
Generic Decentralized Control for a Class of Self-Reconfigurable Robots

Zack Butler∗, Keith Kotay∗, Daniela Rus∗ and Kohji Tomita∗†

∗Department of Computer Science †National Institute of Advanced

Dartmouth College Industrial Science and Technology (AIST)

Hanover, NH, USA Tsukuba, Japan

Abstract

Previous work on self-reconfiguring modular robots
has concentrated primarily on hardware and reconfig-
uration algorithms for particular systems. In this pa-
per, we introduce a new type of generic locomotion al-
gorithm for self-reconfigurable robots. The algorithms
presented here are inspired by cellular automata, using
geometric rules to control module actions. The actua-
tion model used is a general one, presuming that mod-
ules can generally move over the surface of a group of
modules. These algorithms can then be instantiated on
to a variety of particular systems. Correctness proofs
of the rule sets are also given for the generic geome-
try, with the intent that this analysis can carry over to
the instantiated algorithms to provide different systems
with correct locomotion algorithms.

1 Introduction

Our goal is to build robotic systems that are ex-
tremely versatile in both their structure and the tasks
they can perform. This type of versatility is the hall-
mark of self-reconfiguring robots. Self-reconfiguring
robots are systems composed of a large number of iden-
tical modules that can autonomously reshape them-
selves to fit the task at hand. These robots are mas-
sively parallel distributed systems, with each module
thinking for itself within the group context.
Previous work in self-reconfiguring robots has con-

centrated on designing, engineering, and controlling
particular systems. Several interesting robot designs
have been proposed [2, 3, 9, 10, 11, 12, 13, 15]. For
each of these systems, architecture-dependent algo-
rithms that couple planning to the specific actuation
have been proposed. This includes real breakthroughs
in both centralized planning [4, 16] and decentralized
planning [6, 7, 12]. This body of work has brought
valuable insight into planning and control by focusing
on designing and building hardware and developing al-
gorithms coupled to specific hardware.

Figure 1: Four snapshots of a simulated locomotion
task based on the rules of Fig. 4.

We believe we are now at a point where we
can step back and examine more general questions
about self-reconfiguration planning in an architecture-
independent way. It is important to examine
architecture-independent algorithms that can be in-
stantiated for many different systems because they
have the potential of providing a more general science-
base for the field. By outlining general principles for
reconfiguration planning, we hope to learn how to bet-
ter design hardware and control algorithms. For exam-
ple, the ability of a self-reconfiguring system to change
shape can lead to “water-flow”-like locomotion algo-
rithms that allow the robot to conform to the terrain
on which it has to travel, as shown in Fig. 1. Such
algorithms have the potential of working well in un-
structured environments.

In most existing self-reconfiguring robot systems
(e.g. [3, 4, 9, 14]), an individual module can move in
general ways relative to a structure of modules by trav-
eling on the surface of the structure. Specifically, an
individual module is capable of: (1) linear motion on
plane of modules; (2) convex transitions into a differ-
ent plane; and (3) concave transitions into a different
plane. The details for how to accomplish these motions
are architecture-dependent.

In this paper we introduce a new class of distributed
control algorithms based on the above motion abstrac-
tions. These algorithms are generic, in that they can



be instantiated for any self-reconfiguring robot where
individual modules can move linearly on a structure of
identical modules and make convex and concave tran-
sitions onto different planes of motion. Our control
algorithms use local rules and are inspired by the cel-
lular automata model. We illustrate our general ap-
proach to distributed control by developing a suite of
algorithms for the locomotion task. More specifically,
we describe three different locomotion algorithms with
different assumptions, prove that they produce reliable
and correct locomotion, and allow the shape of the
robot to comply to the geometry of the terrain in the
spirit of the “water-flow” metaphor. We also show that
our correct abstract algorithms can be instantiated to
three very different robots with their correctness prop-
erties intact. Finally, we illustrate our locomotion al-
gorithms in simulations faithful to the characteristics
of each hardware unit.
Each locomotion algorithm employs a small set of

local rules we implement as a cellular automaton.
Each rule requires a set of preconditions on the neigh-
borhood of the cell and when activated, causes the cell
to move to an adjacent configuration (see Figures 1
and 2). We represent the basic module of the robot as
a cube, but our proposed abstraction can be replaced
by any geometric structure that supports the forma-
tion of lattices.

