
Rein : Where Policies Meet Rules in the
Semantic Web

Lalana Kagal and Tim Berners-Lee

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{lkagal,timbl}@csail.mit.edu

Abstract. Rein is a decentralized framework for representing and rea-
soning over distributed policies in the Semantic Web. Policies in Rein
use information defined in and inferences made by other policies and
web resources forming interconnected policy networks. Rein allows poli-
cies to be represented in different policy ontologies and requires the use
of N3 rules, a semantic web rule language, for defining the connections
in these networks. Reasoning over these networks to obtain policy de-
cisions is done using cwm, an N3 reasoner. Rein consists of three main
components - a high level ontology for describing policy networks, mech-
anisms in N3 for using information and inferences from both policies
and web resources, and an engine for inferring policy decisions from pol-
icy networks. As part of our future work we would like to look into the
use of SWRL and RuleML to develop similar functionality as the Rein
framework.

1 INTRODUCTION
The Semantic Web provides mechanisms for searching through and making infer-
ences over potentially millions of data with well defined semantics. In this open
and dynamic environment, it is important to control how Web agents (including
people, web services, and software agents) behave in terms of what resources (e.g.
services, pictures, and webpages) they access (security), how their information
is used by others (privacy), whether they are reliable (trust), how they establish
and fulfill social and business obligations and contracts (obligation management),
and how they make put information together to make inferences (data mining).
Policies are norms of ideal behavior that influence how Web agents act. They
are the ideal mechanism for behavior management on the Semantic Web because
they provide the flexibility, openness, and automation required.

Our earlier work dealt with developing specific policy languages to describe
policies in a rule language defined over OWL [1, 2]. However, our current work
is aimed at providing a unifying framework that allows users to define policies
in their own taxonomies and provides mechanisms in N3 rules that enable these
policies to access and reason over each other and the web. Rein (Rei and N3)
is a distributed framework for policy specification and reasoning, which exploits
the inherently decentralized and open nature of the Semantic Web. Rein allows
policies to be described using ontologies in RDF-S [3] and OWL [4], and serial-
ized in RDF/XML [5] or N3 [6]. It also allows policies to use information and

inferences about entities and relationships defined in other policies and resources
using mechanisms described in N3 rules. These policies and resources are implic-
itly connected through access links and form Rein policy networks. This leads
to a modular architecture where a policy need not ’understand’ the ontology
or reasoning used by another policy or web resource in order to use it within
its own rules. Policy networks allow the definition of policies in terms of other
policies and information distributed on the Semantic Web.

Rein does not propose a single policy ontology or language for policy
specification. It allows every policy to potentially have its own policy ontology
and if required, a reasoner in N3 rules for interpreting the semantics of the pol-
icy ontology. Policies can range from simple to very complex. However, even the
simplest policy carries its semantics by reference because it uses a namespace for
the policy ontology, which can be looked up, and the rules (reasoner) associated
with ontology can be used. Rein relies on N3 semantics and cwm functionality
to integrate the policy networks. Rein supports N3 rules [6, 7] for representing
interconnections between policies and resources. N3 rules allow policies to access
the web and objectively check the contents and inferences of documents, without
having to load them and believe everything they say. Rein uses the cwm reason-
ing engine [8] to provide distributed reasoning capability over policy networks.
Though Rein consists of N3 and cwm, we believe that other rule languages such
as RuleML [9, 10] and SWRL [11] and their reasoners could also provide similar
functionality.

An important contribution of this work is that the creation of socially-aware
systems usually involves a division of responsibilities between different parties
with different roles and skills and Rein supports this. Designing ontologies, writ-
ing reasoners for policy ontologies, developing policies, and enforcing policies
are all modular tasks. This allows policy developers to make frequent changes
at their high level of understanding without requiring any other changes to the
system.

Some of the main contributions of Rein include :
– It is a open and distributed approach to representing and reasoning over

policies. Policies in Rein policy networks can be represented in any policy
ontology.

– It allows flexibility in how sophisticated or expressive the policies can be.
For example, a policy can use a simple ontology in RDF to list users and the
resources they can/cannot access whereas another policy can be a set of N3
rules that defines access rights in terms of attributes of users, resources, and
the environment and can use information and inferences from other policies
and resources.

