

Numerical Tools for Geometry

Justin Solomon MIT, Spring 2017

Announcements

Nanoquiz on Thursday It will be easy!

Yes, this course is a TQE!

Homework 1 Posted

(demo in browser)

Course Project

- Instructions on course website
- Individual or groups of two
- Implement and extend a relevant technique

Milestones:

- Proposal (500 words)
- Checkpoint (≤2 pages)
- Writeup (6-10 pages)
- Presentation (8-10 minutes)

Numerical Tools for Geometry

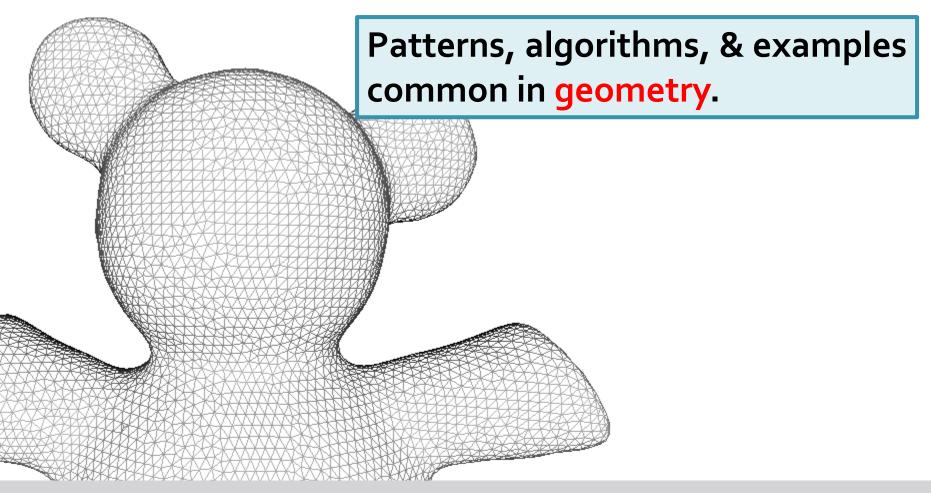
Justin Solomon MIT, Spring 2017

Motivation

Numerical problems abound in modern geometry applications.

Quick summary!

Mostly for common ground: You may already know this material. First half is important; remainder summarizes interesting recent tools.


Two Roles

Client

Which optimization tool is relevant?

Designer Can I design an algorithm for this problem?

Our Bias

Numerical analysis is a <u>huge</u> field.

Rough Plan

Linear problems

- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Rough Plan

Linear problems

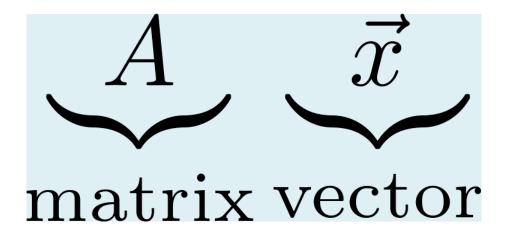
Unconstrained optimization

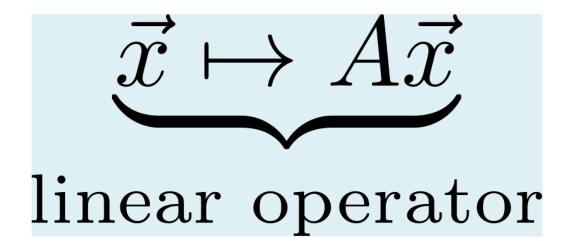
Equality-constrained optimization

Variational problems

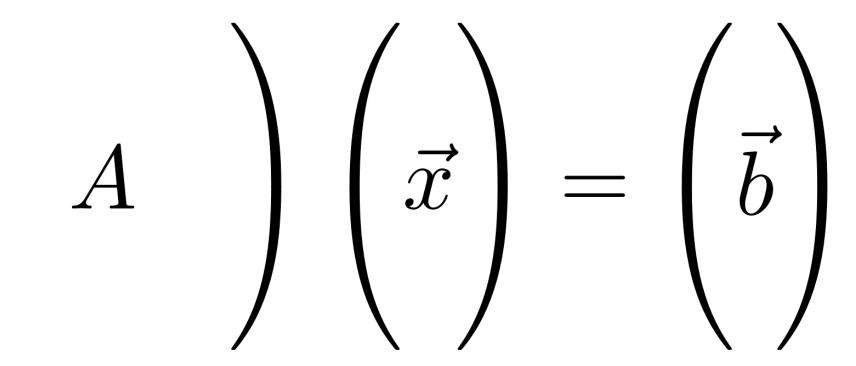
Vector Spaces and Linear Operators

$\mathcal{L}[\vec{x} + \vec{y}] = \mathcal{L}[\vec{x}] + \mathcal{L}[\vec{y}]$ $\mathcal{L}[c\vec{x}] = c\mathcal{L}[\vec{x}]$


Abstract Example


 $C^{\infty}(\mathbb{R})$

$\mathcal{L}[f] := \frac{df}{dx}$


Eigenvectors?

