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Abstract— We present our digital fabrication technique for  replicas from our programmable matter particles in a single
man_ufacturl_ng active OF)JECtS in 2D from a collection of smat step process. The resulting duplicate is endowed not only
particles. Given a passive model of the object to be formed, av with the shape of the original passive model, but also

envision submerging this original in a vat of smart particles, . telli . d icati biliti
executing the new shape duplication algorithm described in Intelligence, sensing, and communication capabilities.

this paper, and then brushing aside any extra modules to
reveal both the original object and an exact copy, side-by-
side. Extensions to the duplication algorithm can be used to
create a magnified version of the original or multiple copies
of the model object. Our novel duplication algorithm uses a
distributed approach to identify the geometric specificaton of
the object being duplicated and then forms the duplicate fron
spare modules in the vicinity of the original.

This paper details the duplication algorithm and the features
that make it robust to (1) an imperfect packing of the modules
around the original object; (2) missing communication links
between neighboring modules; and (3) missing modules in
the vicinity of the duplicate object(s). We show that the
algorithm requires O(1) storage space per module and that
the algorithm exchangesO(n) messages per module. Finally,
we present experimental results from 60 hardware trials and S i
150 simulations. These experiments demonstrate the algtnim wmwm'|"'"*W|‘“""W‘Wﬂ'|“"'ﬂ‘|"""'l‘r"""l"'ﬂ'ﬂ""‘*ﬂ‘l"'l‘"""“"'l"W'H“
working correctly and reliably despite broken communication 10 20 30 40 50 60 70 8 9 100 10 2 1o w0

links and missing modules. st m||uul|m|ul|I|||||nuIu||‘unllmlunluulnuluuhuﬂuulmduullmmuluuhmlu“h

l. INTRODUCTION Fig. 1. The distributed duplication algorithm presentedhiis paper uses
In this paper, we present a new approach (o rapid ST T TOUSS TS 20 B Do) b
manufacturing active objects using a large collection cism from the spare modules in the vicinity of the original. (Whthis figure is
particles capable of communicating and bonding with theisnly illustrative, the paper demonstrates the algorithepplicability with
neighbors. Traditional manufacturing creates deviceagusi @ variety of smaller scale hardware experiments.)
a hierarchical approach that is organized as a sequence that
includes mechanical design, fabrication, electronic glesi  This approach to digital fabrication by shape distribui®n
PCB production, assembly, and finishing. In contrast, wgeneric and independent of the architecture of the indalidu
package the necessary mechanical, perceptual, and cgmasticles that compose the programmable matter system. In
putational capabilities in small, intelligent buildingdoks this paper we illustrate the algorithms in the context of the
that integrate actuation, sensing, communication, anttalon Robot Pebbles [1] which are 1cm cubic computers with
Manufacturing in our proposed system consists of selectifgrogrammable connectors and neighbor-to-neighbor commu-
the correct aggregation of these modules for a requirgdcation. Current manufacturing technology lower-bounds
shape or design. By using a homogeneous set of smdhne size of the Pebbles, (and therefore the resolution of the
modules instead of heterogeneous, task-specific matesials objects that we can duplicate), but as manufacturing tech-
(1) allow a device’s components to be easily recycled angiques evolve, we will be able to further miniaturize these
reused in a different application; (2) automate the falivoa modules. Eventually, we hope to produce sub-millimeter
of complex structures; and (3) imbue objects with inhererffmart Sandparticles that have all the communication and
sensing and computation capabilities. computation capabilities of the current Robot Pebbles.
Figure 1 illustrates our approach to fabrication by dis- Irrespective of the dimension, bonding mechanism, or
tributed shape duplication. Given a passive physical moflel communication interface of the programmable matter mod-
the object to be manufactured, the distributed algorithat th ules, the algorithm we present here operates the same way.
we present in this paper identifies the geometric specificati A passive object is buried under, or submerged into, a
of the object and forms one or more, potentially magnifiedsollection of programmable matter modules. Upon receiving
. . _ a start signal, the modules mechanically bond with their
K. Gilpin and D. Rus are with the Computer Science . .. . ; .
and Arificial Inteligence Lab, MIT, Cambridge, MA 02139 neighbors to encase the original object in a single regular
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boundaries within the lattice, but others [2] have begurelative to another Catom. Goldstein et al. present a clever
addressing this problem, and we hope to incorporate theshape formation algorithm [19] that operates on a densely
results in future iterations of our algorithm.) Once sdieti packed arrangement of Catoms by creating and absorbing
around the passive object, the modules execute our duplidaibbles, or movable voids, within the interior of the struet

tion algorithm that senses the shape of the object. After thEhe advantage is that a description of the shape to be formed
system has captured the shape of the original, it creates ooy needs to be shared with the surface modules.

