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(Weinkauf and Theisel; TVCG 2010)
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I. Madeira and G. Patow STAR — Stare of The Art Report
{Guest Editors)

Directional Field Synthesis, Design, and Processing

Amir Vaxman'  Marcel Campen”  Olga Diamanti®  Daniele Panozzo™  David Bommes!  Klaus Hildebrandt®  Mirela Ben-Chen®

'Utrecht University  *New York University  *ETH Zurich  *RWTH Aachen University  *Delft University of Technology ~ ®Technion

Abstract

Direction fields and vector fields play an increasingly important role in computer graphics and geometry processing. The
synthesis of directional fields on surfaces, or other spatial domains, is a fundamental step in numerous applications, such as mesh
generation, deformation, texture mapping, and many more. The wide range of applications resulted in definitions for many types
of directional fields: from vector and tensor fields, over line and cross fields, to frame and vector-set fields. Depending on the
application at hand, researchery have used various notions of objectives and constraints fo synthesize such fields. These notions
are defined in termy of fairness, feature alignment, symmetry, or field topology, to mention just a few. To facilitate these objectives,
various representations, discretizations, and optimization strategies have been developed. These choices come with varying
strengths and weaknesses. This report provides a systematic overview of directional field synthesis for graphics applications, the
challenges it poses, and the methods developed in recent years (o address these challenges.

Categorics and Subject Descriptors (according to ACM CCS): 1.3.5 [Compuier Graphics]: Computational Geometry and Object
Modcling

1. Introduction There have been significant developments in directional field
synthesis over the past decade. These developments have been dnven



Why Vector Fields?
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Why Vector Fields?

(a)

“Blood flowintherabbitaorticarch and descending thoracic aorta”
Vincent et al.; J. Royal Society 2011

Biological science and imaging



Why Vector Fields?
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Weather modeling



Why Vector Fields?
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https://forum.unity3d.com/threads /megaflow-vector-fields-fluid-flows-released.278000/

Simulation and engineering




Many Challenges

Directional derivative?
Purely intrinsic version?
Singularities?

Flow lines?

How to discretize?
Discrete derivatives?
Singularity detection?

Flow line computation?



Crash course

in theory/discretization of vector fields.



Many Challenges

Directional derivative?
Purely intrinsic version?
Singularities?

Flow lines?

How to discretize?
Discrete derivatives?
Singularity detection?

Flow line computation?



Tangent Space

T,S = Image(Do,,)




Tangent Space: Coordinate-Free

veET,S —

there exists curve a : (—e,e) — S
with a(0) = p,a’(0) = v




Some Definitions

Tangent bundle:
TM :={(p,v) :veTl,M}

Vector field:
u: M — TM with u(p) = (p,v),v € T, M

Images from Wikipedia, SIGGRAPH course



Scalar Functions

Map points to real numbers



Differential of a Map

Suppose f:S - Rand take p € S. Forv € T,,S, choose a curve a: (—¢, £) — S with
a(0) = p and a’(0) = v. Then the differential of fisdf:T,S — R with

@) = G| (et =(foa)(0)

¢

On the board (time-permitting):
* Does not depend on choice of
Linear map

http://blog.evo .

Following Curves and Surfaces, Montiel & Ros



Gradient Vector Field

Vf{:S— R’ with
{ (Vf)(p),v) = (df)p(v),v €T,S
(VF)®),N(p)) =0



How do you
differentiate
a vector field?
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Common point of confusion.
(especially for your instructor)




Answer

THETHING

http://www.relatably.com/m/img/complicated-memes/60260587.jpg



What's the issue?

How to identify different
tangent spaces?



Many Notions of Derivative

Differential of covector
(defer for now)

Lie derivative
Weak structure, easier to compute

Covariant derivative
Strong structure, harder to compute



Vector Field Flows: Diffeomorphism

Useful property: ,,5(x) = P, (1Ps(x))
Diffeomorphism with inverse {r_;




/[;u(&)&dlﬂ/ﬂ/@.'
Killing Vector Fields (KVFs)




Differential of Vector Field Flow

dwt(p) : TpM — T¢t(p)M

Image from Smooth Manifolds, Lee



Lie Derivative

d(0—1)e,(p)(Wo,(p))

Fig. 9.13 The Lie derivative of a vector field

1
(£VW)p = lim [(dw—t)wt(p)(wwt(p)) — Wp]

t—0

Image from Smooth Manifolds, Lee
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What's Wrong with Lie Derivatives?

1
(£VW)p = lim — [(dw—t)wt(p)(wwt(p)) — Wp]

t—0

Image courtesy A. Carapetis

Depends on structure of V




What We Want

orange

P./

What we don’t want:

Specify blue direction anywhere but at p.



Parallel Transport

Canonical identification of

tangent spaces -



Covariant Derivative (Embedded)

Vv W := [DyW]! = proj,, (W o a)'(0)

T

Integral curve of V through p
Synonym: (Levi-Civita) Connection

4 Note: [Dy W]+ =1I(V,W)N




Some Properties

Properties of the Covariant Derivative

As defined, VY depends only on V,, and Y to first order along c.