2 Activation Models

The three sets of rules presented in this paper use
different evaluation models for the modular robot. We
represent a generic self-reconfiguring robot as a col-
lection of cells, each cell corresponding to one robot
module. We view the resulting structure as a particu-
lar type of cellular automata. Before introducing the
specific distributed locomotion algorithms, we discuss
several different models that support distributed eval-
uation and control for such systems.
Traditional cellular automata are evaluated as a

group, such that the next configuration is generated
from the current configuration by simultaneously eval-
uating all the cells. This model is not concerned with
physical aspects of the underlying system. Since our
robots are physical systems, we modify the evaluation
model for traditional cellular automata to sequence the
cell evaluation process1.
We define three evaluation models, based on the rel-

ative delay of the activation of the cells. In the simplest
model, which we call D0, the cells are evaluated in a

1We can easily ensure no collisions in simulation by simply
evaluating the cells one at a time, while in hardware a local
locking system is required (note that cells at non-interfering lo-
cations in the group can activate simultaneously).

Algorithm 1 Instantiation of D1

1: while (1) do
2: flag = 0 in all cells
3: while (Any flag == 0) do
4: Choose unflagged cell at random
5: Set flag = 1 for current cell
6: while (Not all rules tried) do
7: Evaluate random rule for current cell
8: If rule applies, use it and break

Algorithm 2 Instantiation of D∞

1: while (1) do
2: Choose cell at random
3: while (Not all rules tried) do
4: Evaluate random rule for current cell
5: If rule applies, use it and break

set cyclical order, and so there is no variation in the
relative delay between any two cells. For the majority
of the rule sets presented here, we use an activation
model referred to as D1. Under the D1 model, a cell
can delay activation at most one cycle relative to any
other cell, or equivalently, one cell can activate at most
twice before another cell activates once. This model
relies on the homogeneity of the modules of the robot,
which ensures that they run at approximately the same
speed. We have implemented D1 using the technique
shown in Algorithm 1. Our most flexible model, D∞,
is used for the rule set in Sec. 5. In this model, a
cell may delay for an arbitrary amount between acti-
vations (although infinite delay may halt progress of
the system). This is implemented using Algorithm 2.
This model requires more complex rule sets and analy-
sis than the D1 model, but allows for more variability
of the individual cells, making it more robust for in-
stantiation onto a distributed system.

3 Locomotion without obstacles

The simplest locomotion algorithm is one which
does not allow explicit obstacles (i.e. obstacles other
than the floor). The rules shown in Fig. 2 are sufficient
to move a robot represented as a rectangular array of
cells eastward, where eastward motion is to the right.
The rules are shown as productions, in which the left
side represents the preconditions which must exist in
the environment of the cell being processed, the “cur-
rent cell”, represented in this figure by a black square
with a white dot. The right side of the rule represents
the environment of the current cell after the rule has
been applied. The rules in Fig. 2 require three differ-
ent existence tests: whether a cell exists at a location,



1:
N

2:
NE

3:
E

4:
SE

5:
S

= current cell

= cell = no cell

= no cell or obstacle

N

S

EW

Figure 2: Five rules for eastward locomotion without
obstacles, with the direction of motion given for each.

whether a cell does not exist at a location, and whether
a location is empty. For example, Rule 5 in Fig. 2 can
be applied only if there is an empty location below the
current cell, and cells to the west and southwest. If
Rule 5 is applied, then the result is that the current
cell has moved by one in the southward direction.

