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Back to comfortable ground!



BIASED

…toward my own research!



Understand geometry from a

“softened” probabilistic
standpoint.

Secondary goal:
Application of machinery from previous lectures

(vector fields, geodesics, metric spaces, optimization…)



x

½(x)

“Somewhere over here.”



x

½(x)

“Exactly here.”



x

½(x)

“One of these two places.”



Which is closer, 1 or 2?

Query 1 2



Which is closer, 1 or 2?

Query 1 2



Which is closer, 1 or 2?

Query 1 2

p(x; y)

p1(x; y) p2(x; y)



p1(x) p2(x)

Lp norm
KL divergence



Which is closer, 1 or 2?

Query 1 2

p(x; y)

p1(x; y) p2(x; y)



Neither!  

Query 1 2

p(x; y)

p1(x; y) p2(x; y)



Measured overlap, 
not displacement.



Smaller bins worsen 
histogram distances



Permuting histogram bins has 

no effect
on these distances.



Image courtesy M. Cuturi

Geometric theory of probability



Compare in this direction

Not in this direction



Match mass from the distributions



Match mass from the distributions

Cost to move mass 𝒎
from 𝒙 to 𝒚:

𝒎 ⋅ 𝒅(𝒙, 𝒚)
x

y



 Supply distribution 𝒑𝟎
 Demand distribution 𝒑𝟏



p q

𝒎 ⋅ 𝒅(𝒙, 𝒚)

Starts at 𝒑

Ends at 𝒒

Positive mass



EMD is a metric when d(x,y) 
satisfies the triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000):  99—121.

Revised in:

“Ground Metric Learning”
Cuturi and Avis; JMLR 15 (2014)



Comparing histogram descriptors
http://web.mit.edu/vondrick/ihog/



Min-cost flow



 Step 1: Compute 𝑫𝒊𝒋

 Step 2: Solve linear program

 Simplex

 Interior point

 Hungarian algorithm

 …



Underlying map!



Min-cost flow

Useful conclusions:

1.  Practical

Can do better than generic solvers.



Min-cost flow

Useful conclusions:

1.  Practical

2.  Theoretical

Can do better than generic solvers.

𝑻 ∈ 𝟎, 𝟏 𝒏×𝒏 usually
contains 𝑶(𝒏) nonzeros.





 Can we optimize faster?

 Is there a continuum interpretation?

 What properties does this 
model exhibit?

We’ll answer them in parallel!
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Orient edges arbitrarily
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In computer science:

Network flow problem



We used the structure of D.



Probabilities advect
along the surface

Think of probabilities like a fluid

Solomon, Rustamov, Guibas, and Butscher.
“Earth Mover’s Distances on Discrete Surfaces.”

SIGGRAPH 2014

“Eulerian”



Total work

Advects from 𝝆𝟎 to 𝝆𝟏

“Beckmann problem”

Scales linearly



http://users.cms.caltech.edu/~keenan/pdf/DGPDEC.pdf

Curl free



Curl-free Div-free



1.

2.

Sparse SPD linear solve for 𝒇

Unconstrained and convex optimization for 𝒈



x y



Proposition: Satisfies triangle inequality.

0 eigenfunctions 100 eigenfunctions



No “displacement interpolation”
McCann.  “A Convexity Principle for Interacting Gases.”  Advances in Mathematics 128 (1997).



Monge-Kantorovich Problem

TRICKY 

NOTATION



Function from sets to probability



x

y



Continuous analog of EMD
http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Shortest path 
distance

Expectation

Geodesic distance d(x,y)



Not always well-posed!
Image courtesy M. Cuturi



http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html

PDF [CDF] CDF-1



W1 ineffective for averaging tasks



Mass moves along shortest paths

“Explains” shortest path.
Image from “Optimal Transport with Proximal Splitting” (Papadakis, Peyré, and Oudet)





Cuturi.  “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)



Prove on the board:



Alternating projection

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". 
Pacific J. Math. 21, 343–348 (1967).



1. Supply vector p
2. Demand vector q

3. Multiplication by K



Gaussian convolution
Fish image from borisfx.com



No need to store K



No need to store K



“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Replace K with heat kernel

Solomon et al. "Convolutional Wasserstein 
Distances: Efficient Optimal Transportation on 

Geometric Domains." SIGGRAPH 2015.



Similar problems, different algorithms



Benamou & Brenier
“A computational fluid mechanics solution of the

Monge-Kantorovich mass transfer problem”
Numer. Math. 84 (2000), pp. 375-393



Tangent space/inner product at 𝝁



 Consider set of distributions as a 
manifold

 Tangent spaces from advection

 Geodesics from displacement 
interpolation



Giant field in modern math

Topics in Optimal Transportation
Villani, 2003



Example:  Semi-discrete transport

Lévy.  “A numerical algorithm for L2 semi-discrete optimal transport in 3D.” (2014)



Slide courtesy M. Cuturi



Slide courtesy M. Cuturi



Learning

𝑣 ∈ 𝑉0

𝑣 ∉ 𝑉0
“Wasserstein Propagation for Semi-Supervised Learning” (Solomon et al.)

“Fast Computation of Wasserstein Barycenters” (Cuturi and Doucet)



Morphing and registration

“Displacement Interpolation Using Lagrangian Mass Transport” (Bonneel et al.)

“An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes” 
(de Goes et al.)



Graphics

“Earth Mover’s Distances on Discrete Surfaces” (Solomon et al.)

“Blue Noise Through Optimal Transport” (de Goes et al.)



Vision and image processing

“Geodesic Shape Retrieval via Optimal Mass Transport” (Rabin, Peyré, and Cohen)

“Adaptive Color Transfer with Relaxed Optimal Transport” (Rabin, Ferradans, and Papadakis)
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