In Finite Dimensions

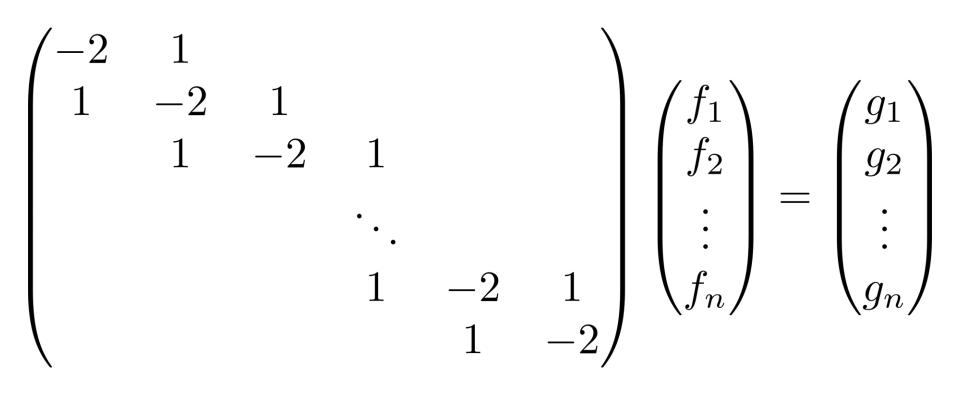
Linear System of Equations

Simple "inverse problem"

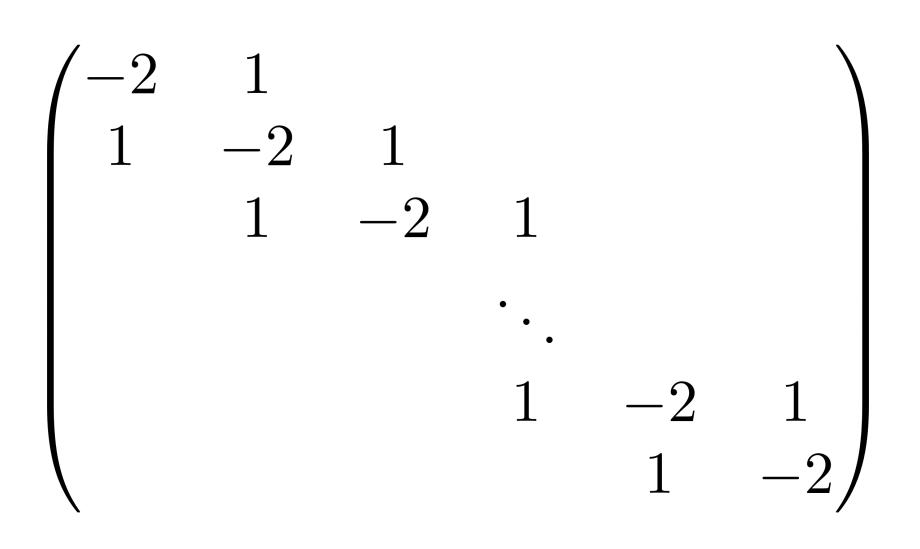
Common Strategies

Gaussian elimination

- O(n³) time to solve Ax=b or to invert
- But: Inversion is unstable and slower!
- Never ever compute A⁻¹ if you can avoid it.


Interesting Perspective

🧕 [1201.6035] How Accurate 🗙 🕂						-		×	
(i) A https://arxiv.org/abs/1201.6035		C Q Search		☆ 自	+ 1		9	≡	
Cornell University Library				We grate		owledge he Simo d memb	ns Foun	dation	
arXiv.org > cs > arXiv:1201.6035	Search or Article ID inside arXiv	All papers 🗸 🗸	Broaden yo	our search	using Sei	mantic S	Scholar	Q	
	(<u>Help</u> <u>Advanced search</u>)								
<								>	
Computer Science > Numerical Analysis					Download:				
How Accurate is inv(A) Alex Druinsky, Sivan Toledo	*b?			• F	PDF Other for				
(Submitted on 29 Jan 2012)			Cur	Current browse context:					
Several widely-used textbooks lead the reader to believe that solving a linear system of equations Ax = b by multiplying the vector b by a computed inverse inv(A) is inaccurate. Virtually all other textbooks on numerical analysis and numerical linear algebra advise against using computed inverses without stating whether this is accurate or not. In fact, under reasonable assumptions on how the inverse is computed, x = inv(A)*b is as accurate as the solution computed by the best backward-stable solvers. This fact is not new, but obviously obscure. We review the literature on the accuracy of this computation and present a self-contained numerical analysis of it.				cs.NA < prev next > new recent 1201 Change to browse by: cs math math.NA					
Subjects: Numerical Analysis (cs.NA); Nun	nerical Analysis (math.NA)				erences		ations		
Cite as: arXiv:1201.6035 [cs.NA] (or arXiv:1201.6035v1 [cs.NA] for	this version)			1 b	log link (v	vhat is this'	?)		
Submission history From: Alex Druinsky [view email] [v1] Sun, 29 Jan 2012 12:55:30 GMT (20kb,D)			DBI	DBLP - CS Bibliography listing bibtex Alex Druinsky Sivan Toledo					
Which authors of this paper are endorsers? I	Disable MathJax (What is MathJax?)				okmark (* K 🔽 📲 🖇				


Link back to: arXiv, form interface, contact.

Simple Example

 $\frac{d^2f}{dx^2} = g, f(0) = f(1) = 0$

Structure?