– It promotes extensibility and reusability as it allows every policy to have its
own policy ontology and reasoner and still be used within policy networks
by other policies.

– It provides a unified way for policies to access policy networks.
– It supports a compartmentalized approach to policy development.
– All objects in the system, including resources and policies, are self-describing.

The rest of the paper is as follows : Section 2 provides a high level description
of N3 and cwm. Section 3 describes the Rein framework including the top level
Rein ontology for describing policy networks, the mechanisms used by policies
for accessing the web, and the process for reasoning over policy networks. Section
4 is an example of a Rein policy network that brings out some of the interesting
capabilities of Rein. It also discusses how policy ontologies and their reasoners
can be developed. Section 5 describes other policy efforts in the Semantic Web
space and discusses their relationship to Rein. Section 6 summarizes the features
of Rein and discusses some of our future research directions.

2 N3 AND CWM OVERVIEW
Notation3 or N3 provides a human-readable syntax for RDF and is a language
that uses conventional unix-style punctuation, which is both more easily writable
and readable than the RDF/XML syntax.

The N3 example below uses prefix for describing namespaces and defines c1
an instance of the Car class as defined in ex namespace. Please refer to the
primer [12] for more details about the N3 syntax.

ex:c1 rdf:type ex:Car;
ex:licensedYear 2002, 2003, 2004;
ex:color "green".

N3 also provides functions for describing rules. The fact that the rule language
and the data language are the same gives a certain simplicity (there is only one
syntax) and completeness (rules can operate on themselves, anything written in
N3 can be queried in N3). This would be broken if a special syntax were added for
built-in functions and operators. Instead, these are simply represented as RDF
properties. The N3 rule engine, cwm, when analyzing a rule prior to running it,
treats specially those properties it knows as calculable functions which occur in
the antecedent. Cwm is a forward chaining reasoner operating with such rules.
Rules may have full N3, even with nested graphs, on both sides of the implication.
This gives a form of completeness as rules can generate rules. When used as a
rule language on RDF alone, N3 can of course be constrained so that there is no
nesting of graphs.

Although initially developed as a serialization of RDF, full N3 extends RDF
with variables and nested graphs. Some important features of N3 when combined
with built-in functions of cwm include rules, accessing web resources, graph
functions, inferencing within rules, and builtin functions such as math and string
functions.

Quoting :
Various forms of literal value are allowed in RDF graphs, however the RDF
standard does not provide for a RDF graph to be a data value. Remedying this
allows one to express relationships between graphs, for example that a given
graph is the RDF content of a particular document. The importance of agents
on the semantic web being aware of where data has come from and where it is
allowed to go to raises a need to be able to explicitly talk about graphs.

ex:Joe ex:said { ex:Peter policy:permitted abc:acbService }.

Existential and universal variables :

In its blank nodes (items in the graph not directly identifies by a URI) an
RDF graph has a form of existential variable. Extending the language to allow
variables existentially or universally quantified over a graph allows N3 to be used
for a form of logic. The reason for this initially was so that, given variables, a
rule is just a relation between two graphs.

Variables are defined such that when substitution occurs in a graph, it also
occurs in any nested graph.

Rules :

The log:implies property expresses a rule, its subject being the antecedent graph,
and the object being the consequent graph. The shorthand ⇒ may be used for
log:implies. N3 allows blank nodes in the conclusion of a rule, hence allowing the
creation of new objects.

The following example states that all students who have registered for some
class are allowed to use the library.

@forAll :s.
{ @forSome :c.
:s a school:GradStudent. :s school:registered :c. :c a school:GradCourse.

} => { :s policy:permitted school:UseLibrary }.

The use of N3 rules permits the description of policies that are not supported
by either RDF or OWL such as policies that require chaining of variables (e.g.
the uncle of relationship, same group as) and those that require calculations (e.g.
the minutes must be available 3 days after the meeting, managers are permitted
to sign on purchase orders ≤ 1000, for modeling safety conditions of a nuclear
plant - pressure ≤ P, temperature ≤ T, radiation ? flow ≤ RF).