The general idea of how this rule set works is that
cells along the westward edge of the cell array move
to the top of the cell array, where they then move
eastward until reaching the eastern edge of the cell
array. At that point, the cells move southward until
no more motion rules apply. Thus, the motion is akin
to that of a caterpillar tread.

3.1 Analysis

We now show that the rule set in Fig. 2 produces
eastward locomotion on a robot represented as an ar-
ray of cells that is initially rectangular. It is sufficient
to show that 1) some rule from the rule set can always
be applied to the cell array, 2) eastward motion must
result from all possible sequences of rule activations,
and 3) the array remains connected, i.e. the cell array
always consists of one simply connected component.
These claims are proven in the following three lem-
mas. The lemmas assume that the cell array meets
minimum width and height bounds which do not pre-
clude any rule from being applied. In the case of the
rule set in Fig. 2 the minimum width is three cells and
the minimum height is two cells.

Lemma 1 and Lemma 3 also assume that the D1

activation method described in Algorithm 1 is used.
This method produces a bound on the relative activa-
tion frequency of any two cells: a cell can be processed
at most twice between two processing times of some
other cell. For example, cell P could be processed be-
fore cell Q in round 1, and cell Q could be processed
before cell P in round 2. The result is that Q was
processed twice between the processing times of P .

B
A

C
D

E FGH
I
J
K
L

M
N

B
A

C
D

E FGH
I
J
K
L

M
N

B
A

C
D

E FGH
I
J
K
L

M
N

O

Figure 3: Diagrams for the proofs of Lemmas 1-3.

Lemma 1 Given an initially rectangular cell array,
in the absence of disconnections some rule from the
rule set shown in Fig. 2 can always be applied.

Proof: Considering the left diagram of Fig. 3, we
see a generic cell array with border locations labeled
A-L (for convenience cells are indicated without the
black dot in the center). It is easy to see that if a
cell X is located at any of the locations A-L and the
rules in Fig. 2 are continuously applied only to X, then
X will eventually come to rest at location L. This is
because at any location only one rule can be applied:
Rule 1 at locations A-C, Rule 2 at location D, Rule
3 at locations E-G, Rule 4 at location H and Rule 5
at locations I-K. Furthermore, by examination of the
rule set it can be seen that placing a cell, X, at any of
the locations A-L cannot satisfy the preconditions for
a rule to be applied to any other cell.
In this proof, we denote cells by the letter at their

initial location in Fig. 3. Now consider the diagram in
the center of Fig. 3 in which cells have been positioned
at locations A-D. If we apply the rule set to all cells,
we see that only cell D can move, and only by using
Rule 2 to move to location E. By the above argument,
this cell will move to location L unless some other
moving cell can interfere with its motion. Since D’s
motion on the surface of the array cannot cause any
cell on the surface to move, the only other moving cells
must result from D’s original northeast move.
Indeed, D’s original move allows the cell at location

C to move northward using Rule 1. At this point C

is free to follow D around the surface of the cell array.
If it can be shown that C cannot interfere with D’s
motion (by preventing Rule 3, Rule 4, or Rule 5 from
executing), then D will arrive at location L. C can
only prevent D from executing Rule 3 or Rule 4 if
C can move to the location immediately west of D.
But C can only move eastward via Rules 2 or 3 which
guarantee 2 free locations to the east, so neither Rule
2 or Rule 3 can move C to a location one location west
of D. And, since Rule 5 has no preconditions to the
north or east, C would have to move in front of D to
interfere with D’s motion. However, one cell can only
move in front of another using Rule 2 followed by Rule
4, and since C can never be immediately west of D, it
will not be able to execute Rule 2.



