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Abstract This paper presents a technique for dynamically
reconfiguring search spaces in order to enable Bayesian au-
tonomous search and tracking missions with moving targets.
In particular, marine search and rescue scenarios are con-
sidered, highlighting the need for space reconfiguration in
situations where moving targets are involved. The proposed
technique improves the search space configuration by main-
taining the validity of the recursive Bayesian estimation. The
advantage of the technique is that autonomous search and
tracking can be performed indefinitely, without loss of in-
formation. Numerical results first show the effectiveness of
the technique with a single search vehicle and a single mov-
ing target. The efficacy of the approach for coordinated au-
tonomous search and tracking is shown through simulation,
incorporating multiple search vehicles and multiple targets.
The examples also highlight the added benefit to human mis-
sion planners resulting from the technique’s simplification
of the search space allocation task.

Keywords Recursive Bayesian estimation ·
Search and tracking

1 Introduction

Picture a common marine search and rescue scenario involv-
ing the crew of a ship in distress and with failing navigation
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systems, dispatching a final mayday signal and boarding life
rafts. The crew can then only wait for discovery and res-
cue, all the while being buffeted by strong winds and waves,
and drifting due to ocean currents. In such a case the ob-
jective for authorities is to rescue the crew before their sur-
vival expectancy vanishes, requiring an efficient search for
the life rafts and the prompt and safe rescue of the victims
(IMO/ICAO 2006).

The use of a team of fast autonomous unmanned aerial
vehicles (UAVs) together with a team of autonomous heli-
copters bearing rescue crews has been presented as an im-
plementable robotics approach to marine search and rescue
(SAR) (Wong et al. 2005). In such an application the use of
multiple autonomous agents can produce a significant reduc-
tion in search times. If the UAVs have the additional ability
to track the found life rafts as they drift, providing high pow-
ered lighting and/or gathering environmental information,
then the safety of the rescue operation may be improved.
As a result, search and tracking can be referred to as the two
indispensable control objectives of autonomous vehicles for
successful marine SAR missions.

The majority of the work on search and tracking to date
has been carried out in the independent fields of either search
or tracking. Many of the fundamental issues of search the-
ory were first posed by B. O. Koopman and colleagues
in the Antisubmarine Warfare Operations Research Group
(ASWORG) during World War II (Dobbie 1968). Since the
search problem is primarily concerned with the area to be
searched, initial studies simplified the search problem to an
area coverage problem. The introduction of the probability
of detection along with advances in computational hardware
led to more optimal allocation of search effort (Stone 1977,
1989a, 1989b). Later years saw the implementation of re-
cursive Bayesian estimation (RBE) for manned SAR and
anti-submarine search operations (Richardson et al. 2003).
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RBE techniques recursively update and predict the proba-
bility density function (PDF) of the target’s state with re-
spect to time. More recently, techniques have been formu-
lated for decentralized search using multiple vehicles (Bour-
gault et al. 2003) and optimal autonomous search using the
grid-based method for RBE (Bourgault et al. 2004).

On the other hand, target tracking, which initially con-
sisted of simple feedback motion tracking, has evolved with
the development of a variety of RBE techniques such as the
Kalman filter (KF) (Salmond 2001), the extended Kalman
filter (EKF) (Nordsjo 2005), sequential Monte Carlo (SMC)
methods (Hue et al. 2002), sequential quasi-Monte Carlo
(SQMC) methods (Julier et al. 2000; Guo and Wang 2006),
and their variants (Schumitsch et al. 2005; Kräußling et al.
2006). These techniques for tracking seek computational ef-
ficiency in representing the sharp and often near-Gaussian
PDF of an observable target, with little thought about rep-
resenting the boundary of the target search space, which is
an important consideration for search missions. While the
KF and EKF represent the target PDF with a mean and a
covariance matrix, the SMC and SQMC methods represent
it with a set of particles, which moves freely with a re-
sampling technique such as sequential importance sampling
(Siegmund 1976; Doucet and Godsill 2000).

Recently, as a result of a general interest in multi-
objective missions, in particular amongst the UAV com-
munity, several approaches to unified search and tracking
have appeared (Butenko et al. 2004). Whilst the majority of
these approaches have consisted of collections of indepen-
dent search and tracking techniques, the authors proposed
a unified search-and-tracking (SAT) approach within the
RBE framework (Furukawa et al. 2006). This approach used
the grid-based method, and subsequently the element-based
method (Furukawa et al. 2007), for RBE, as these methods
accurately represent the search space with a small number of
sample points, unlike Monte Carlo based techniques, and are
thus beneficial to SAT. However the maintenance of a large
search space, necessary to include all the possible states of
the moving targets, yields an excessively large amount of
computational effort, without guaranteeing the inclusion of
moving targets in the search space in a longer time horizon.