or more, potentially magnified, replicas of the object using In other work, Pillai et al. present an algorithm [6], for
the rest of the programmable matter by selectively unlatghi the Catoms system that enables duplication of a passive
the unnecessary modules. When this self-disassembly skape. The goal of this algorithm is virtually identical taro
complete, the user can brush away the newly disconnectedn. Their algorithm can successfully capture and remicat
modules to reveal a replica of the original object. the shape of a passive object in simulation. Unlike our

The algorithm has several important properties. Firss it ialgorithm, the Pillai algorithm is centralized and relies o
completely distributed and runs on a set of identical maglulean external computer with significant processing capabilit
Second, because a complete description of the goal shapadsmanage the duplication process. It also results in a high
never known by any module, the distributed shape formaticcommunication overhead as all shape data streams out of and
algorithm scales favorably as we form increasingly larg@to the particle ensemble from a single point. The algamith
shapes. Ignoring th®(logn) scaling associated with storing is also incapable of operating on lattices that contain soid
large numbers, the duplication algorithm presented hefta more recent work, Funiak et al. [2] have developed
only requires constant storage per module. Furthermoee, thn interesting algorithm capable of distributed localmat
total number of neighbor-to-neighbor messages exchangeda completely irregular packing of smart particles. The
in the process of duplication scales @n?). Third, the distributed duplication algorithm that we present here is
algorithm accounts for both broken communication links andeneric and can be implemented on the Catoms, the Digital
missing modules making it robust to imperfections in theClay modules [20], or the Miche [21] and Robot Pebble [1]
regular lattice of modules surrounding the passive shapprogrammable matter systems. While many programmable
Finally, the algorithm transitions seamlessly from sintiola matter systems do not yet exhibit enough inter-module t®rqu
to hardware. It is implemented i@ with code that compiles and force to withstand utilization as tools, there is hog th
and runs in simulation or on hardware without modificationthey eventually will [22], [23], [1].

The remainder of this paper is organized as follows.
A. Related Work Section Il provides an explanation of the basic message

Our work builds on a body of research addressingouting algorithm that is used as the communication back-
programmable matter and modular self-reconfiguring sy$one for the duplication algorithms presented in Sectitn Il
tems [3], [4], [5], [6]. Researchers have characterized urod Section IV analyzes the robustness of the duplication algo-
lar robots as either chain or lattice systems [7]. Chairedas rithm. Section V gives an overview of how to form multiple
systems [8], [9], [10] are built around tree-like topolagiie duplicates or duplicates that are a magnified version of the
In contrast, lattice-based systems [11], [12], [13] haverbe original object. Section VI presents experimental resodsh
the basis of programmable matter as they tend to use hongimulation and hardware which demonstrate the distributed
geneous, symmetric modules arranged in a regular 2- or 3duplication algorithm working correctly and robustly. Bily,
grid pattern in which a module can bond and communicatee present avenues for future work in Section VII.
with neighbors in every direction.