Also, we have the Five Properties:

1. C*-linearity in the V-slot:
VV1+fV2Y = VV1Y+ fV\/zy where f : § — R

2. R-linearity in the Y'-slot:
Vv(Yl + aYQ) =VvYi+aVyYo where a € R

3. Product rule in the Y-slot:
Vv(fY)=Ff-VyY +(Vyf)-Y wheref : S =R

4. The metric compatibility property: The Lie bracket
Vu(Y,Z)=(VvY,Z)+(Y,VvZ) | [Vi,Va](f):= Dy,Dy,(f)

1] . 1 - DV2DV1(f)
5. The "torsion-free” property:

Defines a vector field, which
Vv, Vo =V, Vi = [V4, V5] is tangent to S if V4, Vs are!

Slide by A. Butscher, Stanford CS 468



Geodesic Equation

projr. . s [ (s)] =0

The only acceleration is out of the surface
No steering wheel!




Intrinsic Geodesic Equation

ny(t)’i/(t) =0

No stepping on the accelerator
No steering wheel!




Parallel Transport

Preserves length, inner product
(can be used to define covariant derivative)



Holonomy

Integrated Gaussian curvature

e \

Path dependence of parallel transport
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Image from Smooth Manifolds, Lee



Poincare-Hopf Theorem

E index,. (v) = x(M)
)
where vector field v has isolated singularities {x;}.

indexpv = 1

Image from "Directional Field Synthesis, Design, and Processing”(Vaxman et al., EG STAR 2016)



Famous Corollary

Hairy ball theorem



Many Challenges

Directional derivative?
Purely intrinsic version?
Singularities?

Flow lines?

How to discretize?
Discrete derivatives?
Singularity detection?

Flow line computation?



Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Triangle-Based

Triangle as its own tangent plane
One vector per triangle
"Piecewise constant”

Discontinuous at edges/vertices
Easy to “unfold”/*hinge”

N>




Discrete Levi-Civita Connection

Simple notion of parallel transport
Transport around vertex:

Excess angle is (integrated)
Gaussian curvature (holonomy!)

|




Arbitrary Connection

Represent using angle 6., of extra rotation.



Trivial Connections

Vector field design |
Zero holonomy on discrete cycles

Except for a few singularities
Path-independent away from s
singularities s %
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“Trivial Connections on Discrete Surfaces”
Crane et al., SGP 2010 %
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Trivial Connections: Detalls

Solve 64,4 of extra rotation per edge

Linear constraint:
Zero holonomy on basis cycles

V+2g constraints: Vertex cycles plus harmonic

Fix curvature at chosen singularities
Underconstrained: Minimize ||5||

Best approximation of Levi-Civita



Result

Resulting trivial connection
(no other singularities present)

Linear system



Nice 2D Identification

7 < ae'?



Face-Based Calculus

& 2

"Conforming” "Nonconforming”
Already did thisin 6.838 [Wardetzky 2006]

Relationship: ?,D,,;j — ¢z -+ ¢j — Cbk
Gradient Vector Field



Gradient of a Hat Function

1 1

IV = Zosinds = h
€23
NNy

Length of e,, cancels

“base” InA
B

€23



Helmholtz-Hodge Decomposition

Image courtesy K. Crane



Helmholtz-Hodge Decomposition

Image courtesy K. Crane



Euler Characteristic




Discrete Helmholtz-Hodge

2—29g=V —E+F
— 2F=(V-1)+(EF—1)+42g

Either
Vertex-based gradients

Edge-based rotated gradients

_ Edge-based gradients

Vertex-based rotated gradients

“Mixed” finite elements



Vector Fields on Triangle Meshes

No consensus:

Triangle-based

Edge-based | Deferto DEC! |

Vertex-based

C R’




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Vertex-Based Fields

Pros

Possibility of higher-
order differentiation

Cons

Vertices don’t have
natural tangent spaces

Gaussian curvature
concentrated



2D (Planar) Case: Easy

Piecewise-linear (x,y) components



3D Case: Ambiguous




Geodesic Polar Map

Provides notion
of tangency, but

Preserve radial lines continuity issues

“Vector Field Design on Surfaces,” Zhang et al., TOG 2006

Parallel transport radially from vertex



Recent Method for Continuous Fields

Discrete Connection and Covariant Derivative
for Vector Field Analysis and Design

Beibei Liu and Yiying Tong

Michigan State University

and

Fernando de Goes and Mathieu Desbrun
California Institute of Technology

In this paper, we introduce a discrete delinition of connection on simplicial
manifolds, involving closed-form continuous expressions within simplices

and finile rolalions across simplices. The linile-dimensional paramelers of

this connection are optimally computed by minimizing a quadratic mea-
sure of the deviation to the (discontinuous) Levi-Civita connection induced
by the embedding of the input triangle mesh, or (0 any melric connection
with arbitrary cone singularities at vertices. From this discrete connection,
a covarianl derivalive is construcled through exactl dillerentialion, leading
to explicit expressions for local integrals of first-order derivatives (such as
divergence, curl and the Cauchy-Riemann operator), and for Lo-based ener-
gies (such as the Dirichlet energy). We finally demonstrate the utility, fexi
bility, and accuracy of our discrete formulations for the design and analysis
ol veclor, n-veclor, and n-direction lields.