Meanwhile, reconfiguration of the search space bound-
ary has been studied under the name of frontier based ex-
ploration (Yamauchi 1997), which identifies unknown areas
in the entire space and allows robots to explore them. Fron-
tier based exploration is a long established and popular ap-
proach to exploration (Thrun et al. 2005, Chap. 17), which
has been extended to encompass exploration with multiple
agents (Yamauchi 1998; Burgard et al. 2000; Tovar et al.
2006). It is generally associated with occupancy grid maps,
but as a concept can be applied to other useful representa-
tions such as topological maps (Choset and Nagatani 2001)

or manifolds (Howard et al. 2006), provided the representa-
tion allows for a distinction between known areas and un-
known areas (Burgard et al. 2005). The applications of fron-
tier based exploration, however, have been limited to infor-
mation gathering tasks, where the coverage of unexplored
areas and the continuous expansion of the explored areas
are the primary concerns.

This paper presents a technique that performs dynamic
reconfiguration of search spaces in order to estimate the
state of moving targets during SAT operations. The pro-
posed technique considers the reachable states of the moving
targets and reconfigures the search space in order to main-
tain the validity of the PDF describing them, and to remove
redundancy in the representation. The technique may be ap-
plied using any RBE technique that represents a bounded
search space, including the grid-based and element-based
methods. As such the technique is valid for all types of
PDFs, including multimodal and non-Gaussian PDFs. Fur-
thermore, the technique is formulated such that the estab-
lished objective function for coordinated Bayesian SAT re-
quires no alteration.

This paper is organized as follows. Section 2 covers the
unified approach to SAT using RBE. Numerical methods for
RBE are presented in Sect. 3. Section 4 defines the proposed
space reconfiguration technique for SAT with moving tar-
gets. Section 5 presents a number of numerical examples
which demonstrate the efficacy of the proposed technique.
Conclusions and future considerations are discussed in the
final section.

2 Recursive Bayesian search and tracking

Recursive Bayesian estimation is a basis for estimating non-
linear non-Gaussian models. This section presents the vehi-
cle and observation models, and the fundamental steps re-
quired for RBE in coordinated SAT.

2.1 Target and sensor platform models

In order to successfully apply RBE for autonomous SAT it
is essential to have accurate models of both the target of
the search and rescue mission (the lost entity) and the au-
tonomous sensor platforms conducting the operation. The
motion of a target, t , is given by the following discrete time
equation

xt
k+1 = ft (xt

k,ut
k,wt

k) (1)

where xt
k ∈ X t is the state of the target at time k, ut

k ∈ U t

describes the target’s control inputs and wt
k ∈ W t represents

the ‘system noise’, which includes environmental influences
on the target. In general, the state of the target describes its
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two-dimensional location, but may also include other vari-
ables such as velocity.

An autonomous sensor platform, s, used to perform the
search and rescue operation is assumed to accurately know
its own state via global sensors such as a combination of
GPS, a compass and an inertial measurement unit (IMU).
The motion of the search vehicle with state xs

k ∈ X s and
control inputs us

k ∈ U s is therefore given by

xs
k+1 = fs(xs

k,us
k). (2)

The observation made from the vehicle s at time k is
szk ∈X t and is subject to observation noise, vs

k . The obser-
vation model is given by the formula

szk = hs(xt
k,xs

k,vs
k). (3)

Note that if the autonomous search vehicle only carries a sin-
gle sensor for observation, then the terms ‘sensor platform’
and ‘autonomous search vehicle’ may be used interchange-
ably. It will be assumed that this is the case for the remainder
of this paper.

2.2 Recursive Bayesian estimation

In general, RBE is concerned with maintaining two PDFs,
known as the posterior distribution and the prediction. Two
distinct stages are used: the update stage and the predic-
tion stage. The update stage calculates the posterior distri-
bution of the current state given a prior estimation of the
state (based on the sequence of previous observations) and
a new observation at the present time. The prediction stage
calculates the PDF of the next state using the posterior den-
sity of the current state and a probabilistic Markov motion
model.

Before these stages are discussed in greater detail, a num-
ber of terms must first be defined. The PDF of a continu-
ous random variable X in nx dimensional Euclidean space
is p(x), where p(x) ≥ 0,∀x ∈ R

nx , and satisfies the follow-
ing two conditions

Pr(x ∈ X ⊂ R
nx ) =

∫
X

p(x)dx (4)

and

Pr(x ∈ R
nx ) =

∫
p(x)dx ≡ 1. (5)

The sequence of states of a sensor platform s from time step
1 to k is given by the term

x̃s
1:k ≡ {x̃s

i |∀i ∈ {1, . . . , k}}. (6)

The tilde is used here to indicate an instance ˜(·), of a vari-
able (·). Additionally, let the sequence of observations made

by sensor platform s from time step 1 to step k be given
by

s z̃1:k ≡ {s z̃i |∀i ∈ {1, . . . , k}}. (7)

It is possible to estimate the posterior distribution of the
target at any time step k, p(xt

k|s z̃1:k, x̃s
1:k), given a prior

distribution of the target, p(x̃t
0), and the sequences of sen-

sor platform states and observations, x̃s
1:k and s z̃1:k . This is

achieved via the recursive application of the two stages of
RBE, update and prediction, described below.

