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Famous Theorems (in R?)
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“Divergence Theorem”
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“Green’s Theorem”



Famous Theorems (in R?)
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Even Simpler Example...

Fundamental Theorem of Calculus



/ derivative| dV = / quantity| dA
r b

egion oundary

One equation, all of calculus



Exterior Calculus

Extension of vector calculus
to surfaces (and manifolds).



Rough Outline

Exterior calculus
Alternating k-forms, derivatives,
and integration

Discrete exterior calculus
All that, on a simplicial complex



Many lllustrations Borrowed From...

DISCRETE DIFFERENTIAL GEOMETRY:
AN APPLIED INTRODUCTION

Semester

course in 2.5
lectures...

Keenan Crane

Last updated: November 19, 2015

https://www.cs.cmu.edu/~kmcrane/Projects/DGPDEC/



Rough Outline

Exterior calculus
Alternating k-forms, derivatives,
and integration

Discrete exterior calculus
All that, on a simplicial complex



Everything
must be
Intrinsic!

f

Vector fields are
tangent!



Dual of a Vector Space V

Vo i={¢:V — R: £ is linear}

V, V' have same dimension.

{e;} basis for V = {dz'} basis for V*

dz’(e;) := { 0 otherwise



One-Form: Dual of a Vector




Intuition

w(v)=number
of layers

https://www.aliexpress.com/price/needle-shredder_price.html

Needle in a 2-form onion



More Intuition

Row vs. column vectors



Some (Common) Terrible Notation




Musical Isomorphisms: Flat

BBBBB , Schelomo

Vector to covector (lowers index)



Musical Isomorphisms: Sharp

V oco allargando ——valls
A . oo llsend? 5B EFEFE
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Covector to vector (raises index)



Forms on Surfaces

/s f:2X—>NR
' o-fcl>rm

http://perception.inrialpes.fr/Publications/2011/ZBH11a/scale-g.png




Differential One-Forms

Vector field
vy — T




w(V) = g w'v;
i

\
Motivate on the board!

No metric matrix g



What is a two-form?



Continuing Onion Analogy

NCADE
number of
oriented cells

Grid image from Wikipedia



Interlude: Line integral

Explanation from: http://www.math.ucla.edu/~tao/preprints/forms.pdf

W CC:77

N\'\s\ead'mg notat'\on‘.
— —
/ EF - d/f
Y

Work = force * distance



Interlude: Line integral

Work = force * distance



Incident Light Flux

Bilinear (same as 1D):

we(cAxy, Axo) = cw, (Axy, Axo)
wr((Azy + Ax)), Axs) = wi(Axy, Axs) + we (Az, Axs)
wWe(Axy, cAxs) = cw,(Axy, Axs)

we(Azy, Azg + Azy) = wy(Axy, Axs) + wa (Axy, Axh)

Flux through degenerate window:

We (Ax, Ax) =0

P = wai (AZCil, ACUZQ)



(Inttially) Surprising Corollary

Bilinear (same as 1D):

we(cAxy, Axo) = cw, (Axy, Axo)
wr((Azy + Ax)), Axs) = wi(Axy, Axs) + we (Az, Axs)
wWe(Axy, cAxs) = cw,(Axy, Axs)

we(Azy, Azg + Azy) = wy(Axy, Axs) + wa (Axy, Axh)

Flux through degenerate window:
We (Ax, Ax) =0

Wy (Ax1, Azs) = —wz(Axg, Azq)



Defining Two-Forms

Bilinear:

cwy (Azy, Axs)
(Aa:l, Azo) + wy (Azy, Axs)
Wz (Azy, Azo)
(Aazl, Azo) + wy(Azq, Az))

Wy (cAxy, Axs)

wz((Azq + AxY), Axs)
Wz (Axy, cAxs)
we(Azy, Axg + Axh)

Flux through degenerate window:
we(Azx, Ax) =0

AN

Alternative equivalent definition:
w,(Axq,Ax;) = w,(Axy, Axq)(alternating)

k-form: Same thing, k slots!



