

Optimal Transport

Justin Solomon MIT, Spring 2017

Back to comfortable ground!

...toward my own research!

Understand geometry from a "softened" probabilistic standpoint.

Secondary goal: Application of machinery from previous lectures (vector fields, geodesics, metric spaces, optimization...)

Probabilistic Geometry

"Somewhere over here."

Probabilistic Geometry

"Exactly here."

Probabilistic Geometry

"One of these two places."

Motivating Question

Motivating Question

Fuzzy Version

Typical Measurement

Returning to the Question

Returning to the Question

Neither! Equidistant.

What's Wrong?

Measured overlap, not displacement.

Related Issue

Smaller bins worsen histogram distances

The Root Cause

Permuting histogram bins has no effect on these distances.

Optimal Transport

Image courtesy M. Cuturi

Geometric theory of probability

Alternative Idea

Alternative Idea

Match mass from the distributions

Earth Mover's Distance

Match mass from the distributions

Transportation Matrix

Supply distribution p₀ Demand distribution p₁

Earth Mover's Distance

$$\begin{split} \min_{T} \sum_{ij} T_{ij} d(x_i, x_j) & \textit{m} \cdot \textit{d}(x, y) \\ \text{s.t.} \sum_{j} T_{ij} = p_i & \text{Starts at } p \\ \sum_{i} T_{ij} = q_j & \text{Ends at } q \\ T \ge 0 & \text{Positive mass} \end{split}$$

Important Theorem

EMD is a metric when d(x,y) satisfies the triangle inequality.

"The Earth Mover's Distance as a Metric for Image Retrieval" Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

> Revised in: **"Ground Metric Learning"** Cuturi and Avis; JMLR 15 (2014)

Basic Application

http://web.mit.edu/vondrick/ihog/

Comparing histogram descriptors

Discrete Perspective

Algorithm for Small-Scale Problems

Step 1: Compute D_{ij}

Step 2: Solve linear program

Simplex

...

- Interior point
- Hungarian algorithm

Transportation Matrix Structure

Underlying map!

Discrete Perspective

Useful conclusions:

Can do better than generic solvers.

Min-cost flow

Discrete Perspective

Useful conclusions:

Can do better than generic solvers.

2. Theoretical Complementary slackness $T \in [0, 1]^{n \times n}$ usually contains O(n) nonzeros.

Min-cost flow

Challenge for Large-Scale Problems

Today's Questions

Can we optimize faster?

Is there a continuum interpretation?

What properties does this model exhibit?

We'll answer them in parallel!

First example: Linear Transportation on Graphs

Linear Transportation on Graphs

Routing Supply to Meet Demand

Simplification for Linear Cost

Simplification for Linear Cost

Differencing Operator

Orient edges arbitrarily

Beckmann Formulation

Better scaling for sparse graphs!

 $\begin{array}{ll} \min_{T} & \sum_{e} c_{e} |J_{e}| \\ \text{s.t.} & D^{\top} J = p_{1} - p_{0} \end{array}$

In computer science: Network flow problem

What Happened?

We used the structure of D.

$\min_{T} \quad \sum_{ij} T_{ij} d(x_i, x_j) \\ \text{s.t.} \quad \sum_{j} T_{ij} = p_i \\ \sum_{i} T_{ij} = q_j \\ T \ge 0$

Continuous Analog?

Probabilities *advect* along the surface

"Eulerian"

Application of our vector field lectures!

Solomon, Rustamov, Guibas, and Butscher. "Earth Mover's Distances on Discrete Surfaces." SIGGRAPH 2014

Think of probabilities like a fluid

Alternative Formulation for W_1

"Beckmann problem"

$$\mathcal{W}_{1}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{J} \int_{M} \|J(x)\| \, dx \\ \text{s.t. } \nabla \cdot J(x) = \rho_{1}(x) - \rho_{0}(x) \\ J(x) \cdot n(x) = 0 \, \forall x \in \partial M \end{cases}$$
Advects from ρ_{0} to ρ_{1}

Scales linearly

Recall: Helmholtz-Hodge Decomposition

Hodge Decomposition of J

 $J(x) = \nabla f(x) + \mathcal{R}\nabla g(x)$ lgnoring harmonic part! **Curl-free Div-free** $\nabla \cdot J = \Delta f = \rho_1 - \rho_0$

Fast Optimization

1. $\Delta f = ho_1 - ho_0$ Sparse SPD linear solve for f

2.
$$\inf_{g} \int_{M} \|\nabla f(x) + \mathcal{R} \cdot \nabla g(x)\| \, dx$$

Unconstrained and convex optimization for *g*

Pointwise Distance

Pointwise Distance

What's the Catch?

McCann. "A Convexity Principle for Interacting Gases." Advances in Mathematics 128 (1997).

No "displacement interpolation"

More General Formulation

Monge-Kantorovich Problem

Probability Measure

$$\mu(X) = 1$$

$$\mu(S \subseteq X) \in [0, 1]$$

$$\mu(\cup_{i \in I} E_i) = \sum_{i \in I} \mu(E_i)$$

" $\operatorname{Prob}(X)$ "

when E_i disjoint,

the

I countable

Function from sets to probability

Measure Coupling

$$\mu, \nu \in \operatorname{Prob}(X)$$

$$\prod(\mu, \nu) := \left\{ \pi \in \operatorname{Prob}(X \times X) : \begin{pmatrix} \pi(U \times X) = \mu(U) \\ \pi(X \times V) = \nu(V) \end{pmatrix} \right\}$$

Analog of transportation matrix

p-Wasserstein Distance

Continuous analog of EMD

Monge Formulation

$$\inf_{T \# \mu = \nu} \int_X D(x, T(x)) \, d\mu(x)$$

Image courtesy M. Cuturi

Not always well-posed!