2.2.1 Update

The update stage considers a new observation szk in light
of the corresponding estimation of state based on the se-
quence of previous observations, p(xt

k|s z̃1:k−1, x̃s
1:k−1), and

calculates the posterior density p(xt
k|s z̃1:k, x̃s

1:k). The update
equation is given by

p(xt
k|s z̃1:k, x̃s

1:k)

= p(s z̃k|xt
k, x̃s

k)p(xt
k|s z̃1:k−1, x̃s

1:k−1)∫
X t p(s z̃k|xt

k, x̃s
k)p(xt

k|s z̃1:k−1, x̃s
1:k−1)dxt

k

(8)

where p(s z̃k|xt
k, x̃s

k) is the observation likelihood given
knowledge of the current target state. However, given that
in SAT problems the target state is generally unknown,
the observation likelihood l(xt

k|s z̃k, x̃s
k) is used instead.

l(xt
k|s z̃k, x̃s

k) may be defined with reference to the probabil-
ity of detection, 0 < Pd(xt

k|xs
k) ≤ 1. The “detectable region”

sX t
d of the sensor platform s may be defined as

sX t
d = {xt

k|ε < Pd(xt
k|x̃s

k) ≤ 1} (9)

where ε is a positive threshold value which determines a
detection event. Therefore the likelihoods for SAT may be
expressed as

l(xt
k|s z̃k, x̃s

k) =
{

1 − Pd(xt
k|x̃s

k) �
s z̃t

k ∈ sX t
d ,

p(xt
k|s z̃t

k, x̃s
k) ∃s z̃t

k ∈ sX t
d

(10)

where search occurs when no observation exists within the
detectable region, and tracking takes place if the observa-
tion is within the observable region. It is also important
to note that when k = 1 the update is carried out using
p(xt

k|s z̃1:k−1, x̃s
1:k−1) = p(x̃t

0).

2.2.2 Prediction

The prediction step applies the Total Probability Theorem to
the target’s probabilistic Markov model, p(xt

k+1|xt
k) defined

by (1), and the posterior distribution (8), in order to compute
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the PDF for the next time step, p(xt
k+1|s z̃1:k, x̃s

1:k). The pre-
diction is performed using the Chapman-Kolmogorov equa-
tion

p(xt
k+1|s z̃1:k, x̃s

1:k)

=
∫
X t

p(xt
k+1|xt

k)p(xt
k|s z̃1:k, x̃s

1:k)dxt
k. (11)

2.3 Coordinated control for search and tracking

Sensor data fusion is one form of coordination for multiple
sensor platforms. The conditional independence of observa-
tions from ns sensors leads to the multiple-sensor observa-
tion likelihood

l(x
tj
k |s z̃k, x̃s

k) =
ns∏

i=1

l(x
tj
k |si z̃tj

k , x̃si
k ) (12)

where x̃s
k = {x̃si

k |∀i ∈ {1, . . . , ns}} and s z̃
tj
k = {si z̃tj

k |∀i ∈
{1, . . . , ns}} represent the states of the ns platforms at time k,
and their corresponding observations of target tj , respec-

tively, and l(x
tj
k |si z̃tj

k , x̃si
k ) is the observation likelihood for

sensor platform si given the observation si z̃
tj
k . For fully con-

nected sensors with lossless and delay free communica-
tion, each platform i can receive the individual likelihoods
l(x

tj
k |sq z̃k, x̃

sq
k ), ∀q 	= i, and decentrally construct (12). Sub-

stitution of (12) into (8) in the place of p(s z̃k|xt
k, x̃s

k), gives
the update equation for multiple sensors. Prediction using
(11) completes the general decentralized data fusion ap-
proach to RBE as presented by Bourgault et al. (2003).

3 Numerical methods for recursive Bayesian estimation

The implementation of the two stages of RBE, described in
Sect. 2.2, essentially requires the evaluation of a function at
an arbitrary point in the target space, and the integration of
a function over the target space. This section details two nu-
merical methods for RBE which are suitable for SAT. Both
the grid-based method and the element-based method may
be used to create a continuous representation of the target’s
PDF and both maintain the accuracy of the representation in
areas of low probability density, which is important during
the search phase.