Thus we have shown that the cell originally at lo-
cation D must move to location L. By using the same
argument we can show that cell C must move to lo-
cation K unless D can interfere with C’s movement.
While D is moving east along the north edge of the
cell array it can prevent C from moving by not mov-
ing itself, butD and C cannot interact as shown above.
While C and D are moving south along the east edge
D can again prevent C from moving by not moving
itself, but C must stay to the north of D since Rule
4 cannot be applied due to the presence of a cell on
C’s west face. Similarly, cells moving north on the
west edge of the cell array must maintain their single
file order. Therefore, the only possibilities for multiple
moving cells to interact are at the corners of the cell
array. At the northwest corner there is no problem
because a cell can only execute Rule 2 when there is
enough free space between it and some other cell on
the north edge of the cell array so that after Rule 2
has been applied there is still free space between the
two cells. At the northeast corner, however, there is
a possibility for moving cells to interact. It will be
shown in Lemma 3 that this interaction could theoret-
ically lead to the disconnection of the trailing cell, but
that the D1 model prevents disconnection from hap-
pening. Here we assume the disconnection does not
happen and therefore, cell C will reach location K.
Cells B and A will follow in order, assuming that

the cell at location M cannot move. M must be the
next cell to move other than A-D for the same reason
D was the only cell that could move originally. The
issue of whether M could move before A has passed
by M ’s north face is dependent on the amount of de-
lay cells might have in occupying locations which the
rules allow. Under the D1 model, M cannot move
before A has passed by M ’s north face because be-
fore D can move to location H, the prerequisite for
M to move, C has moved to location D, preventing
M ’s move. Likewise for cells B and A. The result is
that M cannot move until the cell originally at A is
at location H. At that point M will move, starting a
new cycle of motion which will create a new column
on the eastern edge of the cell array. Thus we have
shown that the movement is cyclic and will continue
without bound and, therefore, a rule will always apply
as long as the structure remains connected. 2

Lemma 2 Given an initially rectangular cell array,
eastward motion must result from all possible sequences
of continuous rule activations from the rule set of
Fig. 2.

Proof: Since by Lemma 1 some rule can always be
applied, the cell array will move eastward as long as

there are no oscillations between complementary rules.
Since Rules 2-4 have an eastward component of motion
and there is no rule that produces westward motion,
only Rules 1 and 5 are complementary, i.e. have off-
setting motions. But Rule 1 can only activate on the
western edge of the cell array and Rule 5 can only ac-
tivate on the eastern edge of the cell array. Therefore
no oscillation can occur, and the cell array must move
eastward. 2

Lemma 3 Given an initially rectangular cell array,
no possible sequence of rule activations from the rule
set shown in Fig. 2 can disconnect the cell array.

Proof: By examination of the rule set it can be seen
that no rule applied to a single cell on the surface of a
cell array can cause that cell to become disconnected
from the cell array, because every rule contains as a
prerequisite the existence of a post-motion connect-
ing cell. Thus, a disconnection can only occur as a
result of some configuration of multiple moving cells.
As shown in Lemma 1, the only possible location for
interaction which results in more than simple delay is
at the northeast corner of the cell array. Here, a cell
moving from location H to location I (see center dia-
gram of Fig. 3) satisfies the preconditions of Rule 3 for
a trailing cell, allowing the trailing cell to move from
location H to N . At this point, if the cell at location I

moves to location J via Rule 5, the cell at location N

will be disconnected (see right diagram of Fig. 3). Al-
ternately, the cell at N can move to location O before
the cell at location I moves, but the result is the same,
a disconnection after the cell at I moves to location J

(note that no rules apply to a cell at location O).
Although a disconnection is theoretically possible

using this rule set, it would require the trailing cell
to move at least three times between the move of the
leading cell from locationH to location I and the move
of the leading cell from location I to location J . This
is because at the time when the leading cell moves
from H to I, the trailing cell can be no closer to the
leading cell than location F since Rule 3 enforces a
single empty cell location between moving cells on the
north edge of the cell array. Thus, after the leading
cell has moved from H to I, the trailing cell would
have to apply Rule 3 three times to be at location N

(four moves would be required to reach location O)
before the move of the leading cell which disconnects
the trailing cell. However, the D1 simulation model we
are using does not allow one cell to move more than
twice between the moves of another cell. Therefore,
given our simulation model the cell array must remain
connected. 2



1:
N

2:
NE

3:
E

4:
SE

5:
S

6:
SW

7:
SW

8:

NW

= current cell

= cell

= obstacle

N

S

EW

= cell or obstacle

= no cell

= no cell or obstacle

Figure 4: Eight rules for eastward locomotion with ob-
stacles based on the rules of Fig. 2 with two additional
SW rules and one new NW rule.

