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Dimensionality reduction
Embedding
Multidimensional scaling

Manifold learning



Given pairwise distances
extract an embedding.

Is it always possible?
What dimensionality?



Ordered pair (M, d) where Misasetand d: M X M — R satisfies




Many Examples of Metric Spaces

Rnad(xvy) = Ha? — pr

S C R?,d(z,y) := geodesic



Isometry [ahy-som-i-tree]:

A map between metric spaces
that preserves pairwise
distances.

—




Can you always embed
a metric space
iIsometrically in R"?



Can you always embed
a finite metric space
iIsometrically in R"?



Disappointing Example

X :={a,b,c, d}
d(a,d) = d(b,d) =1
d(a,b) = d(a,c) = d(b,c) =2
d(c,d) = 1.5

d b
o A /
Cannot be e/r(hc/c/w{ 74 faa//a/aw space. .
https://chiasme wordpress.comj2023/10/07/when-does-a-finit e-metric-space-embed-isom etrically-into-an-euclidean-space (



Approximate Embedding

expansion( ) := max pf (), Fy)
POt ) = e o y)
p(z, y)

contraction(f) := max

vy u(f(z), f(y))

distortion( f) := expansion(f) x contraction(f)

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf



Well-Known Result

Theorem (Bourgain, 1985).
Let (X,d) be a metric space on n points. Then,
O (logn) 2
(X, d) 2, gOtog? n

m = b76logn)
for 1 =1 to logn do /* levels of density */
for i =1 to m do /* repeat for high probability */
choose set S;; by sampling each node in X
independently with probability 277
end
end

fij(x) = d(z, Sij)
f(z) = D DT, fij(z)

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf



Euclidean Case

D;; = ||x; — z;||3,D € R™*"

Proposition. Rank(D) < min(n,m + 2).

Proot:
D=-2X"X+ dia,g(XTX)lT 4 1diag(XTX)T

Embedding via eigenvalue problem (take x; = 0):
|z — 253 = llzalls + 25115 — 24 - 2;
1



Gram Matrix [gram mey-triks]:

A matrix of inner products




Classical Multidimensional Scaling

1. Double centering: B := —%JDJ

Centering matrix J := [ — %11T

2. Find m largest eigenvalues/eigenvectors

3. X =E A2 -

Torgerson, Warren S. (1958). Theory & Methods of Scaling.



Stress Majorization

SMACOF:

Scaling by Majorizing a Complicated Function

de Leeuw, J. (1977), "Applications of convex analysis to multidimensional scaling” Recent
developments in statistics, 133—145.



SMACOF Potential Terms

mmz — \|@z — 34| 2 )
Z(dgj)Q = const.

¥

Z |z — %H% = tr(XVXT), where V = 2nl — 211"

Zd i — 2] = tr(XB(X)X )

( 2d5. : C

_||:1:1;—3;’j||2 if X; #Zlﬂ‘j,l#j

where bw(X) = 4 0 if .CL‘Z:;UJ’@%]
\ _Zj;»éz'bij le:j



SMACOF Lemma

Z(d%)2 = const.
ij
> llei = zjl13 = tr(XVXT)
ij
> dd i — zjlls = r(XB(X)XT)
ij

2dY; . ]
where b;;(X) := 0 if 2; = z;,1 # j
—Zj#bij ifi =7

Lemma. Define
7(X,Z) := const. + tr(XVX ") = 2tr(XB(2)Z ")
Then,
(X, X) <7(X,2)VZ
with equality exactly when X=Z.

Proof on board using Cauchy-Schwarz.