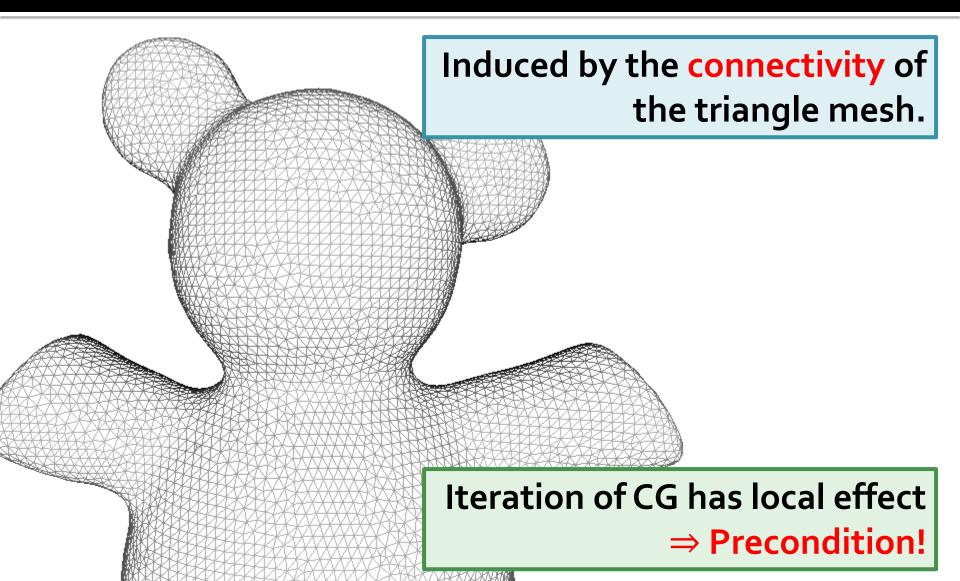
Linear Solver Considerations

Never construct A⁻¹ explicitly (if you can avoid it)

Added structure helps <u>Sparsity</u>, symmetry, positive definiteness, bandedness

$inv(A)*b \ll (A'*A) \setminus (A'*b) \ll A \setminus b$

Two Classes of Solvers


Direct (explicit matrix)

- Dense: Gaussian elimination/LU, QR for least-squares
- Sparse: Reordering (SuiteSparse, Eigen)

Iterative (*αpply* matrix repeatedly)

- Positive definite: Conjugate gradients
- Symmetric: MINRES, GMRES
- Generic: LSQR

Very Common: Sparsity

For 6.838

- No need to implement a linear solver
- If a matrix is sparse, your code should store it as a sparse matrix!

Sparse matrices (scipy.spa × +	-	-	
ⓐ https://docs.scipy.org/doc/scipy-0.18.1/reference/ €□ C Search	☆自∔ 會	◙	12
SciPy.org			
Scipy.org Docs SciPy v0.18.1 Reference Guide index module	es modules next previous		
Sparse matrices (scipy.sparse)	Table Of Contents		
SciPy 2-D sparse matrix package for numeric data.	 Sparse matrices (scipy.sparse) 		
Contents	o Contents		
	Sparse matrix		
Sparse matrix classes	classes Functions		
ber matrix(ara1[_shape_dtype_conv_blocksize]). Block Sparse Pow matrix	Submodule:		

Rough Plan

Linear problems

Unconstrained optimization

Equality-constrained optimization

Variational problems

Optimization Terminology

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. g(x) = 0 $h(x) \ge 0$

Objective ("Energy Function")

Optimization Terminology

$$\min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t.} \ g(x) = 0 \\ h(x) \ge 0$$

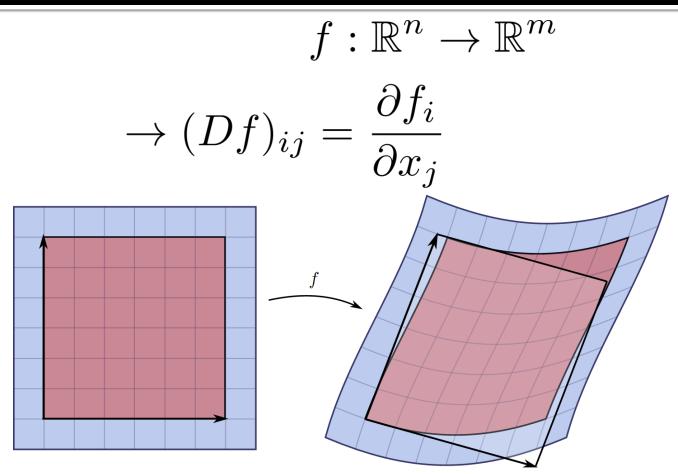
Equality Constraints

Optimization Terminology

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. g(x) = 0 $h(x) \ge 0$

Inequality Constraints

Notions from Calculus

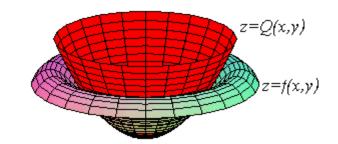

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$\to \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Gradient

https://en.wikipedia.org/?title=Gradient

Notions from Calculus



https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian

Notions from Calculus

$$f: \mathbb{R}^n \to \mathbb{R} \to H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$f(x) \approx f(x_0) + \nabla f(x_0)^\top (x - x_0) + (x - x_0)^\top H f(x_0) (x - x_0)$$

http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif

Optimization to Root-Finding

 $\nabla f(x)$

(unconstrained)

Local max

f(x)► X

Saddle point

Local min

Encapsulates Many Problems

$$\min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } g(x) = 0 \\ h(x) \ge 0$$

$$Ax = b \leftrightarrow f(x) = \|Ax - b\|_2$$

 $Ax = \lambda x \leftrightarrow f(x) = ||Ax||_2, g(x) = ||x||_2 - 1$

Roots of $g(x) \leftrightarrow f(x) = 0$

Bow effective are generic optimization tools?

Generic Advice

Try the simplest solver first.