Klavins et al. have developed hardware and algorithms
for a triangular self-assembling system that operates on anDistributed shape duplication requires a reliable way of
air table [14]. Griffith et al. [15] have shown that self-sending messages from one programmable matter module in
assembling systems can self-replicate in a distributdddas the system to any other. Because the collection of modules
Lipson’s group has also been instrumental in developingiay be non-convex, have missing communication links, and
stochastically-driven self-assembling programmabletenat contain concave voids, a simple gradient descent routing
systems [16], [17]. Christensen et al. [18] have developeaalgorithm is not sufficient. The limited processing power
a language that can direct robotic self-assembly. Despite tand storage available to each module constrain our choice
promise of self-assembling systems, they are ill-suited f®f routing algorithms. For instance, it is not possible,eesp
the distributed duplication algorithm that we present hereially as the number of modules in the system grows, to
Instead of a system that constructs objects by adding medulmaintain routing tables. We choose to use the traditional
piece-by-piece, we need a system that starts from an initiaug algorithm [24] to route messages through the system.
collection of close-packed modules that (1) envelop thdhstead of the bug being a robot, the message is the bug and
shape to be duplicated and (2) form a block of raw materidhe modules are the environment through which the message
out of which the duplicate shape can be fabricated. One suantust navigate from its source to destination.
system is the Catoms [5]. The general concept of a CatomIn particular, we use the Bug2 algorithm. This algorithm
is a spherical or cylindrical robot whose surface is covered provably correct [24] and ensures that, if it is possible
in actuators that allow the Catom to bond with and movéor a message to reach its destination, it eventually will;

Il. ROUTING ALGORITHM



and if it is not, the system will eventually be notified. TheB. Shape Sensing / Leader Election
Bug?2 algorithm is a natural choice for our system because it

jarisurtr)\es that the bug hlas no ;CCteSSd tct) gIo_baI _|tnforme};tl|(?ﬂe perimeter, area, and dimension of the original obsgcle
e bug (message) only needs to determine its posi 'Ouﬂ)unding box; and elect a leader module on the perimeter of

and whether it is in contact with an obstacle, (in our “a5fhe obstacle to be duplicated. After a module is localized by

a void not occupied by a module), facts readily available . . - : . . -
from the modules themselves. The Bug2 algorithm is als%n Incomingpositionmessage, it detects which of its neigh

. __."bors are present by assuming that unresponsive neighleors ar
advantageous bec;ause _thfe bug_ only ge"ﬁdi.t‘? ]In‘.”“nta'na@sent. It assumes that these missing neighbors corregpond
constant_ amounto sta_lte Information, and all this in om_rat the obstacle presented by the original object to be duplitat
can e_asny pe stored in the message. The_bug algonthmﬁen, a module attempts to route, (using the bug algorithm),
not without its _dra\{vbacks. Pr|mar|l_y, the basic bgg algqnt sensanessage to each of its missing neighbors. Because the
does not function in 3D. See Section VII for a discussion og

. . . estination coordinates are occupied by the obstacle bein
how we are extending our algorithm to handle 3D ongmalsd P y 9

. NG . uplicated, thesensemessage will never be delivered to its
The experiments in this paper only consider 2D shapes, b(lj'éstination but this is the intent. Instead, Hemsanessages
the theory is extensible to 3D shapes. ' '

will traverse the entire perimeter of the obstacle beingedn
I1l. DUPLICATION ALGORITHMS Eventually, it will return to its sender, who will then know
that the message cannot be delivered.

The distributed duplication algorithm is a multiple step .
process that is able to sense the shape of a passive objedf! the process of traversing the obstacle,seesanessage

that is surrounded by programmable matter modules and thissmedified by each module through which it passes so that
form a duplicate of that object using additional module®Y the time the message returns fo its sender, it holds the
within the same initial block of material. The algorithmOPStacle’s area, perimeter, and the extents of the obstacle
is completely distributed, all modules execute the samRPUnding box. Figure 3 shows this process in action. The

code, and all computation occurs on-board. The algorithrR€rimeter computed by theensemessage is incremented
illustrated in Figure 2 is composed of five major phases: whenever the bug algorithm causes the message to virtually
1) Encapsulation and Localization collide with the obstacle being duplicated. The area of the

. . obstacle is integrated by rows. For each row, the minimum
2) Shape Sensing / Leader Election . ! .
o x-coordinate plus one is subtracted from the maximum x-
3) Border Notification . : .
4) Shape Fil coordinate, but these operations never occur simultaheous
pe Finally, thesensemessage determines the obstacle’s bound-
5) Self-Disassembly

. ing box by logging the minimum and maximum x- and y-
In short, after all modules are localized and bond together) ;- qinates through which it travels.