Accessing web resources :

The built-in function log:semantics accesses a web resource, retrieves a repre-
sentation of it, parses that, and returns the graph. Currently, cwm will retrieve
and parse RDF/XML and N3. We have also developed a new builtin called
log:semanticsWithImportsClosure that accesses a resource and all those resources
that are part of its owl:imports closure.

Graph functions :

Another function, log:includes, checks whether one graph is a subset of the other.
Together, log:semantics and log:includes allow rules to access the web, and to
objectively check the contents of documents, without having to load them and
believe everything they say.

Whereas some datasets (such as a list of members of a club) are definitively
complete, others (such as a set of temperature measurements) are not. This
aspect of the semantic web makes negation as failure meaningless unless it is

associated to a specific dataset. The effect of a default with an explicit domain
is achieved with log:notIncludes, the negation of log:includes.

This rule states that if the specification for a car does not say what color it
is then it is assumed to be black by default.

{ <carOrder.rdf> log:semantics :F.
:F log:notIncludes { :car auto:color [] }

} => { :car auto:color auto:black }.

Inferencing within rules :

In order to do inference over a set of RDF statement within rules, the builtin
function log:conclusion can be used.

Other builtin functions :

N3 also provides other built-in functions that aid in the development of ex-
pressive policies such as the cryptographic functions, math functions - cos, not-
GreaterThan, difference, and memberCount, os functions for retrieving environ-
ment information, string functions - concatenation, matches, and startsWith,
and time functions.

We can define a rule that states that checks of more than $10,000 are only
valid if signed by managers from the Finance department.

@forAll :check, :amt, :manager.
{ :check a biz:Check.

:check biz:amount :amt.
:amt math:greaterThan "10000".
:check biz:signedBy :manager.
:manager biz:department biz:FinanceDept.

} => { :check a biz:ValidCheck }

3 REIN FRAMEWORK

Rein is a distributed policy framework for resources (web resources, services,
actions, etc. 1) on the Semantic Web. It uses N3 rules to allow policies to access
each other and other web resources and uses cwm for deducing policy decisions.
Though, Rein uses the basic policy concepts defined by the Rei policy speci-
fication language [1, 2], it is a high level framework that allows policies to be
represented in different ontologies and provides mechanisms for describing and
reasoning over networks of policies and web resources. It consists of (i) a high
level ontology for describing policy networks, (ii) mechanisms that allows policies
to access information and inferences defined in other policies and web resources,
and (iii) an engine that reasons over Rein policy networks to infer policy deci-
sions. Though Rein is a general policy framework, it has been tested so far for
access control policies only. Whenever a resource is requested, the resource or
the entity managing the resource (such as a web server) creates a rein:Request

1 Resources, actions and services, as things to which access may or may not be allowed,
are treated identically by the system

hasReasoner

defines

Resource controlledBy

Request

requestedAction

requestType

Resource or
User

requester

usesOntology

Policy

Reasoner

PolicyOnt
RequestType

Fig. 1. Rein Policy Network Ontology

instance and uses the Rein reasoning engine to check whether the request is
valid. If the request is valid, the request is allowed to go through.

We use the following prefixes in the rest of the examples :

@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@prefix string: <http://www.w3.org/2000/10/swap/string#>.

@prefix rein: <rein.n3#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix book: <book.n3#>.

@prefix pol: <policy-book.n3#>.

@prefix ont: <pol-ont-book.n3#>.

@prefix mit-ont: <ont-mit.n3#>.

@prefix fil: <filter.n3#>.

@prefix policyontb: <policy-ontb.n3#>

3.1 Rein Policy Network Ontology

Though policies can be described in their own policy ontologies, the Rein frame-
work requires the use of its policy network ontology for defining the connections
in the policy network. The policy network ontology as illustrated in Figure 1
includes the rein:Request class and defines various properties that resources and
policies trying to build networks should use.

The usesOntology property is used by policies to let cwm know the policy on-
tology they use. hasReasoner is a property used by a policy ontology to describe
an external policy reasoner. A policy reasoner is a set of N3 rules that describes
the semantics of the policy ontology. Not all policy ontologies will have reason-

ers, but if they do this property is set to inform cwm that an external reasoner
must be used to make inferences over policies that use this policy ontology.