Quadratic with Linear Equality

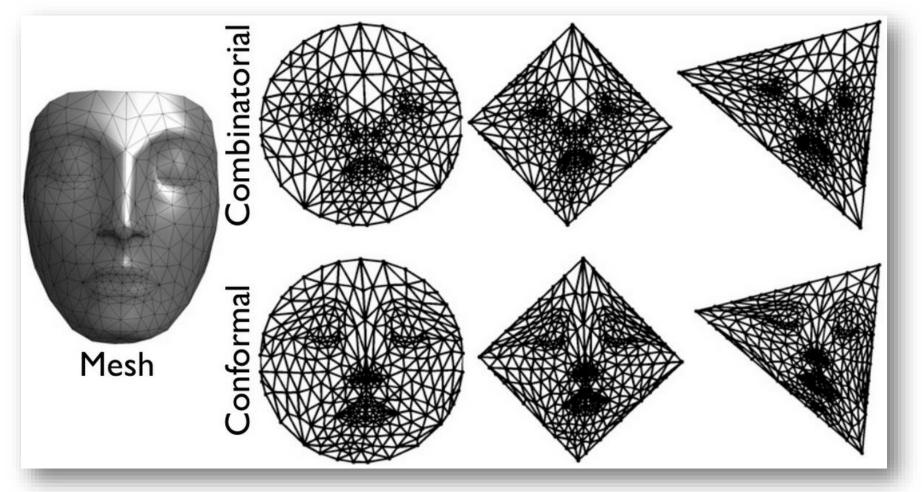
$$\begin{array}{ccc} \min_{x} & \frac{1}{2}x^{\top}Ax - b^{\top}x + c \\ \text{s.t.} & Mx = v \\ \text{(assume A is symmetric and positive definite)} \\ & \downarrow \\ A & M^{\top} \\ M & 0 \end{array} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} b \\ v \end{pmatrix}$$

Useful Document

The Matrix Cookbook Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

Special Case: Least-Squares


$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2}$$

$$\rightarrow \min_{x} \frac{1}{2} x^{\top} A^{\top} A x - b^{\top} A x + \|b\|_{2}^{2}$$

$$\implies A^{\top}Ax = A^{\top}b$$

Normal equations (better solvers for this case!)

Example: Mesh Embedding

G. Peyré, mesh processing course slides

Linear Solve for Embedding

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} \quad x_v \text{ fixed } \forall v \in V_0 } } \sum_{ij \in E} w_{ij} \|x_i - x_j\|_2^2$$

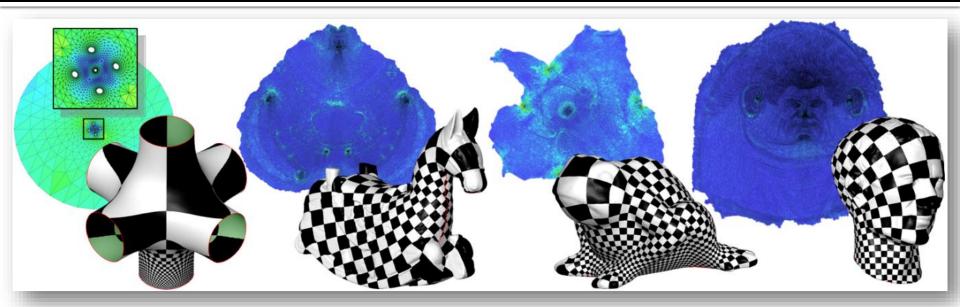
w_{ij} ≡ 1: Tutte embedding
 w_{ij} from mesh: Harmonic embedding

Assumption: w symmetric.

Returning to Parameterization

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} \quad x_v \text{ fixed } \forall v \in V_0 } } \sum_{ij \in E} w_{ij} \|x_i - x_j\|_2^2$$

What if
$$V_0 = \{\}$$
?


Nontriviality Constraint

$$\left\{\begin{array}{cc} \min_{x} & \|Ax\|_{2} \\ \text{s.t.} & \|x\|_{2} = 1 \end{array}\right\} \mapsto A^{\top}Ax = \lambda x$$

Prevents trivial solution $x \equiv 0$.

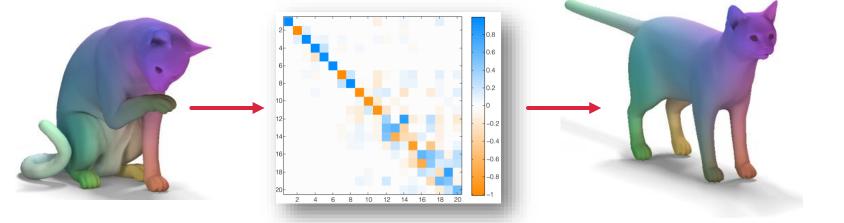
Extract the smallest eigenvalue.

Back to Parameterization

Mullen et al. "Spectral Conformal Parameterization." SGP 2008.

$$\min_{\substack{u\\ u^{\top}Be=0 \\ u^{\top}Bu=1}} u^{\top} L_C u \quad \longleftrightarrow \quad L_c u = \lambda B u$$

Basic Idea of Eigenalgorithms


$$\begin{aligned} A\vec{v} &= c_1 A\vec{x}_1 + \dots + c_n A\vec{x}_n \\ &= c_1 \lambda_1 \vec{x}_1 + \dots + c_n \lambda_n \vec{x}_n \text{ since } A\vec{x}_i = \lambda_i \vec{x}_i \\ &= \lambda_1 \left(c_1 \vec{x}_1 + \frac{\lambda_2}{\lambda_1} c_2 \vec{x}_2 + \dots + \frac{\lambda_n}{\lambda_1} c_n \vec{x}_n \right) \\ A^2 \vec{v} &= \lambda_1^2 \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^2 c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^2 c_n \vec{x}_n \right) \\ &\vdots \\ A^k \vec{v} &= \lambda_1^k \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^k c_n \vec{x}_n \right). \end{aligned}$$

