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Today’s Goal

Quantify how a surface

bends.

Curvature.



High-Level Questions

& N =

(8)KG>0,KH>0 (KG>0,KH<0 (QKG=0,KH=0
elliptic concave elliptic convexe plane

()KG=0,KH>0 ()KG=0,KH <0 HKG<0,KH=0
parabolic concave parabolic convexe saddle (hyperbolic)
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hyperbolic-like hyperbolic-like

http://pubs.rsc.org/is/content/articlelanding/2013/cp/c3cp44375b



High-Level Questions




High-Level Questions

ZERO CURVATURE POSITIVE CURVATURE NEGATIVE CURVATURE

http://starchild.gsfc.nasa.gov/docs/StarChild/questions/question3s.html



Practical Application

The Best Way to Eat Pizza, According to
Science, Means You Probably Have Been

Doing It “rgng iv m

gy

. BT e ———
¥ : 5.\ s Bend It Like Gauss:

-

By LUCIA PETERS Oct 10 2014 _ _
' https://www.bustle.com/articles/43697-the-best-way-to-eat-pizza-

according-to-sciefice-means-you-probably-have-been-doing-it




Frenet Frame: Curves in R3

p T 0 k 0O T
d_ N — — K 0 T N
\ B 0 -7 0/ \B

Binormal: T X N
Curvature: In-plane motion
Torsion: Out-of-plane motion

Theorem:




Can curvature/torsion
of a curve help us
understand surfaces?



Unit Normal




Gauss Map

http://mesh.brown.edu/3DPGP-2007/pdfs/sgo6-courseo1.pdf



Signed Curvature on Plane Curves

T(s) = (cosB(s),sinf(s))




Gauss Map for Surface

http://mathworld.wolfram.com/images/eps-gif/UnitSphere_8o0.gif



Differential of a Map

o: M — N
—> dép : TpM — Tcp(p)N

Linear map of tangent spaces

dpp(7'(0)) :== (w0 v)'(0)

@(x)

M
| TN



Calculation on Board

Where is the
derivative of N?

Spoiler alert: T,S



DN, : T,S — T,S

l

Ap(V, W) := —(DNp(V), W)



Relationship to Curvature of Curves




A, is Self-Adjoint

(on board)



Principal Directions and Curvatures

Ko = K1 COS> 0 + Ko sin® 6

K1, k2 eigenvalues of A ; T, T, eigenvectors of A,



Principal Curvatures




Extrinsic Curvature

) 1
K = I{lliQ:det]I H = —(I{1+I€2):§trﬂ

http://www.sciencedirect.com/science/article/pii/S0010448510001983



Interpretation

Positive and negative curvature is ignored, Saddle surfaces are shown Inflections are shown

both have the same Gaussian curvature in the blue/purple colours in green 0o
136990.45
31360178
562521.56
988052.50
Aat
-988052.7
-562521.5
-313601.7

-136990.4
-0.000

< <
Curvature Evaluation Curvature Evaluation u
Type| Princ. Max ¥ Type Mean v 0.000
. 446,287
PV'!'V’LCI‘}OQ( Min and Max 1021.651
can C[’\aV\ge the direction 1832.581
of evaluation and give 218974
sharp color changes that &
don’t actually indicate -
any errors '
-1832.581
-1021,651
-446,287
-0,000
Mean avoids this by averaging both directions .

http://www.aliasworkbench.com/theoryBuilders/TB7_evaluate3.htm



Uniqueness Result

Theorem:
A smooth surface is determined up to

rigid motion by its first and second
fundamental forms.



Curvature
completely determines
local surface geometry.



Use as a Descriptor

Gaussian

http://graphics.ucsd.edu/~iman/Curvature/



Smoothing and Reconstruction

Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes
Wang, Liu, and Tong
Computer Graphics Forum 31.8 (2012)



Fairness Measure

Triangular Surface Mesh Fairing via
Gaussian Curvature Flow
Zhao, Xu
Journal of Computational and Applied
Mathematics 195.1-2 (2006)

a,(d ”(Mf moree




Guiding Rendering

Highlight Lines for Conveying Shape
DeCarlo, Rusinkiewicz
NPAR (2007)

http://www.cs.rutgers.edu/~decarlo/pubs/nparo7.pdf



Guiding Meshing

input mesh direction fields sampling

Anisotropic Polygonal Remeshing
Alliez et al.
SIGGRAPH (2003)