See Modern Multidimensional Scaling (Borg, Groenen)



— X" = X"B(X")VT

SMACOF: Single Step

XAt min 7 (X, XF)
7(X,Z) :=const. + tr(XVX ") = 2tr(XB(2)Z ")
— 0= Vx[1(X, X")]

=2XV —2X*B(X")

VTt =(@nl —211")"
1 ™
(-5)
2n n

1 11"
J — — Objective convergence:
2n n T(XFHL Xk < 7(XE, XF)




Recent SMACOF Application

DOI: 10.1111/cgf. 12558

EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer Volume 34 (2015), Number 2
(Guest Editors)

Shape-from-Operator: Recovering Shapes
from Intrinsic Operators

Davide Boscaini, Davide Eynard, Drosos Kourounis, and Michael M. Bronstein

Universita della Svizzera Italiana (USI), Lugano, Switzerland
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Figure 1: Examples of three different shape-from-operator problems considered in the paper. Left: shape analogy synthesis as

shape-from-difference operator problem (shape X is synthesized such that the intrinsic difference operator between C,X is us
close as possible to the difference between A, B). Center: style transfer as shape-from-Laplacian problem. The Laplacian of the



Related Method

2
4y — ||z — x|

CZO
.X * ®
ij 1”

Cares more about preserving small distances

0

. Sammon (1969). “A nonlinear
: mapping for data structure
Classical MDS Sammon - .
analysis.” IEEE Transactions on
Computers 18.

°
o

http://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf



Intrinsic-to-Extrinsic: ISOMAP

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute shortest-path distances
Floyd-Warshall algorithm or Dijkstra

Classical MDS

Eigenvalue problem

7~ SR 1
f i b

e > i P — —— —

Tenenbaum, de Silva, Langford.
“A Global Geometric Framework for Nonlinear Dimensionality Reduction.” Science (2000).



Floyd-Warshall Algorithm

let dist be a |V| x |V| array of minimum distances initialized to = (infinity)
for each vertex v
dist[v][v] « O
for each edge (u,v)
dist[u] [v] « w(u,Vv) // the weight of the edge (u,v)
for kK from 1 to |V|
for i from 1 to |V|
for j from 1 to |V]
if dist[il[j] > dist[i][k] + dist[k][]]
dist[i][J] « dist[i]l[k] + dist[k][7]
end if

https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm



Landmark ISOMAP

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute some shortest-path distances
Dijkstra: O(kn N log N), nlandmarks, N points

MDS on landmarks

Smaller n X n problem

Closed-form embedding formula
6 (x) vector of squared distances from x to landmarks

1 U ( ( )_ 5avera,ge)

A  Projection’

Embedding(x); =




Locally Linear Embedding (LLE)

Construct neighborhood graph
k-nearest neighbor graph or e-neighborhood graph

Compute weights W ;

min [z — » Wm%Hz
1 W=l r; €N (x;)

Minimum eigenvalue problem

Juin g = D Wiyl
YY '=]I
x; EN(x;)




omparison: ISOMAP vs. LLE

Global distances Local averaging

k-NN graph distances k-NN graph weighting
Largest eigenvectors Smallest eigenvectors

Dense matrix Sparse matrix
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Image from “Incremental Alignment Manifold Learning.” Han etal. JCST 26.1 (2011).



Diffusion Maps

Construct similarity matrix
Example: K (z,y) := e l#—vlI"/¢

Normalize rows
M:=D 'K

Embed from k largest eigenvectors
(A191, Ao, oo, Akr)

Coifman, R.R.; S. Lafon. (2006). “Diffusion maps.” Applied and
Computational Harmonic Analysis. 21: 5—30.



Embedding from Geodesic Distance

On reconstruction of non-rigid shapes with intrinsic regularization

Yohai S. Devir Guy Rosman

Alexander M. Bronstein

Michael M. Bronstein

Ron Kimmel

{vd | rosman | bron |mbron | ron}@c:s .technion.ac.il
Department of Computer Science
Technion - Israel Institute of Technology

Abstract

Shape-from-X is a generic type of inverse problems in
computer vision, in which a shape is reconstructed from
some measurements. A specially challenging setting of this
problem is the case in which the reconstructed shapes are
non-rigid. In this paper, we propose a framework for in-
trinsic regularization of such problems. The assumption is
that we have the geometric structure of a shape which is
intrinsically (up to bending) similar to the one we would
like to reconstruct. For that goal, we formulate a variation
with respect to vertex coordinates of a triangulated mesh
approximating the continuous shape. The numerical core
of the proposed method is based on differentiating the fast

marching update step for geodesic distance computation.