Combining Tools So Far

Roughly:

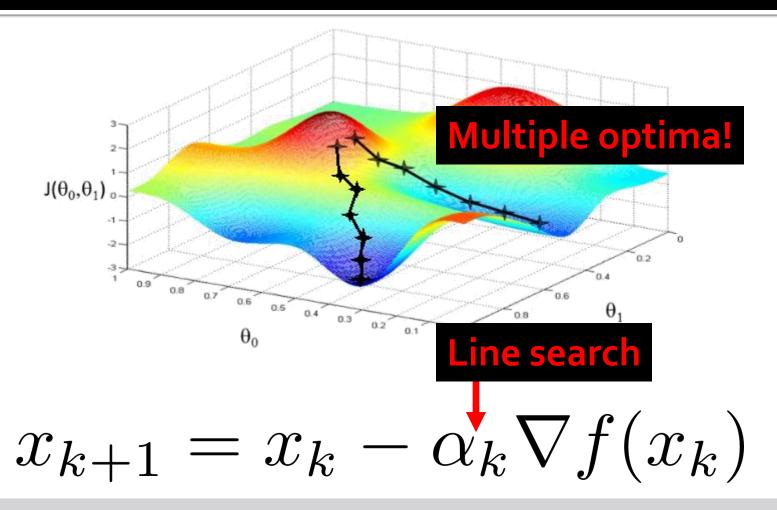
1. Extract Laplace-Beltrami eigenfunctions: $L\phi_i = \lambda_i A \phi_i$

2. Find mapping matrix (linear solve!): $\min_{A \in \mathbb{R}^{n \times n}} \|AF_0 - F\|_{\text{Fro}}^2 + \alpha \|A\Delta_0 - \Delta A\|_{\text{Fro}}^2$

Ovsjanikov et al. "Functional Maps." SIGGRAPH 2012.

Rough Plan

Linear problems

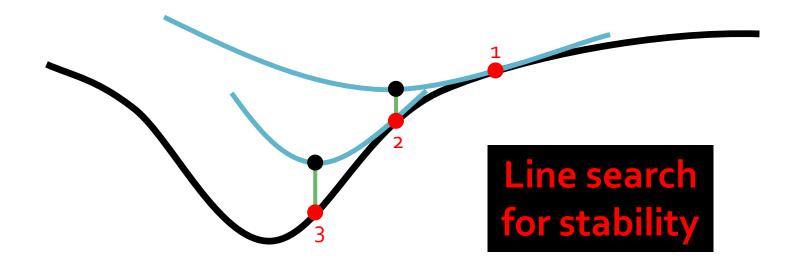

Unconstrained optimization

Equality-constrained optimization

Variational problems

Unconstrained Optimization

Unstructured.


Gradient descent

$$egin{aligned} &\lambda_0 = 0, \lambda_s = rac{1}{2} (1 + \sqrt{1 + 4\lambda_{s-1}^2}), \gamma_s = rac{1 - \lambda_2}{\lambda_{s+1}} \ &y_{s+1} = x_s - rac{1}{eta}
abla f(x_s) \ &x_{s+1} = (1 - \gamma_s) y_{s+1} + \gamma_s y_s \end{aligned}$$

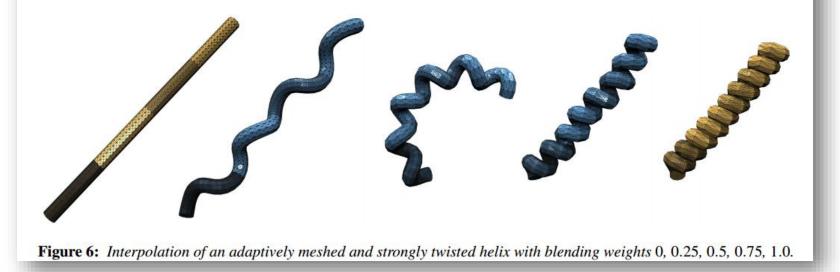
Quadratic convergence on convex problems! (Nesterov 1983)

Accelerated gradient descent

$$x_{k+1} = x_k - \left[Hf(x_k)\right]^{-1} \nabla f(x_k)$$

Newton's Method

$$x_{k+1} = x_k - M_k^{-1} \nabla f(x_k)$$
Hessian
approximation


(Often sparse) approximation from previous samples and gradients
 Inverse in closed form!

Quasi-Newton: BFGS and friends

Example: Shape Interpolation

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are 0, 0.35, 0.65, 1.0, and 1.25.

Fröhlich and Botsch. "Example-Driven Deformations Based on Discrete Shells." CGF 2011.

Interpolation Pipeline

Roughly:

1. Linearly interpolate edge lengths and dihedral angles. $\ell_e^* = (1-t)\ell_e^0 + t\ell_e^1$

 $\theta_e^* = (1-t)\theta_e^0 + t\theta_e^1$ 2. Nonlinear optimization for vertex positions.