Special Topic for Me...
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Standard Citation

ESTIMATING THE TENSOR OF CURVATURE OF A
SURFACE FROM A POLYHEDRAL APPROXIMATION

(abriel Taubin

(CCl 7995

[BM T.].Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598
taubin@watson.ibm. com

Abstract

Estimating principal curvatures and principal direc-
tions of a surface from a polyhedral approximation
with a large number of small faces, such as those pro-
duced by iso-surface construction algorithms, has be-
come a basic step in many computer vision algorithms.
Particularly in those targeted at medical applications.
In this paper we describe a method to estimate the ten-
sor of curvature of a surface at the vertices of a poly-
hedral approximation. Principal curvatures and prin-
cipal directions are obtained by computing in closed
form the eigenvalues and eigenvectors of certain 3 x 3
evmmetric matrices defined by inteoral formiilas and

mate principal curvatures at the vertices of a triangu-
lated surface. Both this algorithm and ours are based
on constructing a quadratic form at each vertex of
the polyhedral surface and then computing eigenval-
ues (and eigenvectors) of the resulting form, but the
quadratic forms are different. In our algorithm the
quadratic form associated with a vertex is expressed as
an integral, and is constructed in time proportional to
the number of neighboring vertices. In the algorithm of
Chen and Schmitt, it is the least-squares solution of an
overdetermined linear system, and the complexity of
constructing it is quadratic in the number of neighbors.

iy m™l. . T . Y e



Taubin Matrix

1 T
M = / koTyT, db
27T

— T
Ko := K1 cos> 0 + Ko sin?
Ty := T cosO + T5sin 6




Taubin Matrix

1 T
M = koTyT, db
27T

—Tr
Eigenvectorsare N, Ty, and T,

. 3 1 1 3
Eigenvalues are - Ky + C Ky andgicl t oK

Prove at home!




Taubin’s Approximation
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Taubin’s Approximation
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Problem

http://iristown.engr.utk.edu/~koschan/paper/CVPRoz1.pdf

Local estimates are noisy



General Strategy

o

EiASE1 ; PHASEZ PHASE3 i

Collect : , Profis

local data -




A WARNING
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MATH




Main Take-Away

Use application to motivate
choice of curvature.

Simulation, smoothing, analysis, meshing,
nonphotorealistic rendering, ...



Another Example

Estimating Curvatures and Their Derivatives on Triangle Meshes

Szymon Rusinkiewicz
Princeton University

Abstract

The computation of curvature and other differential prop-
erties of surfaces is essential for many techniques in analysis
and rendering. We present a finite-differences approach for
estimating curvatures on irregular triangle meshes that may
be thought of as an extension of a common method for esti-
mating per-vertex normals. The technique is efficient in space
and time, and results in significantly fewer outlier estimates
while more broadly offering accuracy comparable to existing
methods. It generalizes naturally to computing derivatives of
curvature and higher-order surface differentials.

1 Introduction

As the acquisition and use of sampled 3D geometry become
more widespread, 3D models are increasingly becoming the
focus of analysis and signal processing techniques previously
applied to data types such as audio, images, and video. A key
component of algorithms such as feature detection, filtering,
and indexing, when applied to both geometry and other data

3DPYT 04

Figure 1: Left: suggestive contours for line drawings [DeCarlo
et al. 2003] are a recent example of a driving application for the
estimation of curvatures and derivatives of curvature. Right: sug-
gestive contours are drawn along the zeros of curvature in the
view direction, shown here in blue, but only where the derivative
of curvature in the view direction is positive (the curvature deriva-



Second Fundamental Form Matrix

Assume v, v are orthogonal



Second Fundamental Form Matrix
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Least-squares



Average for Per-Vertex

Rotate tangent plane about
cross product of normals

Average using Voronoi weights



Completely Different Formula

Consistent Computation of First- and Second-Order
Differential Quantities for Surface Meshes