3.1 The grid-based method

Target space representation Consider a two dimensional
target space such that xt = [xt , yt ] ∈ X t . The grid-based
method can represent this space continuously by considering
a set of grid cells (rather than grid points). An approximate
target space X g , consisting of ng grid cells, is described by

X g ≡ {
X g

1 , . . . ,X g
ng

} ≈ X t , (13)

where
⋃ng

i=1 X
g
i = X g and

⋂ng

i=1 X
g
i = ∅. Furthermore, the

center and area of each grid cell are denoted x̄g
i and A

g
i ,∀i ∈

{1, . . . , ng}, respectively.

Function evaluation and integration Given an approxi-
mate function f g : X g → R, the value of the function at
a given point in the approximate search space, x̃t ∈ X g , can
be computed using

f (x̃t ) ≈ f g(x̃t ) ≡
ng∑
i=1

f (x̄g
i )δi(x̃t − x̄g

i ), (14)

where δi(·) is the indicator function, defined as

δi(x̃t − x̄g
i ) =

{
1 x̃t ∈X g

i ,

0 otherwise.
(15)

The integral of the function may also be computed using
the approximate function, as follows:

I =
∫
X t

f (xt )dxt

≈
∫
X g

f (xt )dxt =
ng∑
i=1

f (x̄g
i )A

g
i . (16)

3.2 The element-based method

Target space representation The element-based method
continuously approximates the target space and PDF using
irregularly shaped elements described by shape functions.
Generally the target space is first defined by a number of
nodes which are then connected so as to create elements. For
two-dimensional search spaces the simplest such elements
are linear triangular elements generated via Delaunay trian-
gulation. However elements need not be limited by shape
or linearity; triangular or quadrilateral elements and higher-
order elements with more nodes are all possible, as shown
in Figs. 1 and 2.

Let an approximate target space X e, consisting of ne el-
ements, be described by

X e ≡ {
X e

1 , . . . ,X e
ne

} ≈ X t , (17)

where
⋃ne

i=1 X
e
i = X e and

⋂ne

i=1 X
e
i = ∅. As such, any point

in the target space, x̃t ∈ X t may be located in one of the

Fig. 1 Triangular element types
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Fig. 2 Quadrilateral element types

elements. For a point in the ith element, x̃t ∈ X e
i , the point

may be expressed in terms of the nv nodes of the element.
For nodes, x̌e

ij = [x̌e
ij , y̌

e
ij ]T , ∀j ∈ {1, . . . , nv}, x̃t may be ex-

pressed as

xt = ϕx(ξ, η) ≡
nv∑

j=1

x̌e
ijNj (ξ, η),

yt = ϕy(ξ, η) ≡
nv∑

j=1

y̌e
ijNj (ξ, η)

(18)

where Nj(ξ, η) is the shape function, which must satisfy

0 < Nj(ξ, η) < 1,

nv∑
j=1

Nj(ξ, η) = 1 (19)

and ξ ∈ � = [ξmin, ξmax) and η ∈ H = [ηmin, ηmax) are
known as the natural coordinates.

The shape function and the ranges of the natural coordi-
nates vary according to the type of element. In general the
shape function takes the form

Nj(ξ, η) =
nv∑

k=1

ajkbk(ξ, η) (20)

where ajk is a coefficient determined by the constraints (19)
and bk(ξ, η) is the basis function of monomials in the natural
coordinates. bk(ξ, η) may be determined using the binomial
theorem:

b1(ξ, η) = 1,

b2(ξ, η) = ξ, b3(ξ, η) = η,

b4(ξ, η) = ξη,

b5(ξ, η) = ξ2, b6(ξ, η) = η2,

b7(ξ, η) = ξ2η,b8(ξ, η) = ξη2,

b9(ξ, η) = ξ2η2,

. . .

(21)

For triangular elements the ranges of the natural coordinates
are [ξmin, ξmax] = [0,1] and [ηmin, ηmax] = [0,1 − ξ ], and
for quadrilateral elements the ranges of the natural coordi-
nates are [ξmin, ξmax] = [−1,1] and [ηmin, ηmax] = [−1,1].