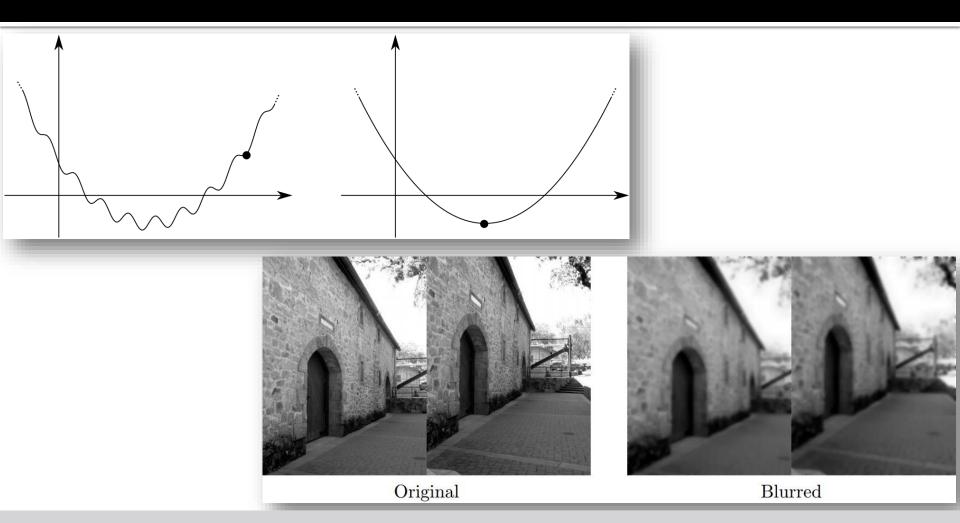
$$\min_{x_1,\ldots,x_m} \lambda \sum_e w_e (\ell_e(x) - \ell_e^*)^2$$

Sum of squares: Gauss-Newton

$$+\mu\sum_{e}w_{b}(\theta_{e}(x)-\theta_{e}^{*})^{2}$$

Software

Matlab: fminunc or minfunc C++: libLBFGS, dlib, others


Typically provide functions for function and gradient (and optionally, Hessian).

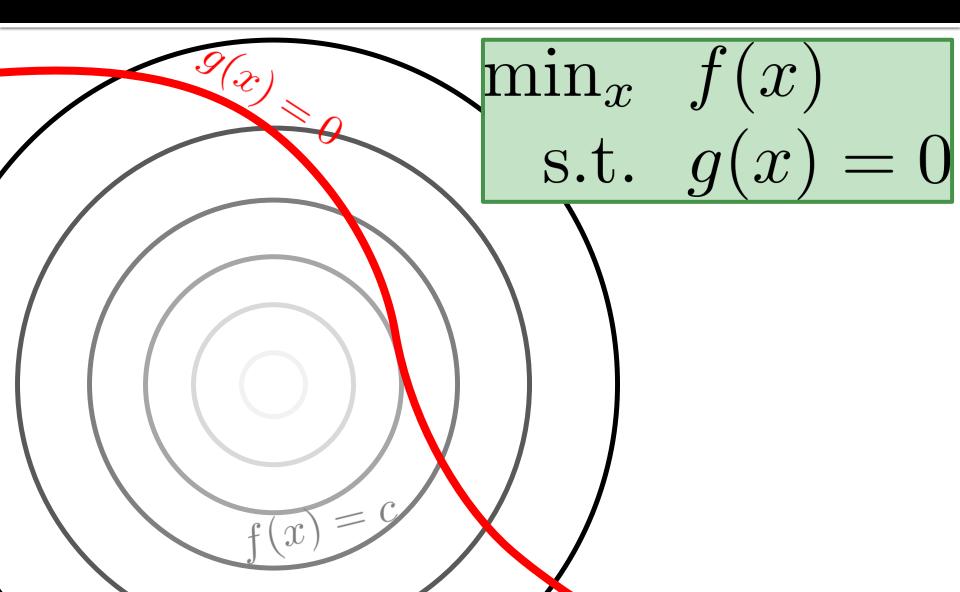
Some Tricks

Lots of small elements: $||x||_2^2 = \sum_i x_i^2$ Lots of zeros: $||x||_1 = \sum_i |x_i|$ Uniform norm: $||x||_{\infty} = \max_i |x_i|$ Low rank: $||X||_* = \sum_i \sigma_i$ Mostly zero columns: $||X||_{2,1} = \sum_{j} \sqrt{\sum_{i} x_{ij}^2}$ Smooth: $\int \|\nabla f\|_2^2$ Piecewise constant: $\int \|\nabla f\|_2$???: Early stopping Regularization