to encase the object being duplicated, the algorithm Sensesyhie Figure 3 only shows a single modulessnsemes-

the border of the original object, creates a duplicate krOrdgage, all modules on the border generate messages. To elect
beside the original, informs all modules inside of this keord a leader module from those surrounding the obstacle, and

tha; ttlwey form thhe duprI:catfe shaﬁe,danlq then hprompts reduce the total number of messages transferred, modules
modules except those that form the duplicate shape 1o S€fjis.4rq incomingsensemessages from modules with lower

dlsassgmble. The user can then brush aside the extra mod ﬁﬁ}ue IDs than their own. Because there is a single highest
much like a sculptor would remove extra st_one f“’”_‘ a bIochD’ all sensemessages except one will be discarded before
of marble to reveal the newly created duplicate object. they return to their sender. The module whesasanessage

A. Encapsulation and Localization returns is the de facto leader. Figure 3 also omits the fact

The shape duplication process begins with the user sJP—atf.a” r?_odulefs ond tlhe extern:;epenmeter of th(_erhentlre
rounding the passive object to be duplicated with a cobbecti configuration of modules generasensemessages. These

of programmable matter modules. In a 3D system with san{fiessages are rou:jeg mh an |dder;t|ca_l hmﬁnnhgr,hbut IvI;hen the
sized particles, we envision literally burying the objecthe :ngtssage dgentehrate y;[j €mo q”ebwn t et' '9 es:c[h rett:jrnls
duplicated. Using the 2D, centimeter-scale Robot Pebble§, ' SENAer, e sensed area will be negative, so the module
we can use an inclined vibration table, the 2D analog of a be\(&m know that it did not detect an obstacle.

of sand, to surround the passive object with active modules.
Once the object is surrounded, the user sends a start co
mand to a single module that begins the encapsulation andThe border notification phase duplicates the border of the
localization process. The recipient of this message anilitr  original shape in the nearby modules and involves threestype
assumes that its coordinates are (0,0), and then it infoims af messageduplication messages inform each module on
of its neighbors of their coordinates. As each module learrthe border of the original shape of their special staBasder

its coordinates within the system, it mechanically bondsiwi messages are sent by modules on the border of the original
its neighbors to rigidly encapsulate the passive objeatdei shape and inform each module that is on the border of what
duplicated. Once bound to its neighbors, each module entevill become the duplicate shape of their statenfirmation

the shape sensing and leader election phase. messages, in turn, are sent by recipientbafder messages

The goal of the sensing phase is to two-fold: determine

. Border Notification
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Fig. 2. After localization, the distributed duplicationgatithm begins in (a) by routing sensemessage around the border of the obstacle. As shown in
(b), the message sent by the module with the highest uniqueillZventually return to its sender, prompting that modtderoute aduplication message
around the border of the obstacle (c). Upon receivirdpplication message, a module seroisrder message to its conjugate that will become the border
of the duplicate object. After all duplicate border modules/e sentconfirmationmessages back to the leader (d), the leader broadcditsneessage

(e) informing modules contained by the new border that threypart of the duplicate shape and causing them to senfirmationmessages back to the
leader, (f). Upon receiving all confirmation messages, #aalér broadcasts disassemblenessage (g) causing all modules except those in the duplicat
shape to self-disassemble (h). Note: the key for this figaidshfor all others in the paper as well.
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Fig. 3. As the modules attempt to use the bug algorithm toeragensemessages from its source at (5,1) to its non-existent degimat (5,2), they
update the perimeter, area, and bounding box fields carritdnwthe message. The perimeter is incremented as thet iefsalery “collision” with the
obstacle, and area is accumulated row-by-row. When theages®turns to its sender, these parameters accuratelsibdeize obstacle.

and allow the leader to determine when the border of thmodules become the border of the duplicate shape. (While
duplicate is complete. Figure 2 does not show it, modules on the border of the

The border notification phase begins with the leader s@riginal may simultaneously serve as the border of the eupli
lected by the shape sensing phase attempting to use &®{€.) Because theordermessages also carry the coordinates
bug algorithm to route auplicationmessage to its missing Of the leader module, eadtorder recipient sends a border
neighbor whose position is instead occupied by the obstact@nfirmationmessage back to the leader carrying the length
to be duplicated. Like theensemessage that was previouslyof perimeter of the duplicate shape on which the module
sent, theduplication message traces the perimeter of thdorders. By comparing cumulative length of all received
obstacle conveying two critical pieces of information toconfirmationmessages to the known perimeter of the original
each module on this border: the leader’s coordinates andsBape, the leader determines when all modules on the border
duplication direction vector, (whose length is determibgd Of the duplicate have been notified of their role.
the bounding box of the original shape).