Theorem 4 The rule set in Fig. 2 produces eastward
locomotion on any initially rectangular array of cells.

Proof: Lemmas 1, 2, and 3 prove that some rule
from the rule set can always be applied to the cell
array, eastward motion must result from all possible
sequences of rule activations, and the array remains
connected. Therefore, the rule set produces eastward
locomotion on a rectangular array of cells. 2

4 Locomotion over obstacles

It is possible to augment the rule set in Fig. 2 to
allow the cell array to crawl over obstacles. The new
rule set, Fig. 4, has eight rules. The three new rules al-
low for southwest and northwest cell movement which
is needed for the cells to comply to the obstacle field
(two rules are used to implement the southwest move-
ment). Preconditions that involve the presence of ob-
stacles are also added as shown. The basic idea is still
the same, in that a cell moves upward along the west
side of the group, across the top, and down the east
side, however in the presence of obstacles the exact
path is slightly modified. In our simulation, obstacles
are represented as cubes, but cells do not connect to
them, and the algorithm can be used with irregular
obstacles given proper sensing.

Figure 1 shows four snapshots from a simulation
run of the rule set of Fig. 4. In this case, the robot is
composed of five separate layers, each running the rule
set independently. The observed motion of the robot is
very compliant to the terrain and appears to flow over

A B C

GFED

obstacle
H I

J

A B C

GFED

obstacle
H I

J

A B C

GFED

obstacle
H I

J

(a) (b) (c)

Figure 5: An example of cells conforming to the front
of an obstacle, used in the proof of Theorem 5.

the obstacles. For this rule set, the maximum obstacle
height is one less than the height of the cell array.

4.1 Analysis

To prove the correctness of this rule set, we begin
with the correctness of the five rule set shown above.
First, note that in the absence of obstacles, the current
rule set reduces to the five rule set: the NW rule (8)
can never apply without obstacles present, and the SW
rules (6, 7) will not, since in the absence of obstacles
columns are filled one at a time, so there could not
be an empty space to the west of a cell on the east
face. We now explore the situations in which obstacles
are encountered, and show that for each, progress will
continue without deadlock or disconnection.

Theorem 5 The rule set of Fig. 4 will produce east-
ward locomotion for any (initially rectangular) group
of cells over any obstacle field that is (a) shorter ev-
erywhere than the initial height of the group, and (b)
everywhere supported from directly below.

Proof: The group of cells will locomote as de-
scribed by the five-rule set until the first obstacle is
reached. At this point, the cells moving to the east
edge of the group will settle on this obstacle using the
Rule 5 just as they would settle on other cells in the
no-obstacle case. We now show that the cells that will
make up the next column (assuming the obstacle is
shorter in the next column) will arrive there without
disconnecting the group.
Once the column on top of the obstacle is com-

pleted, the next cell will execute Rule 4 followed by
Rule 5 until it reaches the same height as the lowest
cell in the previous column. If the obstacle is of the
maximum height, this cell will simply extend the top
row, with empty space above and below it, as shown
as cell F in Fig. 5a. We must now show that the fol-
lowing cells will continue to their correct destinations
and not disconnect. We show this using the notation
of Fig. 5a to describe positions in the shape.

C will go to location G before A can move. A can
therefore get only as far as C before G moves to H

(using Rule 7). Note that during this process, F can’t



FED

CB

HG
obstacle

I J

K L

FED

CB

HG
obstacle

I J

K L

FED

CB

HG
obstacle

I J

K L

(a) (b) (c)

Figure 6: An example of cells climbing the back of an
obstacle, used in the proof of Theorem 5.

move. This leads to the configuration of Fig. 5b. A

(now at location C) will go to G and then I before
another cell can get on top of it (as shown in Fig. 5c),
before using Rule 6 to move to J .