Function evaluation and integration Using the element-
based method the evaluation of a function at a point and the
integration of a function may be carried out by consider-
ing the natural coordinates. For a point in the ith element,
x̃t ∈ X e

i , the natural coordinates of the point in the element
may be determined using

[
ξ̃ , η̃

]T = ϕ−1(x̃t ) (22)

where ϕ−1 is the inverse of the set of functions ϕ = {ϕx,ϕy}.
The function value at x̃t is then given by

f (x̃t ) ≈ f e(x̃t ) ≡
nv∑

j=1

f (x̌e
ij )Nj (ξ̃ , η̃). (23)

Integration is performed with respect to the natural coor-
dinates according to the transformation

dxt = det J(ξ, η)dξdη (24)

where J is the Jacobian matrix

J(ξ, η) =
[

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
. (25)

Integration over the target space is given by

I =
∫
X t

f (xt )dxt ≈
ne∑

i=1

I e
i (26)

where I e
i , the integral over an element, is

I e
i =

∫
X e

i

f e(xt )dxt =
∫

�,H

f e(ϕ(ξ, η))det Jdξdη. (27)

Note that this integral is only analytically derivable for tri-
angular elements with three nodes. In general Gauss integra-
tion may be used to numerically calculate the integral over
each element.

4 Dynamic reconfiguration of search boundaries

In this section the proposed technique for dynamic search
space reconfiguration is introduced. The requirements for
a comprehensive approach to SAT are considered first, fol-
lowed by a detailed description of the technique itself, and
how it satisfies those requirements.

4.1 Requirements for comprehensive search and tracking

The previous sections have shown that the implementation
of RBE for SAT requires numerical integration in order
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to compute the posterior and prediction PDFs. The limita-
tion of existing techniques is that they only consider static
search spaces. With static search spaces a problem arises
where it is possible for the target to move beyond the des-
ignated search space, that is the probability that the target
is not within the search space at the next time step becomes
non-zero: Pr(xt

k+1 	∈ X t ) > 0. In such cases the prediction
p(xt

k+1|s z̃1:k, x̃s
1:k), is no longer a valid PDF since

∫
X t

p(xt
k+1|s z̃1:k, x̃s

1:k)dxt
k+1

= Pr(xt
k+1 ∈ X t )

= 1 − Pr(xt
k+1 	∈X t ) < 1 (28)

which violates condition (5), since the prediction PDF is
only defined for X t . Therefore, the PDF is insufficient for
maintaining an accurate estimate of the target’s state at time
step k + 1, and a new search space X t

k+1 must be defined
such that Pr(xt

k+1 ∈X t
k+1) = 1. A comprehensive approach

to SAT must therefore be able to recognize the potential for
the target to move beyond the search space before it occurs
and reconfigure the search space accordingly, such that both
the accuracy of the estimate and the previously gathered in-
formation, are maintained.

4.2 Forward reachable sets

The state space that a target can reach within a certain time
frame is called the target’s reachable set. Of particular inter-
est is the target’s forward reachable set (FRS) which is the
state space reachable forwards in time given an initial tar-
get state. The forward reachable set for target t from time
k + 1 to k + nk , is denoted Ax̃t

k+1:k+nk
. There are a number

of methods for determining a vehicle’s FRS, the most com-
mon being kinematic analysis. It is also possible to describe
a target’s FRS in terms of its probabilistic motion model, (1).
The FRS evaluated at a point x̃t ∈ X t

k may therefore be ex-
pressed as

Ax̃t

k+1:k+nk
= {xt

k+1:k+nk
|p(xt

k+1:k+nk
|x̃t

k) > 0}. (29)

4.3 Search space expansion based on reachable set analysis

In its usual sense, frontier based exploration involves a robot
or robots moving to a frontier in order to gain some addi-
tional information about the environment, where a frontier
is considered to consist of those areas of the search space
about which some information is known and which are ad-
jacent to space about which no information is known.

For SAT a frontier, Fk , is defined as the set of points from
which the target is able to, in the next time step, reach be-
yond the boundaries of the current search space:

Fk = {xt
k|A

xt
k

k+1:k+1 	⊆ X t
k }. (30)

For any frontier node, x̃t
k ∈ Fk , if the value of the poste-

rior distribution is greater than zero,

p(x̃t
k|s z̃1:k, x̃s

1:k) > 0 (31)

then there is some probability that the target will not be
within the search space in the next time step. The direct re-
sult of this is that application of the prediction equation (11)
will always result in an invalid PDF, as described by (28).
In such cases, a new search space fX t

k should be defined,
based on the present search space X t

k and the target’s FRS
evaluated at those frontier nodes described by (31),

fX t
k ≡ X t

k ∪Ax̃t+
k ∈Fk

k+1:k+1 (32)

where xt+ ∈ {xt |p(xt |s z̃1:k, x̃s
1:k) > 0}.

