

Applications of the Laplacian

Justin Solomon MIT, Spring 2017

Rough Intuition: Spectral Geometry

http://pngimg.com/upload/hammer_PNG3886.png

You can learn a lot about a shape by hitting it (lightly) with a hammer!

Rough Definition

What can you learn about its shape from vibration frequencies and oscillation patterns?

 $\Delta f = \lambda f$

THE COTANGENT LAPLACIAN

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$

Our Next Topic

Discrete Laplacian operators:

What are they good for?

Useful properties of the Laplacian
 Applications in graphics/shape analysis
 Applications in machine learning

A quick survey: A popular field!

Our Next Topic

Discrete Laplacian operators:

What are they good for?

Useful properties of the Laplacian
 Applications in graphics/shape analysis
 Applications in machine learning

A quick survey: A popular field!

One Object, Many Interpretations

$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
6 4-5 1 3-2	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{ccccccccccc} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

https://en.wikipedia.org/wiki/Laplacian_matrix

Deviation from neighbors

One Object, Many Interpretations

Decreasing E

$$E[f] := \int_{S} \|\nabla f\|_{2}^{2} dA = -\int_{S} f(x) \Delta f(x) dA(x)$$

Images made by E. Vouga

Dirichlet energy: Measures smoothness

One Object, Many Interpretations

http://alice.loria.fr/publications/papers/2008/ManifoldHarmonics//photo/dragon_mhb.png

Vibration modes

Key Observation (in discrete case)

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$
$$M_{ij} = \begin{cases} \frac{\text{one-ring area}}{6} & \text{if } i = j \\ \frac{\text{adjacent area}}{12} & \text{if } i \neq j \end{cases}$$
$$\text{Can be written in terms of angles and areas!}$$

After (More) Trigonometry

Image/formula in "Functional Characterization of Instrinsic and Extrinsic Geometry," TOG 2017 (Corman et al.)

Laplacian <u>only</u> depends on edge lengths

Isometry

[ahy-**som**-i-tree]: Bending without stretching.

Lots of Interpretations

Global isometry
$$d_1(x,y) = d_2(f(x),f(y))$$

Local isometry

$$g_1 = f^* g_2 g_1(v, w) = g_2(f_* v, f_* w)$$

Intrinsic Techniques

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant

Isometry Invariance: Hope

Isometry Invariance: Reality

"Rigidity"

http://www.4tnz.com/content/got-toilet-paper

Few shapes can deform isometrically

Isometry Invariance: Reality

Behavior for approximate isometry is important, tool

http://www.4tnz.com/content/got-toilet-paper

Few shapes can deform isometrically

Useful Fact

Discrete heat kernel determines discrete Riemannian metric

Wei Zeng^{a,*}, Ren Guo^b, Feng Luo^c, Xianfeng Gu^a

^a Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA ^b Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA ^c Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

ARTICLE INFO

Article history: Received 5 March 2012 Accepted 28 March 2012 Available online 12 April 2012

Keywords:

Discrete heat kernel Discrete Riemannian metric Laplace–Beltrami operator Legendre duality principle

ABSTRACT

The Laplace–Beltrami operator of a smooth Riemannian manifold is determined by the Riemannian metric. Conversely, the heat kernel constructed from the eigenvalues and eigenfunctions of the Laplace–Beltrami operator determines the Riemannian metric. This work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the discrete heat kernel and the discrete Riemannian metric (unique up to a scaling) are mutually determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is represented as edge lengths, satisfying triangle inequalities on all faces. The Laplace–Beltrami operator is formulated using the cotangent formula, where the edge weight is defined as the sum of the cotangent of angles against the edge. We prove that the edge

Beware

But calculations on a volume are expensive!

Image from: Raviv et al. "Volumetric Heat Kernel Signatures." 3DOR 2010.

Not the same.

Why Study the Laplacian?

Encodes intrinsic geometry

Edge lengths on triangle mesh, Riemannian metric on manifold

Multi-scale

Filter based on frequency

Geometry through linear algebra

Linear/eigenvalue problems, sparse positive definite matrices

Connection to physics

Heat equation, wave equation, vibration, ...

Our Next Topic

Discrete Laplacian operators:

What are they good for?

Useful properties of the Laplacian
 Applications in graphics/shape analysis
 Applications in machine learning

A quick survey: A popular field!

Example Task: Shape Descriptors

http://liris.cnrs.fr/meshbenchmark/images/fig_attacks.jpg

Pointwise quantity

Descriptor Tasks

Characterize local geometry Feature/anomaly detection

Describe point's role on surface Symmetry detection, correspondence

Descriptors We've Seen Before

 $K := \kappa_1 \kappa_2 = \det \mathbf{I}$

http://www.sciencedirect.com/science/article/pii/Soo10448510001983

Gaussian and mean curvature

Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic

No dependence on embedding

Sometimes undesirable!