Calegories and Subject Descriplors: 1.3.5 |Computer Graphics]: Compu-
tational Geometry & Object Modeling—Curve & surface representations.

CCS Concepts: «Computing methodologies —» Mesh models;

Includes basns

derivative Operators

digilal geomelry processing, wilh applicalions ranging [rom lexlure
synthesis to shape analysis, meshing, and simulation. However, ex-
isting discrete counterparts of such a differential operator acting on
simplicial manifolds can either approximate local derivatives (such
as divergence and curl) or estimate global integrals (such as the
Dirichlel energy), bul nol both simullaneously.

In this paper, we present a unified discretization of the covariant
derivative that offers closed-form expressions for both local and
global first-order derivalives ol verlex-based tangent vectlor lields
on triangulations. Our approach is based on a new construction of
discrete connections that provides consistent interpolation of tan-
gent vectors within and across mesh simplices, while minimizing
the deviation to the Levi-Civita connection induced by the 31) em-
bedding of Lthe inpul mesh—or more generally, lo any melric con-
nection with arbitrary cone singularities at vertices. We demon-
strate the relevance of our contributions by providing new com-
putational tools to design and edit vector and n-direction fields.



Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based




Vector Fields on Triangle Meshes

No consensus:

Triangle-based
Edge-based
Vertex-based
'5 . others?

C RS




More Exotic Choice

Virlume 32 (2014 3), Number 5

Eurographics Symposium on Geometry Processing 2013
Yaron Lipman and Richard Hao Zhang
(Guest Editors)

An Operator Approach to Tangent Vector Field Processing

Omri Azencot' and Mirela Ben-Chen' and Frédéric Chazal® and Maks Ovsjanikov

! Technion - Israel Institute of Technology
% Geometrica, INRIA
3LIX, Ecole Polytechnique

Figure 1: Using our framework various vector field design goals can be easily posed as linear const
symmeiry maps: rotational (81), bilateral (82) and front/back (83), we can generale a symmelric ve
{left), S1 + 82 (center) and S1 + 52 + 53 (right). The top row shows the front of the 3D model, and the

Abstract
In this paper, we introduce a novel coordinate-free method for manipulating and analyzing vector

surfaces. Unlike the commonly used representations of a vector field as an assignment of vector!
the mesh, or as real values on edges, we argue that vector fields can also be naturally viewed as upemmn whose



Extension: Direction Fields

I-vector field One vector, classical “vector field”

Two directions with T symmetry,

Zdirection field ;e field”, “2-RoSy field”

Three independent vectors, “3-

3 . -
[7-vector field polyvector field”

Four vectors with /2 symmetry,

4-vector field @ : Cy e
non-unit cross field

Four directions with 7t/2 symmetry,

4-direction field “unit cross field”, “4-RoSy field”

Two pairs of vectors with T symme-

22_ fiel
vector field try each, “frame field”

Two pairs of directions with T sym-

22_direction field 9 .
metry each, “non-ortho. cross field

Six directions with /3 symmetry,

6-direction field “6-RoSy”

Three pairs of vectors with T sym-

23-vector field
metry each

KPR N AA Y] ~

"Directional Field Synthesis, Design, and Processing” (Vaxman et al., EG STAR 2016)



Polyvector Fields

Eurographics Symposium on Geometry Processing 2014 Volume 33 (2014), Number 5
Thomas Funkhouser and Shi-Min Hu
(Guest Editors)

Designing N-PolyVector Fields with Complex Polynomials

. 1 . 2 . 1 . 1
Olga Diamanti Amir Vaxman Danicle Panozzo Olga Sorkine-Hornung

. "ETH Zurich, Switserland {UO, Wl e - Uk}
Vienna Institute of Technology, Austria =y f(Z) — (Z - uo) o (Z 3 Uk)

(2) = 2Kt + a2+ -+ a1z + ag
ag,...,a}

Figure 1: A smooth 4-PolyVector field is generated from a sparse set of principal direction constrainis (faces in light blue). We
optimize the field for conjugacy and use it to guide the generation of a planar-quad mesh. Pseudocolor represents planarity.

Abstract

We introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily
orthogonal nor rotationally symmeiric. We formally define a novel representation for N-PolyVectors as the root sels
of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can
be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of
N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral

One encoding of direction fields



Image from “Streak Lines as Tangent Curves of a Derived Vector Field”
(Weinkauf and Theisel; TVCG 2010)




