CarTel’s Personal Commute Portal
Hari Balakrishnan, Nikolaus Correll, Jakob Eriksson, Sejoon Lim, Samuel Madden, and Daniela Rus
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

Motivation
- Road traffic is a “grand challenge”
 - Congestion costs US $78B per year
 - Delays large and growing (4.2B hours per year in US)
 - Delay variability intensifies waste
- User-specific trip plans can reduce time and fuel significantly
 - Best routes
 - Time-shifting (best time to commute)
- Detailed trip logs provide info visibility

Trip Logs for Commute Analysis
- Personalized interface allows users to browse their own historical driving patterns including:
 - Driving time, distance, and estimated fuel consumption by time of day, day of week, and hour of day
 - Time-shift analysis: How commute time varies by time of day
 - “Competitive commuting” allowing users to compare their commute times, fuel use, carbon footprint, etc.
 - Automatic notifications when a driver enters/leaves region

Challenges
- Collecting traffic delay data
- Predictive delay modeling
- Computing good traffic-aware routes

Data Collection
- Embedded software on cars logs time, GPS, and WiFi scan information
 - Individualized data enables user-specific routes
 - Aggregation to infer traffic conditions
 - Taxis/limos act as additional probes
- Data transmitted via wireless, including QuickWifi (vehicular WiFi)

Predictive Delay Modeling
- Detailed time-of-day probability distributions of delays on segments
 - Historic model with real-time updates

Good Traffic-Aware Routes
- Delays are inherently variable: users want routes that are fast *and* reliable
 - Min expected time != most reliable
- Algorithms optimize multiple objectives
 - Min expected time
 - Max probability of making a specified deadline
 - Other cost functions

[Delay statistics map built using trip logs]

[Best routes at 4pm on a weekday from MIT (O) to Alewife Station (D)]