As the duplication message passes through the moduldd: Shape Fill
on the border of the original shape, each module attemptsThe shape fill phase notifies all modules inside the border
to route aborder message to the module identified by thepf the duplicate shape that they form the duplicate objedt an
direction vector added to the sender’s coordinates. Aftehould remain solidified when all other modules disassemble
stimulating each module on the border of the original shapphe phase begins when the leader has received confirmation
to send ordermessage, theuplicationmessage eventually messages from every module on the border of the duplicate
returns to the leader where it is discarded. shape. With the border of the duplicate complete, the leader

When theborder messages reach their destinations, thessends &ill message that floods the entire network of mod-



ules. Each instance of the message contains an ‘“includeitiie total number of messages@n?). During duplication,

bit, (initially cleared), that is toggled every time the raage the total number of messages exchanged is @l§%) as
passes through a module on the border of the duplicatike number of modules in the perimeter of the duplicate
shape. As a result, only modules surrounded by the duplicateay approacim, and eactbordermessage may have have to
border receive &ll message with the included bit set. Theseravel a distance dd(n) to arrive at its destination. Normally,
modules know that they are included in the final structuréhe fill process require®(n) messages, as each module just
and do not break their shared bonds during the disassemlidywardsfill messages to its immediate neighbors. If there
phase. Each module inside the border of the duplicate shage many missing modules, the number of messages may
sends another (areajonfirmation message to the leader. approachO(n?). Finally, disassembly, because it is a flood
By comparing the number of received areanfirmation fill process like localization, only require®(n) messages.
messages to the known area of the duplicate object, therlea®®, the total number of messages scale©@®) implying

can determine when all modules that compose the duplicateat the per module number of messages exchanged scales

object have received fill message. asO(n). While a constant scaling would be preferable, it is
) unrealistic to expect to duplicate an arbitrarily largephan
E. Self-Disassembly a distributed manner using only a fixed number of messages.

After the leader can verify that each module in the dupli-
cate shape knows that it should not disassemble, the leader
broadcasts disassemblynessage to the entire structure. This The system is robust to both missing communication links
message floods the network and the unincluded modul@gd missing modules. In what follows, we assume that the
begin disassemb”ng from their neighbors in an order|phy5ica| state of the system is static: once the duplication

IV. ROBUSTNESS

fashion [25] until only the duplicate object remains. process has begun, neither communication links nor modules
o are removed from the system. This assumption is reasonable
F. Storage and Communication given the strength of the physical bonds [1]. While we do not

The distributed shape duplication algorithm requires onl{ave space to consider it here, it is straight-forward to/@ro
a constant amount of storage per module that is independép@t the robustness modifications operate correctly, away
of the number of obstacles in the system or size of th&rminate, and do not modify the theoretical bounds on the
object being duplicated. During localization, a moduleyon| storage and communication.
stores its position. In the sensing phase, a module updates

sensemessages as they pass through the module, but no 0 functional
information is stored. During border notification, the new 2 = comm. link
border modules that surround what will become the duplicate : i

. . o oMissing .
shape must store a list of their faces that border on the 1 comm. link