Now we must show that the cells beginning motion
at the back of the group will be able to actuate in the
correct order to produce motion without disconnec-
tions (and while maintaining the general arrangement
of cells across the top to ensure no deadlocks).

First we note that due to the nature of Rules 5-
7, there will never be a cell with obstacles both on
its immediate left and right, so there will always be
at least two cells in any row between two obstacles.
We examine two cases based on the relative heights of
the westernmost two columns: first, where the obsta-
cle in the westernmost column is taller than (or the
same height as) that of the second column, and sec-
ond, where the obstacle in the westernmost column is
shorter. In this latter case, there are some cells at the
bottom of the west column that have an obstacle to
their east (e.g. H, J , L in Fig. 6a).

In the first case, none of the cells in the western
column will have obstacles to their east, and so Rule
8 will never apply. This is the same as in the five-rule
case, and the argument there follows. In the second
case, the cell(s) with obstacles to their east will move
NW using Rule 8 once the opportunity presents itself.

The second column before the obstacle will actuate
from the top down as in the no-obstacle case, eventu-
ally reaching a state similar to that of Fig. 6a. Note
that as the cells in this column move upward, the cell
at L cannot move NW. Only once the last cell in the
column (cell K) moves to D (as in Fig. 6b), cell L

can move to I. K may be as far as B by this point,
but not further. If K is at location B, there are two
spaces between the cells (see Fig. 6c), which can be
transiently increased to at most three as they move
over the surface of the group. But since Rule 2 requires
four consecutive empty spaces around the perimeter,
E cannot move until all cells below that have an ad-
jacent obstacle have moved past it. In addition, the
only rules that could apply to cells H and J (which

Figure 7: Snapshots of two different simulations based
on the D∞ rule set.

have a cell to their north and an obstacle to the east)
are Rules 5-6, both of which require two adjacent cells
at the bottom of the column to the east. This cannot
happen since by the time one cell moves NW, the spots
above and below it are guaranteed to be empty. 2

5 D∞ rule set

In this section, we discuss briefly an extension to
the locomotion algorithm that operates under the D∞

activation model. This rule set also has the ability to
climb over obstacles higher than the initial height of
the group. It is composed of 22 rules and uses only
the Moore neighborhood (eight adjacent cells). Each
unit is in one of two states: activated and inactivated.
Only activated units are permitted to move. The rules
are classified into three types: five activation rules,
12 moving rules for activated units, and five inacti-
vation rules. Two examples of simulated sequences
using these rules are shown in Fig. 7. Gray, dark gray,
and black squares represent an obstacle, an inactivated
unit, and an activated unit, respectively. Correctness
of this rule set can be shown through the use of a loop
invariant that represents all valid configurations. We
can prove that all cell motions that start in a valid
configuration lead to another valid configuration. In
addition to this basic rule set, we are also investigating
techniques to automatically switch from one rule set
to another based on the local form of the environment.

6 Instantiations

A key feature of our abstract locomotion algorithms
is that they can be instantiated and realized on a vari-
ety of self-reconfiguring robot systems. This primarily
requires developing actuation primitives for the sys-
tem that can realize the types of motion called for by
the cellular automata. In this section we discuss three
different instantiations. We have currently developed
these instantiations in simulation and are working on
implementing the control on the hardware. It should
also be noted that there exist 2-D self-reconfiguring



Figure 8: Simulation sequence of fracta modules.

systems, those of Hosokawa et al. [3] and Chiang and
Chirikjian [1] that have the exact geometry and mo-
tion capability of our abstract model.