1. Introduction

In many tasks, both in human and computer vision, one
tries to deduce the shape of an object given an observa-

many other problems, in which an object is reconstructed
based on some measurement, are known as shape recon-
struction problems. They are a subsel ol what is called
inverse problems. Most such inverse problems are under-
determined, in the sense that measuring different objects
may yield similar measurements. Thus, in the above illus-
tration, the essence of the shadow theater is that it is hard to
distinguish between shadows cast by an animal and shad-
ows cast by hands. Therefore prior knowledge about the
unknown object is needed.

Of particular interest are reconstruction problems involv-
ing non-rigid shapes. The world surrounding us is full with
objects such as live bodies, paper products, plants, clothes
elc., which may be deformed o different postures. These
objects may be deformed (o an infinite number ol different
postures. While bending, though, objects tends to preserve
their internal geometric structure. Two objects differing by
a bending are said to be intrinsically similar. In many cases,
while we do not know the measured object, we have a prior
on its intrinsic geometry. For example, in the shadow the-
ater, thoueh we do not know which exact posture of the hand



Take-Away

Huge zoo
of embedding techniques.

Each with different theoretical properties: Try them all!

But what if the distance matrix is incomplete or noisy?



Euclidean Matrix Completion

min [|H o (D(G) ~ Dinput) |vo

G0

Related method: “Maximum variance unfolding”

Alfakih, Khandani, and Wolkowicz. “Solving Euclidean distance matrix completion
problems via semidefinite programming.” Comput. Optim. Appl., 12 (1999).



More General: Metric Nearness

| X — DI
cun | [Fro

TRIANGLE _FIX[NG(D, €) In other words, the vector e is projected orthogonally onto
Input: Input dissimilarity matrix I, tolerance ¢ the constraint set {e’ : e;; — €’ — e}, < bjjx }. This is tantamount to solving
Output: M = argminy. 4, | X — Dl|J2. ming (e} — e63) + (€4 — e38)? + (e — ex)2)]
: - e 5 [\65 7 Cij ik — Cik “ki ki )
forl<i<j<k<n o o o (3.2)
(Zijk> Zikis 2Rij) < O SAEEIO € T e T i = ke
forl <1< j <n It is easy to check that the solution is given by
ejj — 0
5 Ef te (3:-_,,- — €y — Mijk, (i;—k — €k t+ Pijk, and (3':% — Chi T Mijk, (3.3)
— .
while (§ > €) {convergence test} where pijr = %(e;; — eji — epi — biji) > 0.

foreach triangle (i, j, k
b« d.‘...', + ﬂrjh — rf%-]

p— 3(€ij — ejk — ex; — b)

0 «— min{—p, 2ii } {Stay within half-space of constraint}
€ij ¢ €45 — (), €jk €5k + 0.} €Li “— €Li + f)
2ijk — Zijk — 0 {Update correction term }

end foreach

§ « sum of changes in the e Dhillon, Sra, Tropp. “Triangle FIXIng Algorlthms
d while .
ceturn M = D + E for the Metric Nearness Problem.” NIPS.




Challenging Computational Problems

Is my data embeddable?

Can you compute intrinsic dimensionality?
Are two metric spaces isometric?

How similar are two metric spaces?

What is the average of two metric spaces?

Can | embed into non-Euclidean spaces?