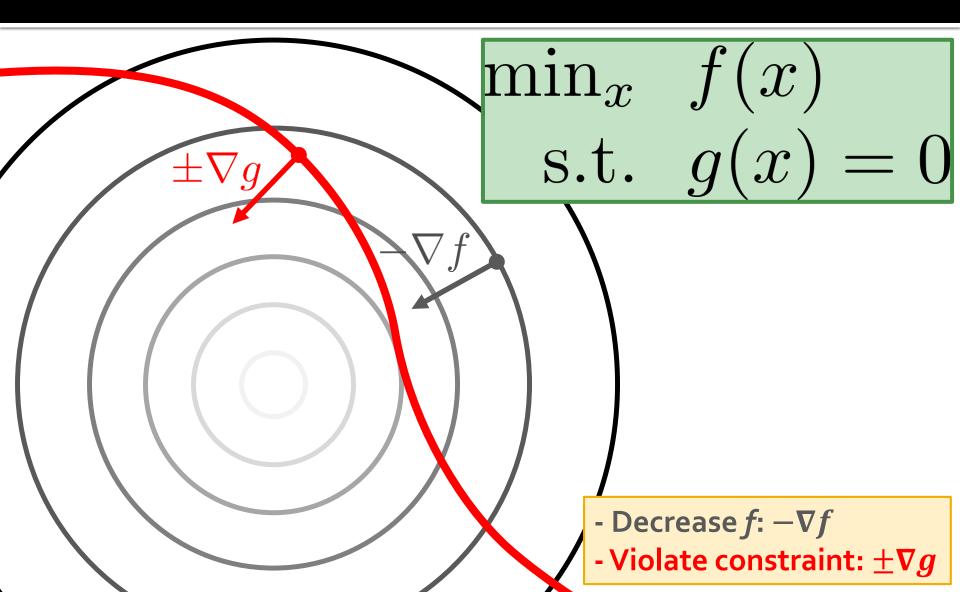
Some Tricks

Multiscale/graduated optimization

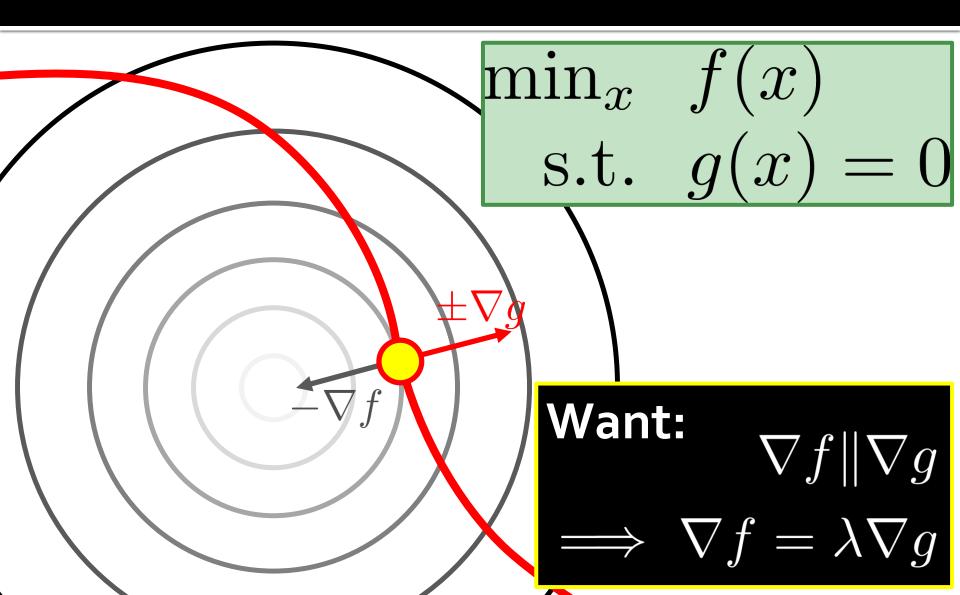
Rough Plan


Linear problems

Unconstrained optimization


Equality-constrained optimization

Variational problems


Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Example: Symmetric Eigenvectors

$$f(x) = x^{\top} A x \implies \nabla f(x) = 2Ax$$
$$g(x) = \|x\|_2^2 \implies \nabla g(x) = 2x$$
$$\implies Ax = \lambda x$$

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$\nabla f(x) = \lambda \nabla g(x)$$
$$g(x) = 0$$

Many Options

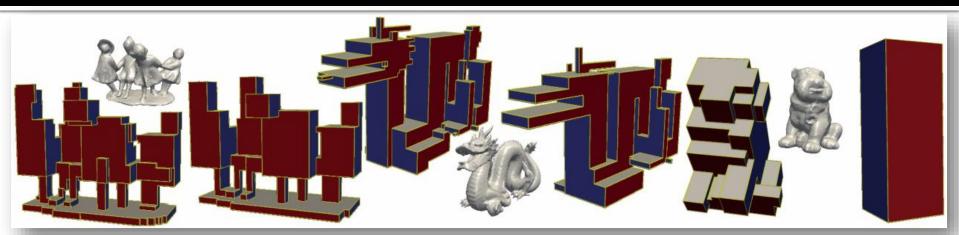
Reparameterization

Eliminate constraints to reduce to unconstrained case

Newton's method

Approximation: quadratic function with linear constraint

Penalty method


Augment objective with barrier term, e.g. $f(x) + \rho |g(x)|$

Trust Region Methods

$$\begin{cases} \min_{\delta x} \quad \frac{1}{2} \delta x^\top H \delta x + w^\top x \\ \text{s.t.} \quad \|\delta x\|_2^2 \le \Delta \\ \downarrow \\ (H + \lambda I) \delta x = -w \end{cases}$$

Fix (or adjust)
damping parameter
 $\lambda > 0$.

