kernel

Curious Observation



Similar problems, different algorithms

Flow-Based W₂

Critical theoretical idea, computationally challenging

$$\mathcal{W}_{2}^{2}(\rho_{0}, \rho_{1}) = \begin{cases}
\inf_{\rho, v} \int \int_{M \times [0,1]} \frac{1}{2} \rho(x, t) \|v(x, t)\|^{2} dx dt \\
\text{s.t. } \nabla \cdot (\rho(x, t) v(x, t)) = \frac{\partial \rho(x, t)}{dt} \\
v(x, t) \cdot \hat{n}(x) = 0 \ \forall x \in \partial M \\
\rho(x, 0) = \rho_{0}(x) \\
\rho(x, 1) = \rho_{1}(x)
\end{cases}$$

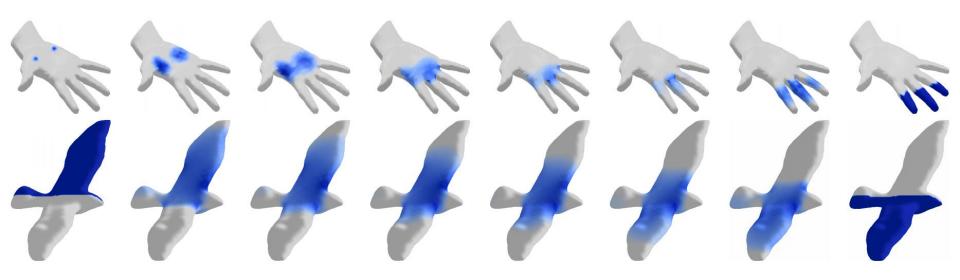
Benamou & Brenier

"A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem"

Numer. Math. 84 (2000), pp. 375-393

Flow-Based W₂

Not impossible!

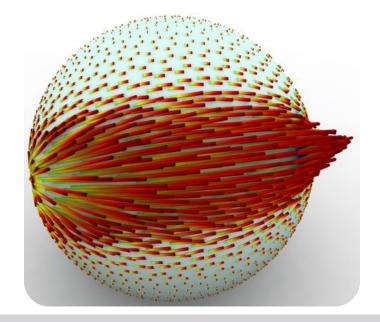


Lavenant et al.

"Dynamical Optimal Transport on Discrete Domains", SIGGRAPH ASIA 2018

Riemannian Structure

$$\langle V, W \rangle_{\mu} := \int \langle V(x), W(x) \rangle d\mu(x)$$



Tangent space/inner product at μ

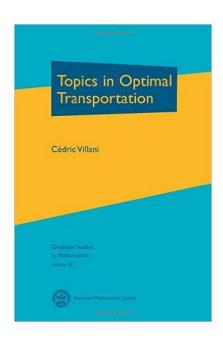
Parallel to Information Geometry

Consider set of distributions as a manifold

Tangent spaces from advection

Geodesics from displacement interpolation

Only Scratching the Surface



Topics in Optimal Transportation
Villani, 2003

Giant field in modern math

Many Other Approaches

Lévy. "A numerical algorithm for L2 semi-discrete optimal transport in 3D." (2014)