@forAll :policy, :ontology, :reasoner, :F.
{ :policy.log:semantics log:includes { :policy rein:usesOntology :ontology }.
:ontology.log:semantics log:includes {:ontology rein:hasReasoner :reasoner }.

} => { :policy rein:requiresReasoner :reasoner }

The rein:Request class is used by the Rein reasoning engine to query policy
networks. We define three properties - requester defines the entity making the
request, requestedAction is the resource, service, or action being requested, and
the requestType is a property defined in the domain specific policy ontology for
access control. The Rein reasoning engine can be be easily modified to handle
additional properties for a request including time, location, and attributes of the
requester and resource instead of just their identities.

The controlledBy property is used by a resource to inform Rein that a policy
(or policies) defines rules about its access.

An example of a resource, policy, and request is described below. This exam-
ple is a collection of N3 statements from several documents.

from book.n3
:BookService a ws:WebService;

rein:controlledBy <policy-book.n3>;
ws:bookTitle :title;
ws:price :price.

from policy-book.n3
<> rein:usesOntology <ont-book.n3>.

from ont-book.n3
<> rein:hasReasoner <reasoner-book.n3>.

from request.n3
:request1 a rein:Request;

rein:requester <dig-list.n3#lalana>;
rein:requestedAction <book:BookService>;
rein:requestType <ont:permitted>.

:request2 a rein:Request;
rein:requester <w3-list.n3#tim>;
rein:requestedAction <book:BookService>;
rein:requestType <ont:prohibited>.

3.2 Mechanisms for Accessing Web Resources and Policies
Rein proposes mechanisms for accessing information defined in and inferences
made by Rein policies and web resources. These mechanisms are derived from
the functionality of N3 and cwm. Policies can check for the presence or absence
of information in or inferences made by web resources and other policies.

Presence of information in a web resource :

In order to check for the presence of certain information in a web resource, Rein
suggests the use of log:semantics and log:includes builtins provided by N3.

In the following example, the file describing book:BookService is checked to
see who it says its deployer is. The deployer information is then read in and all
people that the deployer knows are permitted to use the book:BookService. At
no time is either file trusted for any other information.

@forAll :n, :d, :F, :G.
{ book:BookService log:semantics :F.

:F log:includes { book:BookService abc:deployed :d }.
:d log:semantics :G.
:G log:includes { [] a foaf:Person; foaf:knows

[a foaf:Person; foaf:homepage :n] }.
} => { :n ont:permitted book:BookService }.

Sometimes along with accessing a file, the closure of all files imported by the
file also need to be accessed and checked for the presence of certain information.
This is possible using the log:semanticsWithImportsClosure builtin.

Absence of information from a web resource :

It is not possible to enumerate all instances of a certain dataset so we need
to model defaults. This is done by using the negation of log:includes, which is
log:notIncludes.

In the example below, if the requesting entity does not belong to the DIG
list i.e. if the entity is not defined in dig-list.n3, then the entity is prohibited
from using the book:BookService.

@forAll :request, :actor, :F.
{ :request a rein:Request.

:request rein:requester :actor.
<dig-list.n3> log:semantics :F.
:F log:notIncludes { [] a foaf:Person; foaf:homepage :actor }.

} => { :actor ont:prohibited book:BookService }.

It is also possible to use log:notIncludes with the imports closure provided
by log:semanticsWithImportsClosure.

Presence of inference from a web resource :

Instead of only checking the presence or absence of certain data, it is also pos-
sible to check inferences made by web resources including policies. For example,
an RDF file may specify that Mark is a GradStudent, where GradStudent is a
subclass of Student and Student is a subclass of MemberOfMIT. In this case, if
log:semantics and log:includes are used, Mark is only a GradStudent and we can-
not infer that Mark is also a Student and a MemberOfMIT. In order to draw all
conclusions, Rein proposes the use of log:conclusion in addition to log:semantics
and log:includes.

Absence of inference from a web resource :

Similar to checking the absence of a certain information or graph from a resource,
in addition to log:conclusion, log:notIncludes is used to check the absence of an
inference.