Example: Levenberg-Marquardt

Example: Polycube Maps

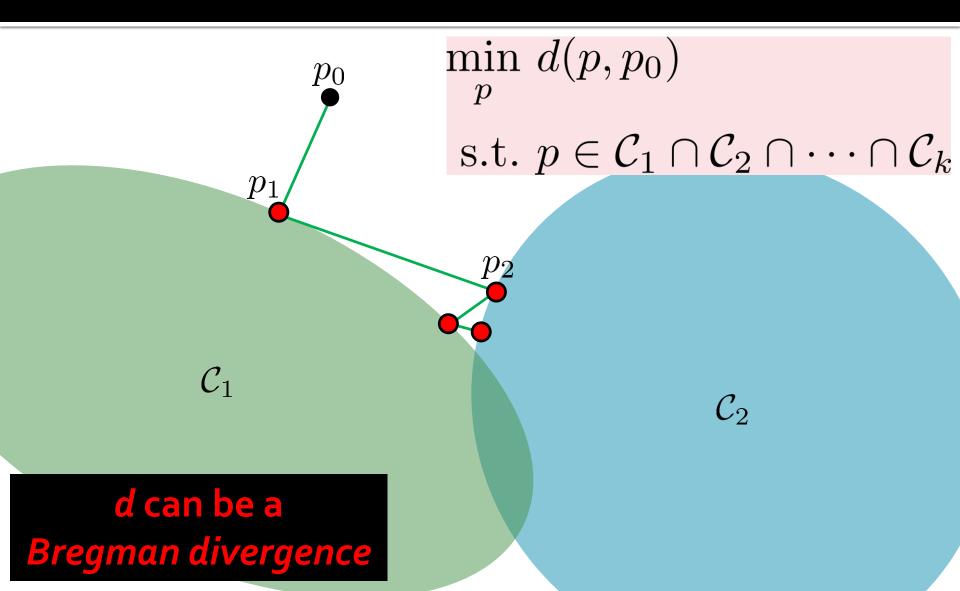

Huang et al. "L1-Based Construction of Polycube Maps from Complex Shapes." TOG 2014.

$$\begin{aligned} & \underset{X \in \mathcal{A}_{b_i}}{\min_X \sum_{b_i}} \quad \mathcal{A}(b_i; X) \| n(b_i; X) \|_1 \\ & \text{s.t.} \quad \sum_{b_i} \mathcal{A}(b_i; X) = \sum_{b_i} \mathcal{A}(b_i; X_0) \end{aligned}$$

Preserve area

Note: Final method includes more terms!

Aside: Convex Optimization Tools



Try lightweight options

Iteratively Reweighted Least Squares

Repeatedly solve linear systems

Alternating Projection

Iterative Shrinkage-Thresholding

$$\begin{aligned} x_{t+1} &= x_t - \eta \nabla f(x_t) \\ \iff x_{t+1} = \arg\min_x \left[f(x_t) + \nabla f(x_t)^\top (x - x_t) + \frac{1}{2\eta} \|x - x_t\|_2^2 \right] \\ \iff x_{t+1} = \arg\min_x \frac{1}{2\eta} \|x - (x_t - \eta \nabla f(x_t))\|_2^2 \end{aligned}$$

Decompose as sum of hard part *f* and easy part *g*.

To minimize
$$f(x) + g(x)$$
:
$$x_{t+1} = \arg \min_{x} \left[g(x) + \frac{1}{2\eta} \left\| x - (x_t - \eta \nabla f(x_t)) \right\|_2^2 \right]$$

FISTA combines with Nesterov descent! https://blogs.princeton.edu/imabandit/2013/04/11/orf523-ista-and-fista/

Augmented Lagrangians

$$\min_{x} f(x) \\ \text{s.t.} g(x) = 0 \\ \downarrow \\ \min_{x} f(x) + \frac{\rho}{2} \|g(x)\|_{2}^{2} \leftarrow \begin{array}{l} \text{Does nothing when} \\ \text{constraint is} \\ \text{s.t.} g(x) = 0 \end{array}$$

Add constraint to objective

Alternating Direction Method of Multipliers (ADMM)

$$\min_{x,z} \quad f(x) + g(z) \\ \text{s.t.} \quad Ax + Bz = c$$

 $\Lambda_{\rho}(x, z; \lambda) = f(x) + g(z) + \lambda^{\top} (Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_{2}^{2}$

$$\begin{aligned} x \leftarrow \arg \min_{x} \Lambda_{\rho}(x, z, \lambda) \\ z \leftarrow \arg \min_{z} \Lambda_{\rho}(x, z, \lambda) \\ \lambda \leftarrow \lambda + \rho(Ax + Bz - c) \end{aligned}$$

The Art of ADMM "Splitting"

 $\left\{ \begin{array}{cc} \min_{J} & \sum_{i} \|J_{i}\|_{2} \\ \text{s.t.} & MJ = b \end{array} \right\} \longrightarrow \left\{ \begin{array}{cc} \min_{J,\bar{J}} & \sum_{i} \left(\|J_{i}\|_{2} + \frac{\rho}{2} \|J_{i} - \bar{J}_{i}\|_{2}^{2} \right) \\ \text{s.t.} & M\bar{J} = b \\ J = \bar{J} \end{array} \right\}$ part Takes some practice! Example of "proximal" algorithm.

Solomon et al. "Earth Mover's Distances on Discrete Surfaces." SIGGRAPH 2014.

Want two easy subproblems

Frank-Wolfe

To minimize
$$f(x)$$
 s.t. $x \in \mathcal{D}$:
 $s_k \leftarrow \begin{cases} \arg \min_s \ s^\top \nabla f(x_k) \\ \text{s.t.} \ s \in \mathcal{D} \end{cases}$
 $\gamma \leftarrow \frac{2}{k+2}$
 $x_{k+1} \leftarrow x_k + \gamma(s_k - x_k)$

https://en.wikipedia.org/wiki/Frank%E2%80%93Wolfe_algorithm

Linearize objective, preserve constraints

Rough Plan

Linear problems

- Unconstrained optimization
- Equality-constrained optimization

Variational problems

Variational Calculus: Big Idea

Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

On the Board

 $\min_{f} \int_{\Omega} \|\vec{v}(x) - \nabla f(x)\|_{2}^{2} d\vec{x}$

 $\min_{\int_{\Omega} f(x)^2 d\vec{x}=1} \int_{\Omega} \|\nabla f(x)\|_2^2 d\vec{x}$

Gâteaux Derivative

$$d\mathcal{F}[u;\psi] := \frac{d}{dh} \mathcal{F}[u+h\psi]|_{h=0}$$
Vanishes for all ψ at a critical point!

Analog of derivative at u in ψ direction

Numerical Tools for Geometry

Justin Solomon MIT, Spring 2017