In One Dimension

PDF $\sim [CDF] \sim CDF^{-1}$ $\mathcal{W}_1(\mu,\nu) = \|CDF(\mu) - CDF(\nu)\|_1$ $\mathcal{W}_2(\mu,\nu) = \|CDF^{-1}(\mu) - CDF(\nu)\|_2$

What Goes Wrong: Median Problems

W₁ ineffective for averaging tasks

Displacement Interpolation

"Explains" shortest path.

Image from "Optimal Transport with Proximal Splitting" (Papadakis, Peyré, and Oudet)

Mass moves along shortest paths

Frustrating Issue

Entropic Regularization

Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Key Lemma

Prove on the board:

$$T = \operatorname{diag}(u) K \operatorname{diag}(v),$$

where $K_{ij} := e^{-D_{ij}/\gamma}$

 $\min_T \quad \sum_{ij} T_{ij} d(x_i, x_j) - \gamma H(T)$ s.t. $\sum_{j} T_{ij} = p_i$ $\sum_{i} T_{ij} = q_j$ $T \ge 0$

$$H(T) := -\sum_{ij} T_{ij} \log T_{ij}$$

Sinkhorn Algorithm

$$T = \operatorname{diag}(u) K \operatorname{diag}(v),$$

where $K_{ij} := e^{-D_{ij}/\gamma}$
 $u \leftarrow p/Kv$
 $v \leftarrow q/K^{\top}u$

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". Pacific J. Math. 21, 343–348 (1967).

Alternating projection

Ingredients for Sinkhorn

Supply vector p Demand vector q Multiplication by K

$$K_{ij} = e^{-D_{ij}/\gamma}$$

On a Grid: Fast K Product

$$(Kv)_{ij} = \sum_{k\ell} g_{\sigma}(\|(i,j) - (k,\ell)\|_2) v_{k\ell}$$

Fish image from borisfx.com

Gaussian convolution

Sinkhorn on a Grid

 $u \leftarrow p/Kv$ $v \leftarrow q/K^{\top}u$

No need to store K

Sinkhorn on a Grid

 $u \leftarrow p/Kv$ $v \leftarrow q/K^{\top}u$

What about surfaces?

No need to store K

Geodesic Distances

$$d_g(p,q) = \lim_{t \to 0} \sqrt{-4t \log k_{t,p}(q)}$$
 "Varadhan's Theorem"

"Geodesics in heat" Crane, Weischedel, and Wardetzky; TOG 2013

Approximate Sinkhorn

Replace K with heat kernel

Curious Observation

Similar problems, different algorithms

Flow-Based W₂

Critical theoretical idea, computationally challenging

$$\mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{\rho,v} \iint_{M \times [0,1]} \frac{1}{2}\rho(x,t) \|v(x,t)\|^{2} \, dx \, dt \\ \text{s.t. } \nabla \cdot (\rho(x,t)v(x,t)) = \frac{\partial \rho(x,t)}{dt} \\ v(x,t) \cdot \hat{n}(x) = 0 \, \forall x \in \partial M \\ \rho(x,0) = \rho_{0}(x) \\ \rho(x,1) = \rho_{1}(x) \end{cases}$$

Benamou & Brenier

"A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem" Numer. Math. 84 (2000), pp. 375-393

 $\langle V, W \rangle_{\mu} := \int \langle V(x), W(x) \rangle d\mu(x)$

Tangent space/inner product at μ

Consider set of distributions as a manifold

Tangent spaces from advection

 Geodesics from displacement interpolation

Only Scratching the Surface

Topics in Optimal Transportation Villani, 2003

Giant field in modern math

Many Other Approaches

Lévy. "A numerical algorithm for L2 semi-discrete optimal transport in 3D." (2014)

Example: Semi-discrete transport

Derived Problems

Slide courtesy M. Cuturi
Formula for Applications

Any (ML) problem involving a **KL** or **L2** loss between (parameterized) histograms or probabilility measures can be easily

Wasserstein-ized if we can differentiate W efficiently.

(D(O) | A)

Slide courtesy M. Cuturi

"Wasserstein Propagation for Semi-Supervised Learning" (Solomon et al.)

"Fast Computation of Wasserstein Barycenters" (Cuturi and Doucet)

Learning

"Displacement Interpolation Using Lagrangian Mass Transport" (Bonneel et al.)

"An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes" (de Goes et al.)

Morphing and registration

"Earth Mover's Distances on Discrete Surfaces" (Solomon et al.)

"Blue Noise Through Optimal Transport" (de Goes et al.)

Graphics

"Geodesic Shape Retrieval via Optimal Mass Transport" (Rabin, Peyré, and Cohen)

"Adaptive Color Transfer with Relaxed Optimal Transport" (Rabin, Ferradans, and Papadakis)

Vision and image processing

Optimal Transport

Justin Solomon MIT, Spring 2017