More Concrete 2-Forms on R"

we AN = w,w)=v Muw

where M ' = —M (“antisymmetric”)

1 2D:
w(v, w) _T-UT (g _01) w

One DOF I _
90° rotation

0 —C3 C9o
wv,w)=v' | c3 0 —c|]w=-¢(vxw)

—C9 C1 0




Differential Forms

For each point p on a surface:
k vectors in Dl:fferential ]R
the tangent —> —>
space at p k 'fOr m

k-linear
Alternating



Two relevant details:
k = number of inputs
n = dimension

e.g. “a 2-form over R3”
(k=2,n=3)



Alternating k-Forms as Flux Sensors

One-form: Two-form:
w(Ax) = how much fluxin w(Ax1,Ax5) = how much fluxin
direction Ax parallelogram (Ax{, Ax;)

http://lwww.waterworld.com/articles/print/products/2012/og/portable-velocity-flow-meter.html
http://[www.mesoscribe.com/sensors/heat-flux-sensors/



Some Algebra

On the board:
Space of k-forms on R¥ is
one-dimensional.

On the board:
k-forms on R™" are

zero when k > n.

Area form: dA



Products: Observations About X

.7 .7 : 2
inches x inches = inches

— — ~
r X x =1

Dlmensmnallty of cross product is variable:

2D X 2D = scalar
3D x 3D = vector
Cross product of vectors is weird!




Wedge: Product of Onions

Grid image from Wikipedia



Wedge: Product of Onions




Wedge Product of One-Forms

Key idea: 2-form measures size of parallelogram projected onto some (oriented) plane

Image courtesy K. Crane



Wedge of One-Forms

a A B(u,v) = a(u)f(v) — alv)5(u)

e Build 2D flyx

Seénsor out of
/ 1D flux sensors

eeeeeeeeeeeeeeeeeeee



Relationship to Cross Product

For one-forms:
“How similar is parallelogram (a,b) to parallelogram (u,v)?”

Notice: All 2-forms are wedges of 1-forms.



Symbol of a Permutation

(P) = +1 if P has an even number of swaps
T =1 otherwise

Examples:
(1234)

(1324)
(1342)



Wedge Product: Formal Definition

aecAF Be A

1
aB(viy.. ., Vkte) = AV Z e(o)afvr, ..., v8)B(Vk+1, - - -, Vi)
" oePerm(k+¢)

c Ak—!—ﬁ

Antisymmetry: a A 8 = (—=1)* B A «
Associativity: a A (BAY) = (aAB) Ay
Distributivity: a A (B+7v) =aAB+a Ay
— aNa=0



Basis for k-Forms

dxr;, Ndx;, N\---dx;,

with no repeated indices.



Inner Product of 1-Forms

First clear
appearance of
geometry!

(&) == (& ")

Borrow from vectors



Inner Product of k-Forms

(g Ao Nag, b1 N\ - A\ By) = det({ay, 5;))

Example: Inner product of 2-forms over R3

(V> Aw”,a” A b = det (v-a fU.b)

w-a w-b
= (v X w) - (a X b)

(= 0" Aw’(a, b)]

Again!
“How similar is parallelogram (v,w) to parallelogram (a,b)?"”




Hodge Star

a N (x0) = (o, B)dA

Hodge Star (x)

Li/\’(')

Analogy: orthogonal complement
Key dlffere.nces: orl'entatl‘o‘n & ﬁplte extent ki (n—k)
Small detail: z A xz is positively oriented

Image courtesy K. Crane



Hodge Star in 2D

*U

* % U

* k& kU

Prove on board

Image courtesy K. Crane



Differential k-Forms on Manifolds

A* := {alternating k-multilinear forms}

QF := {w taking p € ¥ — A*(T,X)}

“One differential form per tangent plane”



Inner Product of k-Forms




Differential of a Map

Suppose f:S »> Rand take p € S. Forv € T,,S, choose a curve a: (—¢, &) - S with
a@(0) = pand a'(0) = v. Then the differential of fis df:T,S — R with

@) = | (Fea)t)=(Foa))

'd

* Does not depend on choice of
* Linear map

http://bog.evo..

Following Curves and Surfaces, Montiel & Ros



Differential of a Map

Suppose f:S »> Rand take p € S. Forv € T,,S, choose a curve a: (—¢, &) - S with
a@(0) = pand a'(0) = v. Then the differential of fis df:T,S — R with

(@)p(0) = | (foa)t) = (Foa)(0)

t=0

'd

* Does not depend on choice of
* Linear map

http://bog.evo..

Following Curves and Surfaces, Montiel & Ros



Fancy Notation

V= (df)’



Construction of Exterior Derivative

Given a 1-form «, when is there a function f with a = df?

o= Z fidx’

Pf _ f_0f _ of
0ri0r  0wiox | Oz 0w
91, j
— O_Zaxidx /‘\daﬁ
iJ
Alternating!

