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You can learn a lot 
about a shape by 
hitting it (lightly) 
with a hammer!



What can you learn about its shape from

vibration frequencies and 
oscillation patterns?



THE COTANGENT LAPLACIAN



Induced by the connectivity of 
the triangle mesh.



 Useful properties of the Laplacian
 Applications in graphics/shape analysis

 Applications in machine learning

What are they good for?
Discrete Laplacian operators:
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What are they good for?
Discrete Laplacian operators:



Deviation from neighbors
https://en.wikipedia.org/wiki/Laplacian_matrix



Dirichlet energy:  Measures smoothness
Images made by E. Vouga

Decreasing E



Vibration modes
http://alice.loria.fr/publications/papers/2008/ManifoldHarmonics//photo/dragon_mhb.png





Laplacian only depends on edge lengths
Image/formula in “Functional Characterization of Instrinsic and Extrinsic Geometry,” TOG 2017 (Corman et al.)



Isometry
[ahy-som-i-tree]:
Bending without stretching.



Global isometry

Local isometry



Isometry invariant
http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/



http://www.flickr.com/photos/melvinvoskuijl/galleries/72157624236168459



Few shapes can deform isometrically
http://www.4tnz.com/content/got-toilet-paper



Few shapes can deform isometrically
http://www.4tnz.com/content/got-toilet-paper





Not the same.

Image from: Raviv et al.  “Volumetric Heat Kernel Signatures.”  3DOR 2010.



 Encodes intrinsic geometry
Edge lengths on triangle mesh, Riemannian metric on manifold

 Multi-scale
Filter based on frequency

 Geometry through linear algebra
Linear/eigenvalue problems, sparse positive definite matrices

 Connection to physics
Heat equation, wave equation, vibration, …



 Useful properties of the Laplacian
 Applications in graphics/shape analysis
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What are they good for?
Discrete Laplacian operators:



http://liris.cnrs.fr/meshbenchmark/images/fig_attacks.jpg

Pointwise quantity



Characterize local geometry
Feature/anomaly detection

Describe point’s role on surface
Symmetry detection, correspondence



http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian and mean curvature



Distinguishing
Provides useful information about a point

Stable
Numerically and geometrically

Intrinsic
No dependence on embedding



Invariant under

Rigid motion

Bending without stretching



http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian curvature

Theorema Egregium
(“Totally Awesome 

Theorem”):

Gaussian curvature 
is intrinsic.



Second derivative quantity



Non-unique
http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg



Incorporates neighborhood 
information in an intrinsic fashion

Stable under small deformation



Heat equation
http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf



Heat diffusion patterns are not 
affected if you bend a surface.
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“Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation”
Rustamov, SGP 2007



2 3 4 5 6 7 8 9 10

If surface does not self-intersect, neither 
does the GPS embedding.

Proof:  Laplacian eigenfunctions span 𝑳𝟐(𝚺); if GPS(p)=GPS(q), then all functions 
on 𝚺 would be equal at p and q.



2 3 4 5 6 7 8 9 10

GPS is isometry-invariant.

Proof:  Comes from the Laplacian.



Assumes unique λ’s

Potential for eigenfunction
“switching”

Nonlocal feature



Heat equation
http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf



Wave equation
Image courtesy G. Peyré



Image courtesy G. Peyré

Wave equation



Heat equation



Continuous function of 𝒕 ∈ [𝟎,∞)

How much heat 
diffuses from x to 

itself in time t?



“A concise and provably informative multi-scale signature based on heat diffusion”
Sun, Ovsjanikov, and Guibas; SGP 2009



Good properties:

 Isometry-invariant
 Multiscale
 Not subject to switching
 Easy to compute
 Related to curvature at small scales



Bad properties:

 Issues remain with repeated 
eigenvalues

 Theoretical guarantees require 
(near-)isometry



Average probability over 
time that particle is at x.

Initial energy 
distribution

“The Wave Kernel Signature:  A Quantum Mechanical Approach to Shape Analysis”
Aubry, Schlickewei, and Cremers; ICCV Workshops 2012



HKS WKS
vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf



Good properties:

 [Similar to HKS]
 Localized in frequency
 Stable under some non-isometric 

deformation
 Some multi-scale properties



Bad properties:

 [Similar to HKS]
 Can filter out large-scale features



Lots of spectral descriptors in 
terms of Laplacian

eigenstructure.



Learning Spectral Descriptors for Deformable Shape Correspondence
Litman and Bronstein; PAMI 2014

Learn f rather than defining it



Feature points

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
Sun, Ovsjanikov, and Guibas; SGP 2009

Maxima of kt(x,x) over x for large t.



http://graphics.stanford.edu/projects/lgl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf
http://www.cs.princeton.edu/~funk/sig11.pdf

http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf



Simply match closest points in 
descriptor space.



Symmetry



One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

How much heat diffuses from p to x in time t?



One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010

Theorem: Only have to match one point!



“Discrete intrinsic” symmetries

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

Intrinsic symmetries 
become extrinsic in 

GPS space!



Laplacians appear everywhere 
in shape analysis and 
geometry processing.



“Biharmonic distance”
Lipman, Rustamov & Funkhouser, 2010



“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Crane, Weischedel, and Wardetzky.  “Geodesics in Heat.”  TOG, 2013.



“Implicit fairing of irregular meshes using diffusion and curvature flow”
Desbrun et al., 1999



Implicit time stepping

Choice:  Evaluate at time T

Unconditionally stable, but not necessarily accurate for large T!



“Multiresolution analysis of arbitrary meshes”
Eck et al., 1995 (and many others!)



 Shape retrieval from 
Laplacian eigenvalues
“Shape DNA” [Reuter et al., 2006]

 Quadrangulation
Nodal domains [Dong et al., 2006]

 Surface deformation
“As-rigid-as-possible” [Sorkine & Alexa, 2007]



 Useful properties of the Laplacian
 Applications in graphics/shape analysis

 Applications in machine learning

What are they good for?
Discrete Laplacian operators:



“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003



Dirichlet energy  Linear system of equations (Poisson)



 Step 1:
Build k-NN graph

 Step 2:  
Compute p smallest Laplacian eigenvectors

 Step 3:
Solve semi-supervised problem in subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002



Potential fix: 

Higher-order 
operators



“Manifold Regularization:  
A Geometric Framework for Learning from Labeled and Unlabeled Examples”

Belkin, Niyogi, and Sindhwani; JMLR 2006

Loss function Regularizer

Dirichlet energy



 Laplacian-regularized least squares (LapRLS)

 Laplacian support vector machine (LapSVM)

“On Manifold Regularization”
Belkin, Niyogi, Sindhwani; AISTATS 2005



“Diffusion Maps”
Coifman and Lafon; Applied and Computational Harmonic Analysis, 2006

Embedding from first k eigenvalues/vectors:

Roughly:
𝚿𝐭 𝐱 − 𝚿𝒕 𝒚 is probability that x, y diffuse to the same point in time t.

Image from http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf (nice slides!)

Robust to sampling 
and noise

http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445 - Topic 10 - Diffusion Maps.pdf
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