Xiangmin Jiao*

Dept. of Applied Mathematics & Statistics

Stony Brook University

Abstract

Differential quantities, including normals, curvatures, principal di-
rections, and associated matrices, play a fundamental role in geo-
metric processing and physics-based modeling. Computing these
differential quantities consistently on surface meshes is important
and challenging. and some existing methods often produce incon-
sistent results and require ad hoc fixes. In this paper, we show that
the computation of the gradient and Hessian of a height function
provides the foundation for consistently computing the differential
quantities. We derive simple, explicir formulas for the transforma-
tions between the first- and second-order differential quantities (i.e.,
normal vector and curvature matrix) of a smooth surface and the
first- and second-order derivatives (i.e., gradient and Hessian) of its
corresponding height function. We then investigate a general, flex-
ible numerical framework to estimate the derivatives of the height
function based on local polynomial fittings formulated as weighted
least squares approximations. We also propose an iterative fitting

Hongyuan Zha'
College of Computing
Georgia Institute of Technology

e

often require ad hoc fixes to avoid crashing of the code, and their
effects on the accuracy of the applications are difficult to analyze.

The ultimate goal of this work is to investigate a mathematically
sound framework that can compute the differential quantities con-
sistently (i.e., satisfying the intrinsic constraints) with provable con-
vergence on general surface meshes, while being flexible and easy
to implement. This is undoubtly an ambitious goal. Although we
may have not fully achieved the goal, we make some contributions
toward it. First, using the singular value decomposition [Golub and
Van Loan 1996] of the Jacobian matrix, we derive explicit formulas
for the transformations between the first- and second-order differ-
ential quantities of a smooth surface (i.e., normal vector and cur-
vature matrix) and the first- and second-order derivatives of its cor-
responding height function (i.e., gradient and Hessian). We also
give the explicit formulas for the transformations of the gradient
and Hessian under a rotation of the coordinate system. These trans-
formations can be obtained without forming the shape operator and
the associated combutation of its eicenvalues or eicenvectors We



Completely Different Formula

Consistent Computation of First- and Second-Order
Differential Quantities for Surface Meshes

Xiangmin Jiao* Hongyuan Zha'
Dept. of Applied Mathematics & Statistics College of Computing
Stony Brook University Georgia Institute of Technology
Abstract often require ad hoc fixes to avoid crashing of the code, and their

effects on the accuracy of the applications are difficult to analyze.
Differential quantities, including normals, curvatures, principal di-
rections, and associated matrices. plav a fundamental role in eeo-
m

s Theorem 3 The mean and Gaussian curvature of the height func-

The ultimate goal of this work is to investigate a mathematically
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Conserved Quantity Approach

Discrete Differential-Geometry Operators
for Triangulated 2-Manifolds

Mark Meyer!, Mathieu Desbrun':?, Peter Schroder!, and Alan H. Barr!

L Caltech

T ealatin ad Math, 1

Summary. This paper proposes a unified and consistent set of flexible tools to
approximate important geometric attributes, including normal vectors and cur-
vatures on arbitrary triangle meshes. We present a consistent derivation of these
first and second order differential properties using averaging Voronoi cells and the
mixed Finite-Element/Finite-Volume method, and compare them to existing for-
mulations. Building upon previous work in discrete geometry, these operators are
closely related to the continuous case, guaranteeing an appropriate extension from
the continuous to the discrete setting: they respect most intrinsic properties of the
continuous differential operators. We show that these estimates are optimal in ac-
curacy under mild smoothness conditions, and demonstrate their numerical quality.
We also present applications of these operators, such as mesh smoothing, enhance-
ment, and quality checking, and show results of denocising in higher dimensions,
such as for tensor images.



Structure preservation

[struhk-cher pre-zur-vey-shuhn].

Keeping properties from the
continuous abstraction exactly

true in a discretization. E




Gauss-Bonnet Theorem

KdA—I—/ k,ds = 2mx (M)
oM

1

Gaussian 2-2(

curvature _
Geodesic curvature

(curvature projected
on tangent plane)
\Qmit{Proof}



For Polygonal Cells

/KdAIQW—Zéj
v j

Changeis in
normal
direction

Turning angle
Integrated
curvature

Figure from the paper



For Voronoi Cells

/KdA:27T—ZHJ
v j

Figure from the paper



Flip Things Backward

DEFINITION:

Gaussian curvature integrated over region V
Is given by

/KdA:27T—ZHJ
v j

Divide by area for curvature estimate



Euler Characteristic




Consequences for Triangle Meshes

V-—E+F =Y

“Each edgeis
adjacent to two
faces. Each face

has three edges.”