Transforms d on o-forms to d on 1-forms...

Iterate!



Exterior Derivative: Axiomatic

Differential: df agrees with directional derivative
Product rule: d(a A B) =da A B+ (=1)*a A dp

Exactness: d? = 0



Product Rule: Intuition

O(h) oK)

f(x)g(x) O(h)

flx) flx+h)

(f9) = flg+ fd

Images courtesy K. Crane



Integration of k-Forms
W
/w = /w(T) ds
Y Y

Measures amount
/')/
of w parallel to y

Integrate on k-dimensional objects



=
)
el
O
)
i e
T
¥y
)
=
O
afd
Up)

Image courtesy K. Crane



Intuition for Exactness

d — O /d2 /mdw

W

DTV



Translating Vector Calculus

Vf=(df)
V-F =xdx(F")
V x F = (xd(F"))"*

Af_*d*df

redit on homework



Rough Outline

Exterior calculus
Alternating k-forms, derivatives,
and integration

Discrete exterior calculus

All that, on a simplicial complex




Discrete Exterior Calculus (DEC)

Discrete version of
exterior calculus.

D

Wt v W1 N\ Wy *w dw



Oriented Simplicial Complex




Dual Complex




Store integrals of
forms!



Integrated k-forms

Discrete o-form

[w=twerY

Store integrated quantities!



Integrated k-forms

Discrete 1-form

/wGRE|

Store integrated quantities!



Integrated k-forms

Discrete 2-form

/w c RIT
¢

Store integrated quantities!



Exterior Derivative

dw = / Stokes’' Theorem
() o

()
W2
dw:/ W= Wo — W
€ /e Oe : .

ot dp1 € {—1,0,1}|E|X|V‘



Exterior Derivative

7 e RIEIXIV

consists of 1, o, -1

W2
€ /dw:/w:wg—wl
e Oe
W1



Exterior Derivative

7 c RIFIXIE

(,ul CL)Q consists of 1, 0, -1

W3

dw /w:wl—wngwg
t Ot



Exterior Derivative

7 c RIFIXIE




ccd2 __ 077
e

Two different d matrices



Hodge Star: Idea

Moves to dual mesh



Hodge Star

Primal 2-form
Dual o-form

Moves to dual mesh



Hodge Star

Primal 1-form
Dual 1-form

Moves to dual mesh



Hodge Star Matrices

eeeeeeeeeeeeeeeeeeee



Hodge Star Matrices

IVAVANEZ

dua, \ /\




Primal 2-Form / Dual o-Form
q-<

x;; = Area(triangle i)_l

Just triangle areas



Primal 12-Form / Dual 12-Form

Ratio of edge lengths



Primal 12-Form / Dual 12-Form

U; 6:- 1
L = §(cot o + cot 3;)

U),‘

eeeeeeeeeeeeeeeeeee

Choice of dual: Circumcenter



Nice Extension

Weighted Triangulations for Geometry Processing |

Fernando de Goes
Caltech

and

Pooran Memari
CNRS-LTCI Telecom ParisTech
and

Patrick Mullen
Caltech

and

Mathieu Desbrun
Caltech

In this paper, we investigate the use of weighted triangulations as discrete,
augmented approximations of surfaces for digital geometry processing. By
incorporating a scalar weight per mesh vertex, we introduce a new notion
of discrete metric that defines an orthogonal dual structure for arbitrary tri-
angle meshes and thus extends weighted Delaunay triangulations Lo surface
meshes. We also present alternative characterizations of this primal-dual
structure (through combinations of angles, areas, and lengths) and, in the
process, uncover closed-form expressions of mesh energies that were previ-
ously known in implicit form only. Finally, we demonstrate how weighted
trangulations provide a laster and more robust approach o a senes ol ge-
ometry processing applications, including the generation of well-centered
meshes, self-supporting surfaces, and sphere packing.

Categones and Subject Descriptors: 1.3.5 [Computer Graphics]: Compu

tational Geometry and Object Modeling—Curve, surface, solid, and object
represeniations

Additional Key Words and Phrases: discrete differential geometry, discrete
| metric, weighted tnangulations, orthogonal dual diagram.