Presence of inference from a policy :

Though, the presence of information from a web resource can be easily checked
using log:semantics, log:conclusion, followed by log:includes, the presence of in-
ference from a policy is different. This is because in order to access inferences of
another policy, a policy must query the Rein policy network and Rein provides
a unified interface to policy networks. To query the network, a rein:Request in-
stance is created and queried against the Rein engine (engine.n3). This is done
using log:conjunction to add rein:Request to engine.n3, followed by log:conclusion
for drawing inferences and log:includes to check whether the required inference
was made. This implies that the access rights of entities on resources can be
checked using the policy network without knowing which policies are acting
on the resources because resources themselves identify the policies that govern
them.

In this example, if a grad student of MIT is permitted to access book:BookService,
then he/she is also permitted to perform mit-ont:abcAction.

@forAll :x, :F, :G.
{ :x a ont:MemberOfMIT.

({[] a rein:Request; rein:requester :x;
rein:requestedAction book:BookService; rein:requestType ont:permitted}
<engine.n3>.log:semantics) log:conjunction :F.
:F log:conclusion :G.
:G log:includes {:x ont:permitted book:BookService}

} => {:x mit-ont:ispermitted mit-ont:abcAction}.

Absence of inference from a policy :

Checking the absence of inference from a policy can be done in two ways - (i)
by the reasoner and is especially useful for defining policy defaults, for example
prohibited if not explicitly permitted and permitted if not explicitly prohibited,
and (ii) by another policy.

If used in a reasoner, then the mechanism is similar to checking the absence
of an inference from a resource. The following rule is part of a reasoner for a
policy ontology. If book:BookService is not permitted then it is prohibited.

@forAll :request, :action, :actor, :F, :G.
{ :request a rein:Request.

:request rein:requestedAction :action.
:request rein:requester :actor.
:F :gives :G.
:G log:notIncludes {:actor ont:prohibited :action}

} => {:actor ont:permitted :action}.

However, if the checking of the absence of an inference is by another policy,
then the mechanism is similar to checking the presence of an inference from a pol-
icy (i.e. using rein:Request instance and engine.n3) except it uses log:notIncludes.

For example,if a grad student of MIT is not permitted to access book:BookService,
then he/she is prohibited from performing mit-ont:xyzAction.

@forAll :x, :F, :G.
{ :x a ont:MemberOfMIT.

({[] a rein:Request; rein:requester :x;
rein:requestedAction book:BookService; rein:requestType ont:permitted}
<engine.n3>.log:semantics) log:conjunction :F.
:F log:conclusion :G.
:G log:notIncludes {:x ont:permitted book:BookService}

} => {:x mit-ont:isprohibited mit-ont:xyzAction}.

Use of other builtin functions on a web resource :
A Rein policy can use other builtin functions of N3 for greater expressivity. For
example, it can use math functions to define safety conditions of a nuclear plant,
or the stopping distance of a car, date functions to describe policies such as
the minutes of a meeting must be available 3 days after the meeting and only
upto one month after the meeting, and string and list functions for policies about
filtering data such as if a file contains one of the words in the list, it is unsuitable
for children under thirteen.

@forAll :doc, :word, :F.
{ :doc log:includes :F.

:listOfWords list:in :word.
:F string:containsIgnoringCase :word.

} => { :doc fil:prohibitedFor fil:under13 }.

Include entire web resource :
A Rein policy can also include the entire contents of other policies and web
resources by using owl:imports. cwm can be run with the –closure=i option
which causes it to retrieve the closure of all the files being imported and treat
them as a single RDF graph. log:semanticsWithImportsClosure can also be used
to access all the files imported by a resource or policy.

3.3 Reasoning Engine
The Rein reasoning engine is an N3 rules file, engine.n3 It accepts as input a
file containing a list of rein:Request instances. It processes every rein:Request by
finding the policy associated with the resource and reasoning over its network.
The engine finds the policy that controls the requested resource by looking for
its rein:controlledBy property. It then reads in the policy using log:semantics
and gets it rein:usesOntology property. The engine then checks if the ontology
has a reasoner. If it does not, then the engine accesses the policy file and the
resource file. If the policy ontology does have a reasoner, it reads in the reasoner
file and the rein:Request class. The Rein engine then infers over the files accessed

using log:conclusion. It then tests for the presence of a triple formed by [requester
requestType requestedAction] using log:includes. If the triple exists, the requester
has the requestType of deontic on the requestedAction and the rein:Request is said
to be true.