This new search space may be approximated, using either
the grid-based or the element-based method, as follows:

fX g/e ≡ {X g/e,fX g/e

1 , . . . ,fX g/e
ng/e

} ≈fX t
k (33)

where X g/e is the grid or element based approximation
of X t , and ng/e is the number of additional grid cells or el-
ements required to approximate the new search space, such
that X g/e

⋃ng/e

i=1
fX g/e

i =fX g/e and X g/e
⋂ng/e

i=1
fX g/e

i = ∅.
Before this new search space can be incorporated into

the recursive Bayesian estimation, the posterior distrib-
ution must also be correctly defined over it. However
this is made straightforward by observing that at time k,
Pr(xt

k 	∈X t
k ) = 0. Therefore put

p(xt
k|s z̃1:k, x̃s

1:k) =
{

p(xt
k|s z̃1:k, x̃s

1:k) if xt
k ∈ X t

k ,

0 otherwise
(34)

for xt
k ∈ fX t

k . Using this newly defined search space and pos-
terior distribution function the prediction stage may now be
performed without loss of information using

p(xt
k+1|s z̃1:k, x̃s

1:k)

=
∫

fX t
k

p(xt
k+1|xt

k)p(xt
k|s z̃1:k, x̃s

1:k)dxt
k. (35)

The update stage should then be applied using X t
k+1 = fX t

k .
It should also be noted that as there is no loss of information,
the technique requires no change to the objective function
for coordinated autonomous SAT, established in the litera-
ture.

4.4 Search space reduction

Whilst FRS based space expansion is theoretically capa-
ble of maintaining a complete representation of the target
PDF for all time steps k > 0, the reality of limited computa-
tional capacity means that the unlimited expansion of search
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spaces is not practically possible. If, however, those areas of
the search space which provide no significant information
are removed, then it may be possible to indefinitely maintain
the target PDF using dynamic search spaces. It is logical to
consider using an approach that is well suited to the method
presented for FRS based expansion. Those subsets of the
search space whose integrals are very small, effectively offer
no information. Therefore, for some significance threshold,
0 < ε � 1, and a grid cell or element, X̃ g/e

i ⊂ fX t
k , where

Pr(xt
k ∈ X̃ g/e

i ) =
∫
X̃ g/e

i

p(xt
k|s z̃1:k, x̃s

1:k)dxt
k < ε (36)

then∫
fX t

k

p(xt
k|s z̃1:k, x̃s

1:k)dxt
k

−
∫

fX t
k\X̃ g/e

i

p(xt
k|s z̃1:k, x̃s

1:k)dxt
k < ε. (37)

Furthermore, if this subspace is not reachable by the target
in the next time step, that is if

Axt+
k

k+1:k+1 ∩ X̃ g/e
i = ∅ (38)

then it may safely be eliminated from the search space with-
out loss of information. So, if there are rng/e grid cells or

elements X̃ g/e
i which satisfy conditions (36) and (38), the

removable subspace rX t
k may be given by

rX t
k =

rng/e⋃
i=1

X̃ g/e
i . (39)

The update stage may then be applied using

X t
k+1 = fX t

k \ rX t
k . (40)

5 Numerical examples

This section presents three scenarios in order to demonstrate
search space reconfiguration for autonomous SAT. The first
two scenarios consider a single target and a single sensor in
order to highlight the advantages of dynamic search spaces
over static search spaces for SAT missions in general. The
third scenario considers two lost targets and the use of three
UAVs, to demonstrate the ease with which the approach ex-
tends to the coordinated SAT problem.

The targets in each of the scenarios share a common
model. They move in the horizontal plane according to

x
tj
k+1 = x

tj
k + 
t · vtj

k cosγ
tj
k ,

y
tj
k+1 = y

tj
k + 
t · vtj

k sinγ
tj
k

(41)

Table 1 Vehicle model control limits

Sensor platform Target

Maximum speed [m/s] 20 10

Minimum speed [m/s] 10 0

Maximum turn rate [deg/s] 3 60

where v
tj
k and γ

tj
k are, respectively, the speed and direction

of the target’s motion due to external disturbances such as
wind and current, subject to Gaussian noise. A time incre-
ment, 
t = 60 s, was used in each example. The sensors also
move in the horizontal plane, and share the following model

x
si
k+1 = x

si
k + 
t · vsi

k cos(θsi
k + γ

si
k ),

y
si
k+1 = y

si
k + 
t · vsi

k sin(θ
si
k + γ

si
k ),

θ
si
k+1 = θ

si
k + γ

si
k

(42)

where v
si
k is the speed of the sensor platform and γ

si
k is the

angle through which the platform turns. Table 1 shows the
sensor platform and target control limits used during each of
the simulations.

The probability of detection was given by a zero mean
Gaussian distribution with constant covariance. The value
of ε was set such that a detection occurs if the sensor comes
within 1 km of the target. The observation likelihood was
given by a zero mean Gaussian distribution with covariance
proportional to the distance between the sensor platform and
the target. A five step lookahead with receding horizon was
used for control optimization.

In each of the simulations the sensors are indicated with
a cyan circular marker and the targets with a yellow triangu-
lar marker. The search space is shown as a colored surface,
representing the posterior distribution, against a grey back-
ground.