Fig. 1. Weighted Triangulation. Example of a triangle mesh equippe
with vertex weights (left) displayed as spheres with squared radii corre
sponding to the weight magnitudes and colors according to their signs
(red+, blue—). The set of weights endows the triangulation with an orthog
onal, non-circumcentric dual structure (right).

1. INTRODUCTION

Triangle meshes are arguably the predominant discretization of sur-
taces in graphics, and by now there is a large body of literature
on the theory and practice of simplicial meshes for computations.
However, many geometry processing applications rely, overtly or
covertly, on an orthogonal dual structure to the primal mesh. The
use of such a dual structure is very application-dependent, with cir-
cumcentric and power duals being found, for instance, in physi-
cal simulation [Elcott et al. 2007; Baity et al. 2010], architecture
modeling [Liu et al. 2013; de Goes et al. 2013] and parameteriza-
tion | Mercat 2001; Jin et al. 2008 ]. While most of these results are
limited to planar triangle meshes, little attention has been paid to
exploring orthogonal duals for tnangulated surface meshes.

In this paper, we advocate the use of orthogonal dual structures
to enrich simplicial approximations of arbitrary surfaces. We in-
troduce an extended definition of metric for these discrete surfaces
with which one can not only measure length and area of simplices,




Primal o-Form / Dual 2-Form

x;; = Area(triangle 1)

Area of dual cell



Barycentric Lumped Mass

Area/3 to each vertex



Additional Options

Edge midpoint

Barycentric cell Voronoi cell Mixed cell

c¢; = barycenter c; = circumcenter
of triangle of triangle

Slide courtesy M. Ben-Chen



Mixed Voronoi Cell

If 0 <m/2, ¢, is the circumcenter
of the triangle (v; , v, v,.,)

If 0 =>1/2, ¢, is the midpoint of
the edge (v;, v;;; )

AWV)= ) (drea(c,,v,(v+v,)/2)+ Area(c,,,v,(v+v,)/ 2))
v;EN (v)

Slide courtesy M. Ben-Chen



Interesting Reading

HOT: Hodge-Optimized Triangulations

Patrick Mullen Pooran Memari

Fernando de Goes

Mathieu Desbrun

Caltech

Abstract

We introduce Hodge-optimized triangulations (HOT), a family
of well-shaped primal-dual pairs of complexes designed for fast
and accurate computations in computer graphics. Previous work
most commonly employs barycentric or circumcentric duals; while
barycentric duals guarantee that the dual of each simplex lies within
the simplex, circumcentric duals are often preferred due to the n-
duced orthogonality between primal and dual complexes. We in-
stead promote the use of weighted duals (“power diagrams™). They
allow greater flexibility in the location of dual vertices while keep-
ing primal-dual orthogonality, thus providing a valuable extension
to the usual choices of dual by only adding one additional scalar per
primal vertex. Furthermore, we introduce a family of functionals
on pairs of complexes that we derive from bounds on the errors in-
duced by diagonal Hodge stars, commonly used in discrete compu-
tations. The minimizers of these functionals, called HOT meshes,
are shown to be generalizations of Centroidal Voronoi Tesselations
and Optimal Delaunay Triangulations, and to provide increased ac-
curacy and Hexibility for a variety of computational purposes.

Keywords: Optimal triangulations, Discrete Exterior Calculus,
Discrete Hodge Star, Optimal Transport.
Links: DL TPDF @& Wes

1 Introduction

Figure 1: Primal/Dual Triangulations: Using the barycentric
dual (top-lefi) does not generally give dual meshes orthogonal to
the primal mesh. Circumcentric duals, both in Centroidal Voronoi
Tesselations (CVT, top-middle) and Opiimal Delaunay Triangula-
tions (ODT, top-right), can lead to dual points far from the barvcen-
fers of the iriangles (blue poinis). Leveraging the freedom pro-
vided by weighted circumcenters, our Hodge-oprimized triangula-
tions (HOT) can optimize the dual mesh alone (bottom-left) or both
the primal and dual meshes (boitom-right), e.g., io make them more



Discrete deRham Complex

0-forms (vertices) ]-forms (edges) 2-forms (faces) 3-forms (tets)

http://ddg.cs.columbia.edu/SIGGRAPH06/DDGCourse2006.pdf



In Practice

Build up tons of matrices

Multiply them together for
complicated operators

do1,d12,%*02, . - -



Inner Product of Forms

Dot product:

One primal, one dual.
(Already integrated!)