In order for the Rein reasoning engine to be executed, the file containing the
rein:Requests must be added at the commandline as input to cwm. The correct
cwm usage for querying is

cwm --n3 myRequest.n3 engine.n3 --think --filter="engine.n3"

It is also possible to query Rein policy networks from within other resources
using N3 rules as described in Section 3.2. The policy or reasoner cannot be
arguments to engine.n3 implying that a request cannot be executed against
wrong policies or reasoners. All the information required to infer the validity of
requests is defined within the resource being asked for access, the policy that
controls it, and the ontology used for describing the policy making our approach
completely self-describing.

4 EXAMPLE

In order to verify the utility of the Rein framework, we developed three policy
ontologies - two of which require reasoners and one that is simple enough to
be described without a reasoner. We used these policy ontologies to develop
six policies. We also defined several resources that were controlled by these six
policies. We used the Rein network ontology to define a policy network. Figure 2
is a pictorial representation of part of this Rein policy network. The Rein network
ontology, engine, and examples are available at http://dig.csail.mit.edu/Rein

ServiceA

usesOntology

PolicyA

PolicyOntA

usesOntology

permits if
PolicyOntA.permits

PolicyB

ReasonerB

hasReasoner

PolicyOntB

usesOntologyPolicyC

includes

usesOntology

ReasonerA

hasReasoner

permits if PolicyOntD
does not prohibit

PolicyF

PolicyOntD

controlledBy
WebpageD

includes

PolicyD

controlledBy

PhotoB

controlledBy

PolicyE

usesOntology

includesURI Y

Y says K prop1 L

URI Z

Z does not say O

URI L

L infers M prop2 N
N > 500 and N < 1000

prohibits if
PolicyOntA.permits

Fig. 2. Rein Policy Network Example

There are three resources being protected by the six policies - ServiceA, Pho-
toB, and WebpageD. ServiceA is controlled by PolicyA. PolicyA is described in
the PolicyOntA ontology, which has a reasoner, ReasonerA. PolicyA also includes
PolicyC, which is described in PolicyOntA. This implies that both PolicyA and
PolicyC are used in conjunction to control access to ServiceA. PolicyC uses infor-
mation from URI Y and an inference from URI L to make decisions about access
to ServiceA. PolicyB is the policy that controls PhotoB. It uses the PolicyOntB
ontology, which has a reasoner, ReasonerB. It also uses inferences about access to
ServiceA and WebpageD. For example, if X is permitted (described by the Poli-
cyOntA) to access ServiceA, PolicyB allows John to access PhotoB. WebpageD
is controlled by PolicyD, which includes PolicyE and PolicyF. Both PolicyE and
PolicyF use the same ontology, PolictOntE. PolicyF uses information from URI
Z within its rules to decide access rights to WebpageD.

4.1 Simple Policy Language in N3

In order to show how policy ontologies and reasoners can be developed, we
describe one we developed, PolicyOntB.

PolicyOntB consists of four kinds of deontic concepts - pospermitted, pospro-
hibited, permitted, and prohibited. permitted is a subclass of pospermitted, and
prohibited is a subclass of posprohibited. A policy uses pospermitted and pospro-
hibited to define rules for possible access. The reasoner uses these rules and the
meta policies to infer actual permissions and prohibitions. The reasoner accesses
the policy that uses PolicyOntB, whose semantics it interprets, using the follow-
ing rule. Rein suggests that all reasoners use the same mechanism.

@forAll :request, :action, :policy, :ontology, :F, :G.
{ :request a rein:Request.

:request rein:requestedAction :action.
:action.log:semantics log:includes { :action rein:controlledBy :policy }.
:policy.log:semantics log:includes { :policy rein:usesOntology :ontology }.
:ontology.log:semantics log:includes {:ontology rein:hasReasoner <> }.
(:policy.log:semantics
:ontology.log:semantics
:action.log:semantics) log:conjunction :F.

:F log:conclusion :G.
} => { :F :policyInfo :G }.