duplicate obstacle, but this is constant in size and canrneve
exceed the dimensionality of the system. During the fill 0
process, a module only needs to record a constant amount of
information: whether it is in the structurg and whethgr.is ha 0. 4. The missing link between modules (3,0), and (3.1) wduse
already sent dill message to each neighbor (to minimiz&nhe module located at (3,0) to sendsansemessage to (3,1). Instead of
the number offill messages transmitted). Finally, duringdiscarding this message, and aborting the entire bordsirggprocess, the
disasserbly, modles do not need to store any informatioRoie A 0.1, (e foteh L e nendes eeberms, e
Throughout the entire process, the leader module onlyStorgiwms to the leader.
a constant amount of information: the perimeter and area of
the shape being duplicated. It never holds a complete de-First, consider the case of missing communication links. In
scription of the shape being duplicated. Additionally,fifyo general, missing links are not an issue so long as each module
tracks the cumulative confirmed perimeter and area conveyedn communicate with at least one neighbor. When routing
by the confirmationmessages instead of keeping a list oinessages, the Bug2 algorithm will treat missing links just
which modules have transmittednfirmationmessages. The like another obstacles that must be avoided. The one scenari
total storage per module is therefdDgl). in which a missing communication link can affect the system
The number of messages exchanged also scales favoraidyshown in Figure 4. In general, missing communication
The worst case scenario occurs when the area of the origitilks are problematic when they border on the object to
object approaches the area of the initial block of materidle duplicated because tensemessages sent by the two
and when the shape of that object approaches a 1-byamdules that share the missing link will actually reachrthei
rectangle. During localization, each module may exchangiestinations, (unlike mosensemessages which are destined
a constant number of messages with each of its neighbds a location occupied by the obstacle being duplicated).
resulting inO(n) messages exchanged. In the sensing phadReferring to Figure 4, thesensemessage transmitted by
there are at mosO(n) modules that each transmsense the module at (3,0), that also happens to have the highest
messages. Eadensemessage may travé)(n) hops before 1D, would be discarded by the module at (3,1) instead of
being discarded by a module with a larger ID. Thereforegircumnavigating the obstacle. Furthermore, the module at
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(3,0) will discard all othesensemessage because they comenationmessage to the leader so that the leader can account
from modules with lower IDs. To alleviate this problem,for the entire area of the duplicate in order to trigger thé-Se
and make the system robust to missing communication link3isassembly phase. Continuing our example, if the module
anywhere, we have modified the routing algorithm so thait (5,2) determines that thelisconfirm message destined
it never acknowledges whensenseor duplicationmessage for (1,2) cannot be delivered, the module acts as a proxy
reaches its destination. Instead, it will keep traveling. for the module at(8,2) and sends an areeonfirmation
The duplication algorithm can also robustly handle missmessage to the leader &3,0). Additionally, (5,2) sends
ing modules. There are exactly four distinct locations fronfill messages to each @B,2)’'s neighbor’s, including in
which a module can be missing, and each is shown iparticular,(9,2). This last step is critical because there are
Figure 5. First, when a module is missing from a locatiomo modules adjacent t(®,2) that could otherwise generate
adjacent to the original object being duplicated, (suchtas the necessary (though undeliverabli#f) message. Without
location (5,4) in the Figure), the missing module appears tdhis last step, the leader would never receiveoafirmation
be a part of the original object, and the duplicate will reflecmessage from a module proxying for the missing module at
this, (as shown by the module 612 4) being included in (9,2). While the details are beyond the scope of this paper,
the duplicate). we use a combination of highest ID and distance to discard
manyfill messages so that we do not generate an excess of
6 ‘iig.ﬁl.lii areaconfirmationmessages that would confuse the leader.
Fourth, and finally, it is now easy to handle modules
1 missing from the border of the duplicate shape such as
the module missing fron{12,2) in Figure 5. During the
Border Duplication phase, thborder message sent from
; (5,2) to (9,2) will be determined to be undeliverable by
S some module. This module will in turn act as a proxy for
the missing module and send a bordenfirmationmessage
to the leader on behalf of the module (@2,2). The leader

Fig. 5. The duplication algorithm is robust enough to handiedules  can then account for all border modules before initiatirg th
missing from any potential location: (a) adjacent to theeobjbeing Shape Fill phase

duplicated; (b) in the interior of the duplicate shape; () the border . ) ) o
of the duplicate shape; or (d) in any other position. During the Shape Fill phase, the algorithm handles missing

border modules as it does missing interior modules. An

Second, when a module is missing from another locatiomndeliverablefil message destined fdd2 2) generates a
that is also not the border or interior of the duplicate shapéisconfirm message that is sent to the missing module’s
(such as (6,0) in Figure 5), we need to ensure that thenjugate(5,2), in Figure 5. In contrast to the interior case,
algorithm does not duplicate this apparent obstacle. Whisdisconfirmmessage is actually delivered because location
guarantee that the algorithm only duplicates the intendg®, 2) is the border, not inside, of the original shape. Because
obstacle by placing a threshold on the area of objects thttis message is delivered, we know that the modul@2t2)
will be duplicated. This approach to ignoring small holes inis itself a border module. As a result, there is no need to send
the initial packing of modules is reasonable given, that tan areaconfirmationmessage to the sender.
achieve acceptable resolution, most objects will be ordérs
magnitude larger than the modules themselves.