Intrinsic Descriptors

Invariant under Rigid motion

Bending without stretching

Intrinsic Descriptor

Theorema Egregium ("Totally Awesome Theorem"): **Gaussian curvature** is intrinsic.

 $K := \kappa_1 \kappa_2 = \det \mathbb{I}$

http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian curvature

End of the Story?

$K = \kappa_1 \kappa_2$

Second derivative quantity

End of the Story?

http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg

Non-unique

Desirable Properties

Incorporates neighborhood information in an intrinsic fashion

Stable under small deformation

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

Intrinsic Observation

Heat diffusion patterns are not affected if you bend a surface.

Global Point Signature

 $GPS(p) := \left(-\frac{1}{\sqrt{\lambda_1}}\phi_1(p), -\frac{1}{\sqrt{\lambda_2}}\phi_2(p), -\frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$

"Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation" Rustamov, SGP 2007

Global Point Signature

If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span $L^2(\Sigma)$; if GPS(*p*)=GPS(*q*), then all functions on Σ would be equal at *p* and *q*.

Global Point Signature

GPS is isometry-invariant.

Proof: Comes from the Laplacian.
Drawbacks of GPS

Assumes unique λ's

Potential for eigenfunction "switching"

Nonlocal feature

New idea:

PDE Applications of the Laplacian

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Heat equation

PDE Applications of the Laplacian

Wave equation

PDE Applications of the Laplacian

Image courtesy G. Peyré

Wave equation

Solutions in the LB Basis

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Continuous function of $t \in [0, \infty)$

How much heat diffuses from x to itself in time t?

"A concise and provably informative multi-scale signature based on heat diffusion" Sun, Ovsjanikov, and Guibas; SGP 2009

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Good properties:

- Isometry-invariant
- Multiscale
- Not subject to switching
- Easy to compute
- Related to curvature at small scales

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Bad properties:

- Issues remain with repeated eigenvalues
- Theoretical guarantees require (near-)isometry

"The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis" Aubry, Schlickewei, and Cremers; ICCV Workshops 2012

WKS
$$(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_n)^2$$

vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf

WKS
$$(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_n)^2$$

Good properties:

- [Similar to HKS]
- Localized in frequency
- Stable under some non-isometric deformation
- Some multi-scale properties

WKS
$$(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_n)^2$$

Bad properties: [Similar to HKS] Can filter out *large*-scale features

Many Others

Lots of spectral descriptors in terms of Laplacian eigenstructure.

Combination with Machine Learning

$$p(x) = \sum_{k} f(\lambda_k) \phi_k^2(x)$$

Learn f rather than defining it

Learning Spectral Descriptors for Deformable Shape Correspondence Litman and Bronstein; PAMI 2014

Application: Feature Extraction

Maxima of $k_t(x,x)$ over x for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion Sun, Ovsjanikov, and Guibas; SGP 2009

Feature points

Preview: Correspondence

http://graphics.stanford.edu/projects/lgl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf http://www.cs.princeton.edu/~funk/sig11.pdf http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf

Descriptor Matching

Simply match closest points in descriptor space.

Descriptor Matching Problem

Symmetry

Heat Kernel Map

$\operatorname{HKM}_p(x,t) := k_t(p,x)$

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Heat Kernel Map

$\operatorname{HKM}_p(x,t) := k_t(p,x)$

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Self-Map: Symmetry

Intrinsic symmetries become extrinsic in GPS space!

Global Intrinsic Symmetries of Shapes Ovsjanikov, Sun, and Guibas 2008

"Discrete intrinsic" symmetries

All Over the Place

Laplacians appear everywhere in shape analysis and geometry processing.

Biharmonic Distances

 $d_b(p,q) := ||g_p - g_q||_2$, where $\Delta g_p = \delta_p$

"Biharmonic distance" Lipman, Rustamov & Funkhouser, 2010

Geodesic Distances

$$d_g(p,q) = \lim_{t \to 0} \sqrt{-4t \log k_{t,p}(q)}$$
 "Varadhan's Theorem"

"Geodesics in heat" Crane, Weischedel, and Wardetzky; TOG 2013

Alternative to Eikonal Equation

Algorithm 1 The Heat Method

- I. Integrate the heat flow $\dot{u} = \Delta u$ for time t.
- II. Evaluate the vector field $X = -\nabla u / |\nabla u|$.
- III. Solve the Poisson equation $\Delta \phi = \nabla \cdot X$.

Crane, Weischedel, and Wardetzky. "Geodesics in Heat." TOG, 2013.