6.1 Meta-modules

The simplest way in which these automata may be
instantiated onto several different systems is through
the use of meta-modules. For many systems, it is
possible to construct a group of several non-isotropic
modules in such a way that the group has isotropic
motion capability of the type required by the algo-
rithms presented here (motion in a unit lattice over
the surface, convex and concave transitions). For the
Molecule, a structure called a tile has been developed
with this property [5], while the grain meta-module
was developed for the Crystalline Atom [10]. These
meta-modules can then immediately use the rules of
the automata, although communication between the
individual modules would be necessary to determine
the meta-module’s neighbors and coordinate its actu-
ation. The use of meta-modules requires many more
modules to achieve the same amount of reconfigurabil-
ity. Therefore, instantiations of the rules on to indi-
vidual modules may be preferable.

6.2 Hexagonal lattice systems

The 5 rule set can be instantiated to systems with
hexagonal modules with minor modification. Systems
of this nature include the Fracta system [12] and the
metamorphic robot of Chirikjian et al [9]. The adapted
set of rules are shown in Fig. 9. We assume the D1

model and no obstacles as for the original rule set. Be-
cause the lattice configuration is different, we assume
that the initial configuration is a trapezoid instead of
a rectangle, with a top row of at least four units.

CC C

CC C

C

C occupied by cell empty cell being processed moving direction

C CC

Figure 9: Rule set for hexagonal lattice modules.

The rules are obtained by tilting the original rules,
and adding one cell condition to the east rule. Direc-
tions of tilt are shown in the figure around each cell as
a parallelogram. Rules applied to the left part of the
group (north and northeast rules) are tilted right, and

magnetic connector

servo 1

servo 2

(a) (b)

Figure 10: (a) One module of the system of [8] and (b)
a screenshot of the simulated instantiation of the five
rule set.

the rules for the right part (southeast and south rules)
are tilted left. The east rule combines them, resulting
in an additional cell condition.

A simulated sequence is shown in Fig. 8. Units are
shown in black and the floor in gray. The figure shows
eastward locomotion of the group.

The correctness proof is similar to the proof in
Sec. 3. One difference is that the northeast rule makes
a unit move one step further from the point of view
of the left tilt. When another moving unit is still on
the same height of the top row, the unit might move
eastward over this unit, which does not happen using
the original rule. This case happens when the top row
contains only three units. By restricting robots to have
at least four modules on the top row, we can ensure
eastward progress.

6.3 Modular Transformer (MTRAN)

Another system that we are currently investigating
is that of Murata et al.[8]. This system is quite pow-
erful, but the modules are somewhat unusual, as can
be seen in Fig. 10a. A module in this system can-
not connect to neighbors on all sides, as is assumed
in our abstract geometric model. Therefore, at least
two 2-D layers must be present to maintain connec-
tions between all modules. In addition, each module
consists of two articulated bodies, and so it inhabits a
configuration space larger than the two dimensions of
the simple automata described here.

Despite these complications, it is possible to instan-
tiate the locomotion algorithms to this system. We
have done this with the five rule set of Sec. 3. Neigh-



bor relationships translate in a straightforward way,
and movement of a module along a straight line is also
easy. For turning around corners, we have had to add
the concept of a helper, and explicit message passing,
since a module will need its neighbor to perform the
actuation to make the northeast and southeast tran-
sitions. Proper message passing is also required to
ensure that the group remains connected despite the
limited connection ability of the individual modules.
A distributed simulation has been implemented as the
instantiation of these rules and has produced success-
ful forward locomotion. The results of this simulator
can be displayed in the GUI developed for these mod-
ules at AIST, as shown in the screenshot in Fig. 10b.

7 Extensions

In addition to locomotion over obstacles, we are
currently investigating using this control approach for
other tasks. One small set of added rules (which can
be added to either of the sets of rules presented here)
allows the group of cells to duck under overhanging
obstacles and thereby navigate tunnels and fill caves.
Another extension allows a 3-D group of cells (such as
shown in Fig. 1) to stop, regroup into a cube and turn
90◦ when a tall obstacle is detected. A larger set of
rules that involves giving the cells more state allows a
group of cells to split in two halves that locomote in
opposite directions and recursively split again.