2 = 3F

Closed mesh: Easy estimates!



Discrete Gauss-Bonnet

Partition the surface



Discrete Gauss-Bonnet

Apply our definition



Discrete Gauss-Bonnet

Pull out constants



Discrete Gauss-Bonnet

dA = dA
fraa=x ]

— Z (27T — ZQ’U)
— 27V — Z%

= 27V — 7TF

Consider sum over triangles



Discrete Gauss-Bonnet

dA = dA
K=K

=27V — 1 F
o =72V — F)
By definition —2:,  <ged/>



Alternative Definition

— kN

decreases

length the
fastest.




Mean Curvature Normal

E(M) = Area(M) ‘1\’ ; 9 g

VE(p)=Hn
“Variational derivative”

VE(p)=0Vp € int M

Minimal surfaces

Image courtes y K. Crane
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Single Triangle




Single Triangle: Derivatives




Single Triangle: Complete

—

P D =DPnMt+ pe€+piré;
1
A= 55\/1072@4‘101
1.
VﬁA: _bGJ_




Ratio of Base to Height

(1 %

— = — | — cota+ cot p



Height Vector

tan «
1 tan o + tan S




Alternative Gradient Formula

_ 1o 5 i d
2 ||h]
1 i tan o
= = (cot t8) |p— (7 —
2(60 @+ cot ) _p (r Cj)tamoz—I—’lszmﬁ_

= %((ﬁ— r) cot o + (p — ) cot §)



Summing Around a Vertex




Integrated Mean Curvature Normal

DEFINITION:

The mean curvature normal integrated over
region Vis given by
1

VzA = 5 Z(cot a; + cot B5;) (D — q;)
J

Divide by area for curvature estimate



Compute integrated H, K

Divide by area of cell for
estimated value



Another Mean Curvature

== [ =38l

Used for triangulation appllcatlons



Tuned for Variational Applications

Computing discrete shape operators on general meshes

Eitan Grinspun Yotam Gingold Jason Reisman Denis Zorin
Columbia University New York University New York University New York University
eitan@cs.columbia.edu  gingold@mrl nyu.edu jasonr@mrl.nyu.edu dzorin@mrl.nyu.edu
Abstract
- W ] 1 2 | 2 2 ‘ ¥ H ] . | .
Discrete curvature m{d _‘Jm,_vf’ operators, tfr:ch ¢ Cotan Qut dnf Theirs
are essential in a variety of applications: simulati tal obj
geometric data processing. In many of these appl L by me
approaches for formulating curvature operators highly
expensive methods used in engineering applicatic techni
computer graphics.
We propose a simple and efficient formulation for al prob
degrees of freedom associated with normals. On its simj
curvature operators commonly used in graphics; imber

and produces consistent results for different types

FT



Tuned for Robustness

Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

Robust statistical estimation of curvature
on discretized surfaces

Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai and Karan Singh

Dynamic Graphics Project, Computer Science Department, University of Toronto

1
Initial weighting D
FVvVvVvyyl 0.9
Abstract . -
L L o T » Final weighting f 2
A robust statistics approach to curvature estimation on discretely samy  J7o700000
point clouds, is presented. The method exhibits accuracy, stability and  |1/////0//1/////70707 /] ¥
sampled surfaces with irregular configurations. Within an M-estimatior  ////// oo ] 27 1/ kad
noise and structured outliers by sampling normal variations in an ad / s
each point. The algorithm can be used to reliably derive higher order di .
surface normals while preserving the fine features of the normal and « AN . /AU
with state-of-the-art curvature estimation methods and shown to impro A Feature e
across ground truth test surfaces under varying tessellation densities | AVATAVATAVAYd 4% boundary |02
noise. Finally, the benefits of a robust statistical estimation of curvature & 0.1
applications of mesh segmentation and suggestive contowr rendering. Lo

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computational Geometry and Object Model- r
ing|: Geometric algorithms, languages, and systems; curve, surface, solid, and object representations.




Alternative Strategies

Locally fit a smooth surface
What type of surface? How to fit?

Different formula

Function of curvature? Where on mesh?
Convergence of approximation?

Learn curvature computation

Tune for application? Training data?



Practical Advice

Try as many as you can.

Most are easy to implement!
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