The meta policies include defaults for both actions and policies - permitted-
ByDef (if there is there is no prohibition, it is permitted) or prohibitedByDef
(if there is no permission, then it is prohibited) [2]. It is possible to define de-
faults for an entire policy as a policy can be used by several actions. For conflict
resolution, the meta policy ontology includes modality setting [2]. This allows
the reasoner to choose either a permission (positive modality) or a prohibition
(negative modality) if both exist.

A policy defined in PolicyOntB consists of policyontb:pospermitted and poli-
cyontb:posprohibited rules for access and meta policies for defaults and modality
setting. All requests for a resource controlled by policies described in PolicyOntB

ontology will include policyontb:permitted and policyontb:prohibited as request-
Types. The reasoner for PolicyOntB starts out by figuring out the default and
modality preference for every request. If there is a default associated with the
action, it is used, otherwise the default defined by the policy is used. The follow-
ing cases apply - (i) if permittedByDef and no prohibition rule, then the action
is permitted, else it is prohibited (ii) if prohibitedByDef and no permission rule,
then the action is prohibited, else it is permitted (iii) if there is no default and
there is either a permission or a prohibition, the action is permitted or prohib-
ited, and (iv) if there is no default and there is both a prohibition and permission
rule, there is a conflict and the modality preference is used. The reasoner uses
the following rules for conflict resolution - (i) if there is both a prohibition and
permission rule and modality is positive, then the action is permitted, (ii) if
there is both a prohibition and permission rule and modality is negative, then
the action is prohibited, and (iii) if there is both a prohibition and permission
rule and modality is not specified, then there is a conflict and the request is
invalid.

The reasoner uses these rules when the default is permittedByDef.

@forAll :request, :actor, :action, :F, G.
{ :F :policyInfo :G.

:request a rein:Request.
:request rein:requester :actor.
:request rein:requestedAction :action.
:default :is policyontb:permittedByDef.
:G log:notIncludes { :actor policyontb:posprohibited :action }.

} => { :actor policyontb:permitted :action }.

{ :F :policyInfo :G.
:request a rein:Request.
:request rein:requester :actor.
:request rein:requestedAction :action.
:default :is policyontb:permittedByDef.
:G log:includes { :actor policyontb:posprohibited :action }.

} => { :actor policyontb:prohibited :action }.

5 EXISTING POLICY EFFORTS

Extensible Access Control Markup Language (XACML) [13] is a policy language
in XML for expressing policies. It can be used to describe policies and rules in
terms of boolean combinations of attribute-value pairs based on the subject,
resource, and environment. It also provides conflict resolution through its com-
bining algorithms. The Platform for Privacy Preferences (P3P) is a standard
developed by the World Wide Web Consortium (W3C) that enables websites
to describe their privacy policies and allows browsers to reason over these poli-
cies to decide whether they match the user’s preferences [14]. KAoS is a policy
language developed in OWL [15]. It is similar to Rei [2] and can be used to
develop positive and negative authorization and obligation policies over actions.

KAoS policies are OWL descriptions of actions that are permitted (or not) or
obligated (or not). This limits the expressive power, so that there are policies
that can described in N3 rules that KAoS cannot. Using OWL, however, allows
the classification of policy statements, enabling conflicts to be discovered from
the rules themselves.

We consider XACML, P3P, and KAoS to be specific policy ontologies (such
as PolicyOntA) that can be used within Rein policy networks to describe policies.
If their semantics can be represented in N3 rules, it will be possible to integrate
them seamlessly into the Rein framework.

RuleML [9, 16] is a proposed standard for a rule language, based on declara-
tive logic programs. SWRL is a closely related rule language standard for describ-
ing Horn like rules in first order logic, intended to be combined with OWL-DL
[11]. SWRL’s syntax for Horn rules is essentially a subset of RuleML’s. Unlike
SWRL which is based on classical logic, full RuleML can represent nonmono-
tonicity and conflict handling because it is based on logic programs that have
negation as failure and, in the courteous extension, priorities. As part of our
future work, we will look into representing policies in RuleML and SWRL and
using these rule languages to provide functionality similar to Rein.