8 Conclusion

Previous work in modular robotics has focused on
algorithms that apply to particular systems. This pa-
per has presented a set of generic locomotion algo-
rithms for modular robots based on cellular automata.
These algorithms apply to an abstract model and have
been shown to produce correct locomotion without
deadlock or disconnection. The algorithms can then
be instantiated on a variety of different robot systems.

Acknowledgments

This work was done in the Dartmouth Robotics
Lab. The authors would like to thank the members
of the Distributed System Design Group at AIST for
insightful discussion and for providing the simulation
tool used with the instantiation of Sec. 6.3. Sup-
port for this work was provided through the NSF
CAREER award IRI-9624286 and NSF awards IRI-
9714332, EIA-9901589, IIS-9818299, and IIS-9912193.

References
[1] C.-H. Chiang and G. Chirikjian. Modular robot mo-

tion planning using similarity metrics. Autonomous

Robots, 10(1):91–106, 2001.

[2] T. Fukuda and Y. Kawakuchi. Cellular robotic system
(CEBOT) as one of the realization of self-organizing
intelligent universal manipulator. In Proc. of IEEE

ICRA, pages 662–7, 1990.

[3] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu,
H. Asama, Y. Koruda, and I. Endo. Self-organizing
collective robots with morphogenesis in a vertical
plane. In Proc. of IEEE ICRA, pages 2858–63, 1998.

[4] K. Kotay and D. Rus. Locomotion versatility through
self-reconfiguration. Robotics and Autonomous Sys-

tems, 26:217–32, 1999.

[5] K. Kotay and D. Rus. Scalable parallel algorithm for
configuration planning for self-reconfiguring robots.
In Proceedings of the Society of Photo-Optical Instru-

mentation Engineers, Boston, 2000.

[6] J. Kubica, A. Casal, and T. Hogg. Complex behaviors
from local rules in modular self-reconfigurable robots.
In Proc. of IEEE ICRA, pages 360–7, 2001.

[7] S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and
S. Kokaji. Self-repairing mechanical systems. Au-

tonomous Robots, 10:7–21, 2001.

[8] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa,
A. Kamimura, and S. Kokaji. Hardware design of
modular robotic system. In Proc. of the Int’l Conf. on

Intelligent Robots and Systems, pages 2210–7, 2000.

[9] A. Pamecha, C-J. Chiang, D. Stein, and G. Chirikjian.
Design and implementation of metamorphic robots. In
Proc. of the 1996 ASME Design Engineering Techni-

cal Conference and Computers in Engineering Con-

ference, 1996.

[10] D. Rus and M. Vona. Crystalline robots: Self-
reconfiguration with unit-compressible modules. Au-

tonomous Robots, 10(1):107–24, 2001.

[11] W.-M. Shen, P. Will, and A. Castano. Robot modular-
ity for self-reconfiguration. In SPIE Conf. on Sensor

Fusion and Decentralized Control in Robotic Systems

2, 1999.

[12] K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and
S. Kokaji. Self-assembly and self-repair method for
a distributed mechanical system. IEEE Trans. on

Robotics and Automation, 15(6):1035–45, Dec. 1999.

[13] C. Ünsal, H. Kiliççöte, and P. Khosla. A modular
self-reconfigurable bipartite robotic system: Imple-
mentation and motion planning. Autonomous Robots,
10(1):23–40, 2001.

[14] M. Yim. A reconfigurable modular robot with multi-
ple modes of locomotion. In Proc. of JSME Conf. on

Advanced Mechatronics, Tokyo, 1993.

[15] M. Yim, D. Duff, and K. Roufas. PolyBot: a modular
reconfigurable robot. In Proc. of IEEE ICRA, 2000.

[16] E. Yoshida, S. Murata, A. Kaminura, K. Tomita,
H. Kurokawa, and S. Kokaji. Motion planning of self-
reconfigurable modular robot. In Proc. of Int’l Sym-

posium on Experimental Robotics, 2000.