Third, the duplication algorithm can gracefully handle We can extend the duplication algorithm to form multiple
modules missing from the interior area that will becomeopies of the original shape or a magnified duplicate that is
the duplicate shape, such as the 9 modules centered aatinteger factorM, larger than the original. The process of
(9,2) in Figure 5. In general, the algorithm will make itsforming multiple duplicates is accomplished by adding row
best effort to duplicate the original, but a large chunk o&nd column count fields to eadtorder message sent by the
the duplicate will be missing when the process completemodules on the perimeter of the original shape. These row
During the Shape Fill phase, the modules surrounding thand column counts specify the dimensions of the array of
gap in the structure will attempt to roufid message to the 9 duplicates that will be formed next to the original object.
missing modules. As the system discovers that each of theééhen theborder messages reach their destinations, they
messages is undeliverable, it will attempt to rodiconfirm  both inform the destination modules of their status as horde
messages to the missing modules’ conjugate locations in theodules and forward themselves along to notify the next set
original obstacle. For example, if the module @ 2) in  of border modules. For a concrete example, see Figure 6.
the Figure determines thatfél message destined 98, 2) The process of magnifying the duplicate shape is illus-
is undeliverable(7,2) will attempt to route adisconfirm trated by Figure 7. We append the magnification factor field,
message t@¢1,2). Because location (1,2) is occupied by theM, to eachborder message. In addition, the modules on the
passive obstacle being duplicated, thisconfirmmessage perimeter of the original shape modify the destination of
will never be delivered. As the system discovers that eadhe border message they each send so that the destination
disconfirmmessage is undeliverable, it sends an a@dir- includes an additive factor that depends on the product of
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V. MULTIPLE DUPLICATES AND MAGNIFICATION
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) \iiiii..m...m The locations of the missing links and modules change with
|

each trial. TheDisassembly Begurolumn in the Table
indicates in what percentage of trails the Self-Disassgmbl
phase was started by the leader module, indicating that
the leader module at least received all border and area
confirmationmessages. In cases where Self-Disassembly did
%DDD..........== start, theCorrect Bondsolumn indicates what percentage of
all inter-module bonds were in the correct state after the Se
Fig. 6. When creating multiple copies of an original shape, awange DiSassembly finished. It excludes trials in which the leader

the copies in an array whose dimensions (here 3-by-2) arenalgd to failed to initiate the Self-Disassembly.
each originalborder message. As theorder messages move through the

structure, the remaining row and column counts are decrides shown. OO0 OO00000. COO0O000o
[ IEC] (/e Cooooeee
DD%DD DDD%DDD CICIC e IeIee

O LN w » o o o~

M with the module’s relative location within the bounding
box of the original shape. Each module that receives one of EEEEE EREEEE %%D D%%E

these primaryordermessages becomes a local leaderofan @m0 (mmm mE R B0
M-by-M group of modules. As shown in Figure 7, each local [] CJmE (e COeeeeem
leader (in red), may or may not actually border on what will DDD@DD DDD@DDD DDD%DDDQ

become the duplicate shape. As a result, each local leader
computes which of the modules within its domain, (outlinedfig. 8. We verified the duplication algorithm using a variefyshapes in
by a black border), should actually border on the delicate®™! hardware, subfigures (a-d), and simulation, subfigeye (

shape. The local leader then sends each of these true bordelr hard trails. th ; inst h th
modules a secondatyorder message. n hardware trails, there were four instances where the

leader module did not initiate the Self-Disassembly phase.