NP-Hardness Result

Robust Euclidean Embedding

LCAYTON@Q(CS.UCSD.EDU
DASGUPTAQQCS.UCSD.EDU

Lawrence Cayton
Sanjoy Dasgupta
Department of Computer Science and Engineering, University of California, San Diego

9500 Gilman Dr. La Jolla, CA 92093

{1 EUCLIDEAN EMBEDDING

Abstract

We derive a robust Euclidean embedding pro-
cedure based on semidefinite programming
that may be used in place of the popular
classical multidimensional scaling (¢cMDS) al-
gorithm. We motivate this algorithm by ar-
guing that ¢cMDS is not particularly robust
and has several other deficiencies. General-
purpose semidefinite programming solvers
are too memory intensive for medium to large
sized applications, so we also describe a fast
subgradient-based implementation of the ro-
bust algorithm. Additionally, since cMDS is
often used for dimensionality reduction, we
provide an in-depth look at reducing dimen-
sionality with embedding procedures. In par-
ticular, we show that it is NP-hard to find
optimal low-dimensional embeddings under a
variety of cost functions.

Input: A dissimilarity matrix D = (d;;).

QOutput: An embedding into the line: @y, 25,... € R
v - / ] 3 ‘r e — 4 — .
Goal: Minimize ), ; |dij — |z; — 2]

choice for embedding seems to b
sional scaling (¢cMDS). Tts populjllWe show that this problem is NP-hard by reducing
ing relatively fast, parameter-fr{flfrom a variant of not-all-equal 3SAT.

and optimal for its cost functit
look carefully at the algorithm and
has some problematic features as w
we argue that the cost function is
conceptually awkward.

The hardness result can be extended to distortion
functions of the form }, ; g(f(dz-j) — f(|zi — 1:j|)) W
agssume that f, g are

We propose a robust alternative to { 1. symmetric;
clidean embedding (REE), that re
desirable features of ¢cMDS, but al
pitfalls. We show that the global
REE cost function can be found
nite program (SDP). Though this i
dard SDP-solvers can only manage t
gram for around 100 points. So $MNotice that f(z),g9(z) € {22} satisfy these condi-
used on more reasonably sized datilltions with Ay = 2, Az = 1, meaning that |D - D*|,
a subgradient-based implementatiorjlland || — D*||y are both hard to minimize over one-
dimensional embeddings.

. monotonically increasing in the absolute values o
their arguments;
3. Lipschitz on [0,1] with constant Ay, that is, for
z,y € [0,1], [f(z) — f(y)| < Av|z —yl; and
. similarly lower-bounded: for some Az, > 0, for any

z,y € [0,1], [f(z) — f(y)| = Arlz — y|max{z,y}.

Dimensionality reduction is an imp

Y =aTelE] 9 99

e a=mTal "~



Dependence on Curvature

positively curved space negatively curved space
sphere saddle

https://www.learner.org/courses/physics/unit/text.html?unit=3&secNum=6



What are some
applications of this
machinery?



Applications

Reduce algorithmic runtime
Compression
Visualize data

Interpolate

Sample



Visualization Examples

Figure 10: Nanotube Embedding. One of Asimov’s graphs for a nanotube is rendered with

MDS in 3-D (Stress=0.06). The nodes represent carbon atoms, the lines represent chemical
bonds. The right hand frame shows the cap of the tube only.

The highlighted points show
some of the pentagons that are necessary for forming the cap.

http://www.stat.yale.edu/~lc436/papers/JCGS-mds.pdf



Visualization Examples

Figure 9: A Telephone Call Graph, Layed Out in 2-D. Left: classical scaling (Stress=0.34);
right: distance scaling (Stress=0.23). The nodes represent telephone numbers, the edges
represent the existence of a call between two telephone numbers in a given time period.

http://www.stat.yale.edu/~lc436/papers/JCGS-mds.pdf



Visualization Examples
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Figure 7: Maps of Computer Commands for Two Individuals.

Left: a member of technical staff who programs and manipulates data (Stress=0.29).
Right: an administrative assistant who does e-mail and word processing (Stress=(0.34).
The labels show selected operating system commands used by these individuals.

http://www.stat.yale.edu/~lc436/papers/JCGS-mds.pdf
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