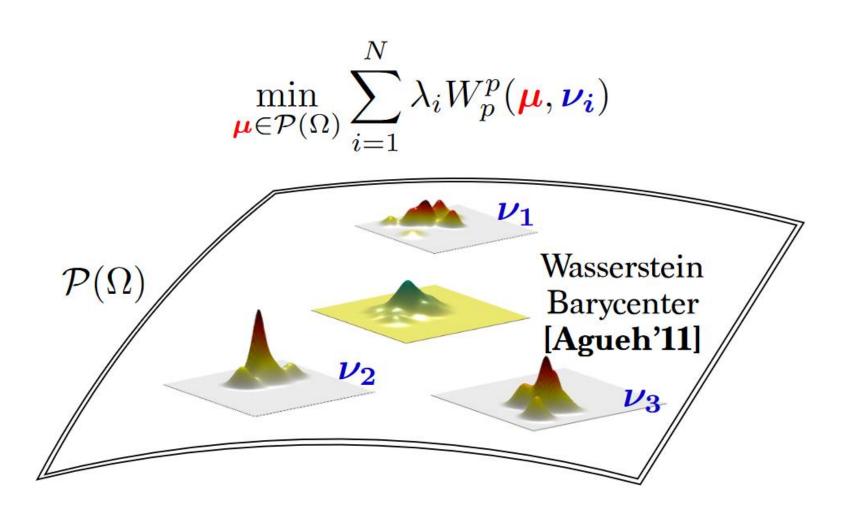
Example: Semi-discrete transport

Many Other Approaches

$$\min_{\phi} \quad \int c(x, \phi(x)) d\mu(x)$$
s.t.
$$\phi_* \mu = \nu$$

Example: Monge formulation

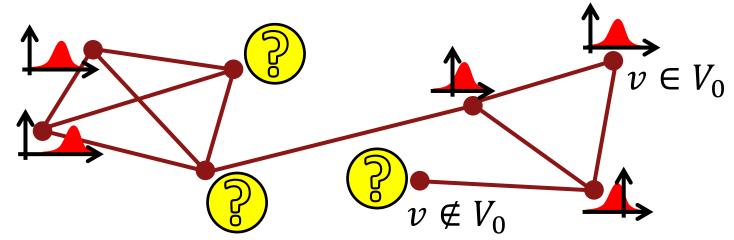
Derived Problems



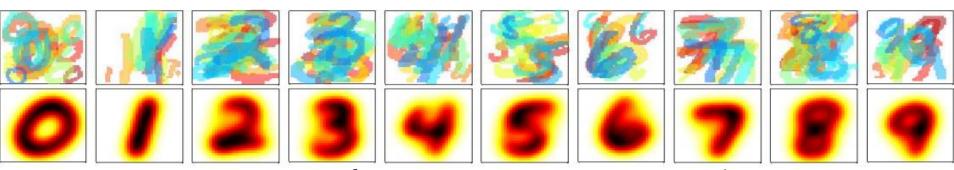
Formula for Applications

Any (ML) problem involving a **KL** or **L2** loss between (parameterized) histograms or probability measures can be easily

Wasserstein-ized if we can differentiate W efficiently.

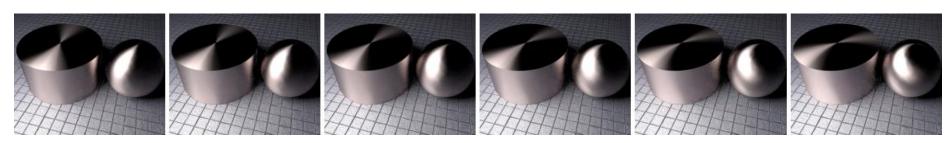


"Wasserstein Propagation for Semi-Supervised Learning" (Solomon et al.)

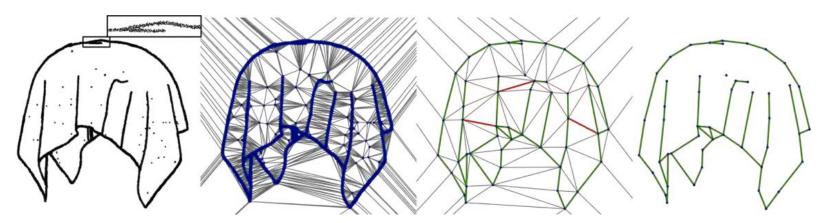


"Fast Computation of Wasserstein Barycenters" (Cuturi and Doucet)

Learning

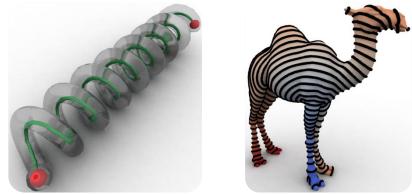


"Displacement Interpolation Using Lagrangian Mass Transport" (Bonneel et al.)



"An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes" (de Goes et al.)

Morphing and registration

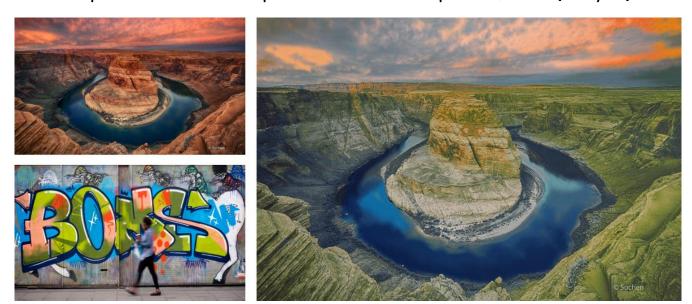


"Earth Mover's Distances on Discrete Surfaces" (Solomon et al.)

"Blue Noise Through Optimal Transport" (de Goes et al.)

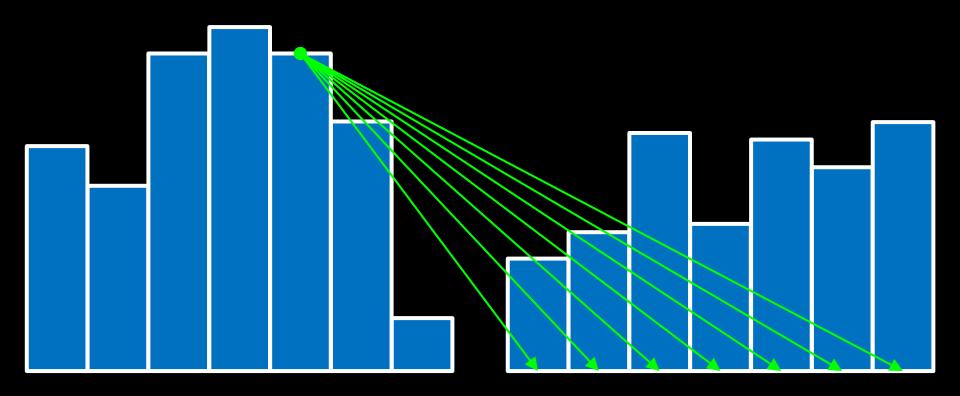
Graphics

"Geodesic Shape Retrieval via Optimal Mass Transport" (Rabin, Peyré, and Cohen)



"Adaptive Color Transfer with Relaxed Optimal Transport" (Rabin, Ferradans, and Papadakis)

Vision and image processing



Optimal Transport

Justin Solomon MIT, Spring 2019