Co-Differential

(dB, ) = — (B, *d * o)

grad 2 div

N

0 1= — x dx




Yet Another Cotan Laplacian

L = dq2 %11 doq
M = *092



Hodge Laplacian

AN =dxd*x+*xd*d



Whitney Elements

bi;(p) = ¢i(p)do; — d;(p)des, (dg;)* = Vb,

Discontinuous along edges!

Image courtesy F. de Goes

Interpolate one-form over triangle



Helmholtz-Hodge Decomposition

tp://users.cms.caltech.edu/~keenan/pdf/DGPDEC.pdf



Helmholtz-Hodge Decomposition

Sl

08 + da +

here dv =0,0v =0

/// =

f’.'f_'_________ —

\
= ,:’).' o

tp://users.cms.caltech.edu/~keenan/pdf/DGPDEC.pdf



Computing the Decomposition

w=08+da+ v
where dvy = 0,07y =0

doB = dw
vy=w—008 — da



One-Form Laplacian Eigenforms

w=08+da+ 7
where dy = 0,0y =0

M—=*dB+da+7) = w = Aw
= (d*xd*+xdxd) (68 + da + )
= (d*d*+*xdx*xd)(—*d* [+ da)
B :=*P — wdxdxd* B+ d*dxda
= — % dAS + dA«




Recommended Reading

The Helmholtz-Hodge Decomposition - A Survey

Harsh Bhatia, Student Member IEEE, Gregory Norgard, Valerio Pascucci, Member IEEE, and
Peer-Timo Bremer, Member IEEE

Abstract—The Helmholiz-Hodge Decomposition (HHD) describes the decomposition of a flow field into its divergence-free and curl-
free components. Many researchers in various communities like weather modeling, oceanology, geophysics and computer graphics
are interested in understanding the properties of flow representing physical phenomena such as incompressibility and vorticity. The
HHD has proven to be an important tool in the analysis of fluids, making it one of the fundamental theorems in fluid dynamics. The
recent advances in the area of flow analysis have led to the application of the HHD in a number of research communities such as flow
visualization, topological analysis, imaging, and robotics. However, since the initial body of work, primarily in the physics communities,
research on the topic has become fragmented with different communities working largely in isolation often repeating and sometimes
contradicting each others results. Additionally, different nomenclature has evolved which further obscures the fundamental connections
between fields making the transfer of knowledge difficult. This survey attempts to address these problems by collecting a comprehensive
list of relevant references and examining them using a common terminology. A particular focus is the discussion of boundary conditions
when computing the HHD. The goal is to promote further research in the field by creating a common repository of technigues to
compute the HHD as well as a large collection of example applications in a broad range of areas.

Index Terms—\Vector fields, Incompressibility, Boundary Conditions, Helmholiz-Hodge decomposition.

*
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Simple Application

(a) (b)
Fig. 1. (a) Motion field in a anticlockwise rotating hurricane sequence extracted using the BMA.

(b) The divergence free potential function with a distinct maximum and corresponding contours.

Palit, Basu, Mandal. “Applications of the Discrete Hodge Helmholtz Decomposition to
Image and Video Processing.” LNCS.



Fluid Simulation

Stam. “Stable Fluids.” SIGGRAPH 1999. (and many others)

Incompressible: No divergence



Vector Field Editing

Tong et al. “Discrete Multiscale
Vector Field Decomposition.”
TOG 2003.




Computational Physics

Stein and Nordlund.
“Realistic Solar Convection
Simulations.”

Solar Physics 2000.




Computational Physics
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Bahl and Senthilkumaran. “"Helmholtz Hodge Decomposition of Scalar Optical Fields.” J.
Opt. Soc. Am. A 2012.



Reconstruct VF from Noisy Samples

Syr(r) = Hop(x) —tr{Ho(x)} I
—Ho(x

Macedo and Castro.
“Learning Divergence-Free and Curl-Free Vector Fields with Matrix-Valued Kernels.”
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o
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Extension to Smooth Surfaces

Subdivision Exterior Calculus for Geometry Processing

Mathieu Desbrun
Caltech

Fernando de Goes
Pixar Animation Studios

Pixar Animation Studios

Mark Meyer Tony DeRose

Pixar Animation Studios

Figure 1: Subdivision Exterior Calculus (SEC). We introduce a new technique to perform geometry processing applications on subdivision
surfaces by extending Discrete Exierior Calculus (DEC) from the polygonal to the subdivision setting. With the preassemble of a few operators
on the control mesh, SEC outperforms DEC in terms of numerics with only minor computational overhead. For instance, while the speciral
conformal paramelerization (Mullen et al. 2008] of the conirol mesh of the mannequin head (lefi) results in large quasi-conformal distortion
(mean= 1.784, max = 9.4) after subdivision (middle), simply substituting our SEC operators for the original DEC operators significantly
reduces distortion (mean=1.005, max =3.0) (right). Parameterizations, shown at level | for clarity, exhibit substantial differences.