0 1 2 3 4 5 6 7 8 o 10 11 12 13 14 15 Additionally, in hardware, the Self-Disassembly phaseyonl
resulted in 900% of bonds being successfully broken. While
these problems deserve further investigation, we do not
believe they reflect on the core of the duplication algorithm
B reliability. In simulation, despite 10% of the communicatti

| links broken and % of the modules removed, the algo-

| rithm performed flawlessly when creating a 1-to-1 duplicate

a magnified duplicate, or multiple duplicates.
H

11

10

—
2

-

In the hardware experiments, we believe most of the
failures were due to unreliable inter-module communigatio
1 links. Once a module communicates with a given neighbor,
g it assumes that link is valid until its neighbor explicitlyse
° = ~ connects from the system. If the link is accidentally brgken
! i o . . both modules will attempt to continue to use it, resendirgg th
Fig. 7. When creating a magnified version of the original ghapset of . ..
primary border messages are sent by the modules on the perimeter of ttRAME Message indefinitely. As a result, the hardware system
original shape to local leaders (in red) which may not lie lbe border of is fragile. With some messages forever lost to these broken
e et s s S ot Doy et sy I, i s ot surprising that we see duplicaton failures
of the duplicate shape. Note: for clarity, not all messagessaown. in_hardware. This problem is compounded by the fact that
small variations in module size create internal stresses in
the solidified structure. Forming or breaking one mechdnica
VI. EXPERIMENTAL RESULTS bond may generate or release stress in other bonds and cause
We performed a variety of simulated and hardware-basdble associated communication links to fail. In an attempt to
experiments, the results of which are shown in Table minimize these internal stresses, we assembled the modules
We had 20 Robot Pebble modules available to use fdwy hand, but ultimately we need to develop more robust
duplicating small shapes. (While we assembled these aroualgorithms that can handle dynamic link failures.
the passive object by hand, we have previously shown that
automated assembly is possible [26]). We used a custom-
designed simulator to perform large experiments that would We have shown a distributed, robust algorithm for shape
otherwise require more hardware modules than we currentygnsing and duplication in a lattice of interconnected smar
have available. The simulator can be told to randomly breghkarticles. The algorithm is able to characterize the shape
a set percentage of inter-module communication links af a passive object submerged in a collection of particles
randomly remove a set percentage of modules, as indicatadd then use spare particles to form multiple replicas or
by theBroken LinksandMissing Modulesolumns in Table I. a magnified replica. In the near term, we have several

|
|
HE

E
]

VIl. DISCUSSION



TABLE |
WE PERFORMED61 HARDWARE TRIALS WITH SIMPLE SHAPES AND150SIMULATIONS WITH COMPLEX SHAPES IN IMPERFECT LATTICES

Shape Sim/ | Broken Missing Mag. | Array | No. Avg. Disassembly| Correct
HW | Links[%] | Modules[%] | Factor | Size | Trials | Time|[s Begun|%] Bonds|%]
Fig. 8(a) 15 293 80.0 89.8
Fig. 8(b 16 380 1000 94.0
Fig. sgcg HW | Unknown 0.0 | XL g5 | a7 1000 875
Fig. 8(d) 15 50.6 933 90.7
Fig. 5 Sim 5.0 0.0 1x 1x1 25 n/a 1000 1000
Fig. 6 Sim 10.0 5.0 1x 3x2 25 n/a 1000 1000
Fig. 7 Sim 10.0 5.0 3x 1x1 25 n/a 1000 1000
10.0 5.0 1x 1x1 25 n/a 1000 1000
Fig. 8(e) | Sim 50 25 1x 2x2 25 n/a 1000 1000
5.0 25 2x 1x1 25 n/a 1000 1000

extensions to pursue. We plan to supplement the system|g]
functionality with the ability to mirror an object about a
reference line and to invert an object. We also intend to

develop a method for joining multiple objects together rafte [8]

the disassembly process. Additionally, we want the system

optimally fit the duplicate object into the available cotiea
of programmable matter modules.

Before programmable matter systems are practical, thelfé!
are several larger problems that need to be addressed. The
modules need to be miniaturized so that the resulting abjeqt1]

have acceptable resolution. Second, we need to implem
distributed duplication in 3D. A 3D version of the algorithm

El

ik

will not be a simple extension of the 2D case becauge3s]
perimeter tracing is not efficient in 3D. We are currently
investigating the decomposition of the 3D case into 2D sub-
problems. Additionally, we need to continue to drive downi4]
the number of messages the modules excha@@e) total
messages is a formidable communication burden in a systé%r‘?]
with a million modules. Finally, we need to adapt our algof16]
rithm to handle irregular lattices. With these improvensent

in place, we will be one big step closer to realizing robust 7,
programmable matter systems that can rapidly fabricate com
plex real-world objects that are naturally imbued with usef
actuation, sensing, communication, and control capadslit
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