6 CONCLUSION AND FUTURE WORK

Rein is an extensible and distributed framework for describing policies that gov-
ern the behavior of resources and users on the Semantic Web. Policies use in-
formation defined in and inferences made by other policies and web resources
forming interconnected policy networks. Rein allows policies to be represented
in different policy ontologies and requires the use of N3 rules, a semantic web
rule language, for defining these policy networks. Reasoning over these networks
to obtain policy decisions is done using cwm. Rein includes a high level ontology
for describing policy networks, mechanisms for using information and inferences
from both policies and web resources, and an engine that reasons over Rein pol-
icy networks to infer policy decisions. To show the usefulness of Rein, we have
developed a Rein policy network of several resources, three policy ontologies (two
of which require policy reasoners), and six policies that access each other and
other resources in the network.

We have not taken into consideration the complexity caused by long chains of
access in policy networks. For example, if PolicyA accesses ResourceB which ac-
cesses ResourceC which accesses ResourceD etc. Some possible solutions include
either preventing more files from being accessed after n have been loaded into
cwm or by allowing upto n links in an access chain. There is no problem if there
are loops in access chains (PolicyA accesses PolicyB which accesses PolicyA) as
we find the closure of the files.

Another problem is that Rein does not take possible attacks such as denial
of service into consideration and imports all required rules. Cwm also does not
do any sandboxing. We believe some kind of trust mechanism will be required,
so that only policies and reasoners that can be trusted will be loaded into cwm.

The current querying mechanism using rein:Requests is very simple and only
checks whether a requester has a certain access type on a resource. We would
like to extend that to allow different kinds of queries such as who is permitted to
perform a printing kind of service, what kind of resources can John access etc.

Though Rein is a general framework for policy specification and reasoning,
it has been used so far only for access control. We would like to look into other
behavior such as privacy, accountability, and collaboration.

As part of our future work, we would also like to look into using RuleML
and SWRL to replicate the functionality of the Rein framework.

REFERENCES
1. Kagal, L., Finin, T., Joshi, A.: A Policy Based Approach to Security for the

Semantic Web. In: Second Int. Semantic Web Conference (ISWC2003), Sanibel
Island FL, October 2003. (2003)

2. Kagal, L.: A Policy-Based Approach to Governing Autonomous Behavior in Dis-
tributed Environments. Dissertation (2004)

3. W3C: RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recom-
mendation, http://www.w3.org/TR/rdf-schema/ (2002)

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference, W3C Rec-
ommendation 10 February 2004. http://www.w3.org/TR/owl-ref/ (2004)

5. W3C: RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/rdf-
syntax-grammar/ (2004)

6. Berners-Lee, T.: Notation 3. http://www.w3.org/DesignIssues/Notation3.html
(1998)

7. Berners-Lee, T., Connolly, D., Prud’homeaux, E., Scharf, Y.: Experience with N3
rules. In: W3C Rules language Workshop. (2005)

8. Berners-Lee, T.: Cwm (2000)
9. : The Rule Markup Initiative. (http://www.ruleml.org/)

10. Boley, H., Grosof, B., Kifer, M., Sintek, M., Tabet, S., Wagner, G.: Object-Oriented
RuleML. http://www.ruleml.org/indoo/indoo.html (2004)

11. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: Semantic Web Rule Language Combining OWL and RuleML. Version 0.6
of 30 April 2004. http://www.daml.org/rules/proposal/ (2004)

12. Berners-Lee, T.: Primer: Getting into RDF and Semantic Web using N3.
http://www.w3.org/2000/10/swap/Primer (2005)

13. Godik, S., Moses, T.: OASIS eXtensible Access Control Markup Language
(XACML). (OASIS Committee Secification cs-xacml-specification-1.0, November
2002)

14. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: Plat-
form for Privacy Preferences (P3P). http://www.w3.org/P3P (2002)

15. Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J., Aitken,
S.: Policy and Contract Management for Semantic Web Services. In: AAAI Spring
Symposium, First International Semantic Web Services Symposium. (2004)

16. Grosof, B.: Representing E-Commerce Rules Via Situated Courteous Logic Pro-
grams in RuleML. Electronic Commerce Research and Applications (ECRA)
(2003)