Abstract

This paper introduces a new computational method to solve differ-
ential equations on subdivision surfaces. Our approach adapts the
numerical framework of Discrete Exterior Calculus (DEC) from
the polygonal to the subdivision setting by exploiting the refin-
ability of subdivision basis functions. The resulting Subdivision
Exterior Calculus (SEC) provides significant improvements in ac-
curacy compared to existing polygonal techniques, while offering
cxact finite-dimensional analogs of continuum structural identitics
such as Stokes’ theorem and Helmholtz-Hodge decomposition. We
demonstrate the versatility and efficiency of SEC on common ge-
ometry processing tasks including parameterization, geodesic dis-
tance computation, and vector field design.

Kevwaoarde Snhdivicion enrfaces diecerete exterior calenloe diee

and Schrivder 2000; Warren and Weimer 2001]. In spite of this
prominence, little attention has been paid to numerically solving
differential equations on subdivision surfaces. This is in sharp con-
trast to a large body of work in geometry processing that developed
discrete differential operators for polygonal meshes |Botsch et al.
2010] serving as the foundations for several applications ranging
from parameterization to fluid simulation |Crane et al. 2013a].

Among the various polygonal mesh techniques, Discrete Exterior
Calculus (DEC) |Desbrun et al. 2008] is a coordinate-free formal-
ism for solving scalar and vector valued differential equations. In
particular, it reproduces, rather than merely approximates, essen-
tial propertics of the differential scuing such as Stokes” theorem.,
Given that the control mesh of a subdivision surface is a polygonal
mesh, applying existing DEC methods directly to the control mesh
o . . | I L . -

L I = T T T T



What About Symmetric Tensors?

Discrete 2-Tensor Fields on Triangulations

Fernando de Goes Beibei Liu’ Max l:!umjnins;ki},'l Yiying 'l’c:nng:2 Mathieu Desbrun'~

I Caltech 2MsU JINRIA Sophia-Antipolis Méditerranée

Abstract

(reometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric
tensors (Le., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and
elliptic operators, have received only limited atiention. They are often discretized by first defining a coordinate
system per vertex, edge or face, then storing their componenis in this frame field. In this paper, we introduce a
representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of
continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar val-
ues on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner
product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative
and a discrete Lie bracket. Our approach extends discreteffinite-element exterior calculus, recovers familiar op-
erators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and
traceless tensors—ihus offering a numerical framework for discrete tensor calculus on triangulations. We finally
demonstrate the robusiness and accuracy of our operators on analytical examples, before applyving them to the
computation of anisotropic geodesic distances on discrete surfaces.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry
and Object Modeling—Curve and surface representations.

frames defined either on vertices or on faces. A continuous
vector field over a mesh is evaluated from this finite set of
vectors based on piecewise constant interpolation [PP(O0] or,
to increase smoothness, using non-linear basis functions de-
rived from the geodesic polar map [ZMTO0O6, KCPSI13]. In
an effort to remove the need for coordinate systems, scalar

rank-1 tensor) fields

een staples of geometry processing, the use of rank-
2 tensor fields has steadily grown over the last decade in
applications ranging from non-photorealistic rendering to

A rallinsiniees srrashsieie J Talil v thasr Llrianrys waitle s mind o aswlhs



Summary

Pros Cons
e Coordinate-free representation using only e Discontinuous reconstruction for low-
one scalar value per edge. order Whitney basis functions.
e Simple interpolation of edge values. e No clear vector at vertices, sO incom-
e Simple differential operators leveraging patible with vertex-based deformation of
the DEC literature. meshes.
e Generalization to n-vector fields has not
been studied.

From Vector Field Processing on Triangle Meshes
de Goes, Desbrun, and Tong (SIGAsia 2015)