Implicit Fairing: Mean Curvature Flow

"Implicit fairing of irregular meshes using diffusion and curvature flow" Desbrun et al., 1999

Useful Technique

$$\frac{\partial f}{\partial t} = -\Delta f \text{ (heat equation)}$$

$$\rightarrow M \frac{\partial f}{\partial t} = Lf \text{ after discretization in space}$$

$$\rightarrow M \frac{f_T - f_0}{T} = Lf_T \text{ after time discretization}$$
(boice: Evaluate at time T

Unconditionally stable, but not necessarily accurate for large T!

Implicit time stepping

Parameterization: Harmonic Map

Others

Shape retrieval from Laplacian eigenvalues

"Shape DNA" [Reuter et al., 2006]

Quadrangulation

Nodal domains [Dong et al., 2006]

Surface deformation

"As-rigid-as-possible" [Sorkine & Alexa, 2007]

Our Next Topic

Discrete Laplacian operators:

What are they good for?

Useful properties of the Laplacian
 Applications in graphics/shape analysis
 Applications in machine learning

A quick survey: A popular field!

Semi-Supervised Learning

"Semi-supervised learning using Gaussian fields and harmonic functions" Zhu, Ghahramani, & Lafferty 2003

Semi-Supervised Technique

Given: ℓ labeled points $(x_1, y_1), \dots, (x_{\ell}, y_{\ell}); y_i \in \{0, 1\}$ u unlabeled points $x_{\ell+1}, \dots, x_{\ell+u}; \ell \ll u$

0 2

-2

-3∟ -4

$$\min \frac{1}{2} \sum_{ij} w_{ij} (f(i) - f(j))^2$$

s.t. $f(k)$ fixed $\forall k \le \ell$

Dirichlet energy \rightarrow Linear system of equations (Poisson)

Related Method

Step 1: Build k-NN graph

Step 2:

Compute *p* smallest Laplacian eigenvectors

Step 3:

Solve semi-supervised problem in subspace

"Using Manifold Structure for Partially Labelled Classification" Belkin and Niyogi; NIPS 2002

Buyer Beware: Ill-Posed in Limit?

Nathan Srebro

Toyota Technological Institute

Chicago, IL 60637

nati@uchicago.edu

Semi-Supervised Learning with the Graph Laplacian: The Limit of Infinite Unlabelled Data

Boaz Nadler Dept. of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot, Israel 76100 boaz.nadler@weizmann.ac.il

> Xueyuan Zhou Dept. of Computer Science University of Chicago Chicago, IL 60637 zhouxy@cs.uchicago.edu

Abstract

We study the behavior of the popular Laplacian Regularization method for Semi-Supervised Learning at the regime of a fixed number of labeled points but a large Potential fix: Higher-order operators

Manifold Regularization

Regularized learning:
$$\arg\min_{f\in\mathcal{H}}\frac{1}{\ell}\sum_{i=1}^{\ell}V(f(x_i), y_i) + \gamma \|f\|^2$$

Loss function Regularizer
$$\|f\|_I^2 := \int \|\nabla f(x)\|^2 \, dx \approx f^\top Lf$$

"Manifold Regularization:

A Geometric Framework for Learning from Labeled and Unlabeled Examples" Belkin, Niyogi, and Sindhwani; JMLR 2006

Examples of Manifold Regularization

- Laplacian-regularized least squares (LapRLS) $\arg\min_{f\in\mathcal{H}}\frac{1}{\ell}\sum_{i=1}^{\ell}(f(x_i) - y_i)^2 + \gamma \|f\|_I^2 + \text{Other}[f]$

Laplacian support vector machine (LapSVM)

 $\arg\min_{f\in\mathcal{H}}\frac{1}{\ell}\sum_{i=1}^{\ell}\max(0,1-y_if(x_i))+\gamma\|f\|_I^2+\text{Other}[f]$

"On Manifold Regularization" Belkin, Niyogi, Sindhwani; AISTATS 2005

Diffusion Maps

Embedding from first k eigenvalues/vectors:

$$\Psi_t(x) := \left(\lambda_1^t \psi_1(x), \lambda_2^t \psi_2(x), \dots, \lambda_k^t \psi_k(x)\right)$$

Roughly:

 $|\Psi_t(\mathbf{x}) - \Psi_t(\mathbf{y})|$ is probability that *x*, *y* diffuse to the same point in time *t*.

"Diffusion Maps" Coifman and Lafon; Applied and Computational Harmonic Analysis, 2006

Image from http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445%20-%20Topic%2010%20-%20Diffusion%20Maps.pdf (nice slides!)

Applications of the Laplacian

Justin Solomon MIT, Spring 2017