5.1 Single UAV, single target—static search spaces

Let us first consider two scenarios involving SAT over static
search spaces. In both examples a single UAV undertakes a
SAT mission for a single lost target over a 20 km × 20 km
search space. The search space was represented using linear
triangular elements according to the element-based method.
The sensor’s initial position is the same in both exam-
ples, x̃s1 = [−10,0]T , as is the initial distribution, which is
Gaussian and centered at [−1,0]T , the only difference is the
target’s actual initial position. In the first example the target
is located at [−2.5,3]T , whilst in the second example it is lo-
cated at [2,−1]T . Simulation results using these conditions
are shown in Figs. 3 and 4 respectively.

It is clear from Figs. 3 and 4 that in both scenarios the
sensor failed to track the target for the duration of the two
hour mission. Figure 5 shows results useful in the analysis
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Fig. 3 Single sensor, single target SAT using a static search
space—scenario 1

Fig. 4 Single sensor, single target sat using a static search
space—scenario 2

of these failures. It can be seen that in the first scenario the
search component was successfully completed, as the sen-
sor moved to within detection range of the target at k = 42,
resulting in a dramatic decrease in the information entropy.
Even though the information entropy, which may be used as
a measure of uncertainty in the sensor’s belief, stayed rela-
tively low for the remainder of the mission, the target drifted
beyond the sensor’s range at k = 93 and was not detected
again. This is because the limitations of the static search
space prevented the sensor from accurately estimating the

Fig. 5 [L-R] scenario 1, scenario 2: single sensor, single target with a
static search space

target’s state. This can be seen in Fig. 5(c), which shows that
the probability that the target was within the search space at
k = 93 is less than 0.3.

The failure of the sensor in the second scenario is such
that even though it came within three kilometers of the tar-
get on four separate occasions, see Fig. 5(b), it was unable
to successfully locate the target before the target drifted be-
yond the search space. Again the information entropy was
an insufficient measure of uncertainty, as it dropped dramat-
ically despite the probability that the target was in the search
space dropping too.

These two scenarios serve to highlight the limitations of
static search spaces, in that even in the event of a success-
ful search, it was possible for the sensor to permanently lose
the target. In the second scenario the poor definition of the
initial search space, had even worse results, in that the target
remained lost and the search effort was completely unsuc-
cessful.

5.2 Single UAV, single target—with search space
expansion

The same scenarios were again simulated, this time with the
inclusion of the FRS based space expansion method. Fig-
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Fig. 6 Single sensor, single target SAT with FRS based space expan-
sion—scenario 1

Fig. 7 Single sensor, single target SAT with FRS based space expan-
sion—scenario 2

ures 6 and 7 show the simulations results based on Sce-
nario 1 and 2, respectively.

These results and the results shown in Fig. 8 clearly show
that in both cases the sensors were capable of not only find-
ing the lost target, but also of keeping it within sensor range
and tracking it for the remaining duration of the mission.
In both cases detection of the target caused a sharp de-
crease in the information entropy, which stayed appropri-
ately low as the probability that the target was in the search

Fig. 8 [L-R] scenario 1, scenario 2: single sensor, single target with
space expansion

space remained at one, for the entire duration of both simu-
lations.

These results clearly highlight the benefit of FRS based
space expansion for SAT. In the first scenario the sensor de-
tected the target at k = 42, just as in the previous example,
however since the probability that the target was within the
search space never dropped below one, the sensor was able
to maintain an accurate belief of the target’s state. The tar-
get was thereby successfully tracked from the time of de-
tection to mission termination at k = 120, well beyond the
failure point of k = 93 in the static search space example.
In the second scenario the improvement in PDF representa-
tion due to FRS based expansion was such that the sensor
successfully located the lost target at time step k = 60, de-
spite the target going undetected in the previous example
when the same initial search space was held static. Despite
these improvements, it is important to note the large areas
of extremely low probability density in Figs. 6(c) & (d) and
Figs. 7(c) & (d). Evaluation of the update and prediction
values for these areas is a computational burden which may
be avoided using the search space reduction technique pro-
posed in Sect. 4.4.
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5.3 Single UAV, single target—with search space
expansion and reduction

The scenarios from the previous example were again sim-
ulated, this time incorporating the search space reduction
technique introduced in Sect. 4.4. The simulation results
based on Scenario 1 and 2, are shown in Figs. 9 and 10, re-
spectively. Again the sensor was successful in its search for,
and subsequent tracking of, the lost target in both scenarios.
The similarities between the results shown in Figs. 11(a)–
(d) and the results of the previous example, Figs. 8(a)–(d),
show that the proposed technique ensures that there is no
loss of information as a result of search space reduction.
Therefore the probability that the target was in the search
space remained at a value of one for the duration of both
simulations (Figs. 11(e) & (f)) and, importantly, the times
required for the sensor to find the target in each scenario
matched the search times required in the previous examples
involving expansion only.

The advantage of the search space reduction technique
may be seen in Figs. 11(g) and (h), which compare the area
of the search spaces defined using static search spaces, the
proposed FRS based expansion method, and the proposed
search space reduction technique, for the two SAT scenar-
ios, respectively. Whilst in the first scenario the FRS based
expansion method allowed the target to be tracked for the
duration of the mission, the search space grew by over 45%
from 400 km2 to 581.5 km2, a figure that was increasing
at the time of mission termination. Implementation of the
search space reduction technique however, saw the search
space grow to a maximum of only 455 km2 during the search

Fig. 9 Single sensor, single target SAT with FRS based expansion and
search space reduction—scenario 1

phase, and a reduction to an average of 37 km2 during the
tracking phase. At the conclusion of the mission, k = 120,
this represents more than a 93% reduction of the search
space generated using expansion alone.

The second scenario saw the search space grow by 83%
from 400 km2 to 732 km2 using the expansion method
alone. Implementation of the search space reduction tech-
nique resulted in a maximum search area of 535 km2 during
the search phase and the area again averaged 37 km2 dur-
ing the tracking phase, less than 6% of the search space at
k = 120 generated using the expansion method alone.

5.4 Coordinated search and tracking—multiple targets

In this example three UAVs cooperatively search for and
track two lost targets. The targets used were the same as
the two targets used in the scenarios presented in the pre-
vious examples. Two sensors were introduced in addition
to the sensor used in the previous examples. The initial lo-
cations of the new sensors were x̃s2 = [−10,−2.5]T and
x̃s3 = [−10,−5]T , such that the initial distance between
each of the additional sensors and each of the targets was
greater than the initial distance between the original sen-
sor and the two targets. The simulation results are shown
in Fig. 12.

These results show the generalization of the proposed
technique to SAT problems involving multiple search vehi-
cles and multiple targets. Furthermore, Figs. 12(e) and (f)
highlight the advantage of cooperative SAT in reducing the
time required for searching. Target 2, the target used in the
second scenario in the previous examples and which went
undetected when a static search space was used, was the

Fig. 10 Single sensor, single target SAT with FRS based expansion
and search space reduction—scenario 2
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Fig. 11 [L-R] scenario 1, scenario 2: single sensor, single target with
search space expansion and reduction

first of the targets to be located. It was detected by Sen-
sor 2 at k = 26, less than half the time required by the lone
sensor in the previous examples, despite Sensor 2 being far-
ther from the target than Sensor 1 at the start of the mission.
Following the detection of Target 2, Sensor 2 commenced
tracking, whilst Sensors 1 and 3 continued searching for Tar-
get 1. The lone sensor in the previous examples required 41
minutes (k = 42) to locate Target 1, however when coopera-
tive search was used, Target 1 was located at k = 40. There-
fore despite the presence of two targets, the use of three sen-
sor platforms reduced the time required to locate each of the
targets, and dramatically reduced the overall required search
time. Once each target had been located, they were success-
fully tracked for the remainder of the mission.

Fig. 12 Three sensors, two targets using search space expansion and
reduction

6 Conclusions and future work

A technique which dynamically reconfigures the search
space of moving targets during Bayesian SAT operations
was presented. The technique is independent of the method
of search space representation, may be decentrally applied
and has been easily extended to scenarios involving multiple
sensors and multiple targets. It was demonstrated through a
number of examples, that during SAT, a sensor with search
space expansion capabilities has an improved likelihood of
succeeding in its mission compared with a sensor without
such capabilities, especially over extended time periods. The
proposed technique included a method for removing the re-
dundant areas of the search space to improve the computa-
tional efficiency when using dynamic search spaces. A fur-
ther advantage is a reduction of the burden placed on human
mission planners during the initial stages of SAR operations,
as search spaces need only to be defined on the basis of the
targets’ initial distributions, rather than on an estimation of
the mission duration and all possible target locations in that
time frame. These advantages are significant in scenarios
such as marine SAR, where the consequences of mission
failure may be dire.
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The compatibility of the proposed technique with ele-
ment-based representations presents an opportunity for fu-
ture investigation of approaches from finite element theory
such as remeshing and adaptive meshing. Approaches such
as these might be used to improve the quality of the PDF rep-
resentation and therefore improve the overall performance
of the SAT operation. Furthermore, a hardware-in-the-loop
simulator and hardware demonstrators are planned develop-
ments for this project. Four model helicopters are currently
being equipped with autopilots and additional sensors, with
the aim of demonstrating the proposed technique in the field.
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